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Part 1: Introduction
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Applications for Computer Vision

Social Media Virtual Reality
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Goals for Computer Vision

What is it about?

What are in the picture?

Where are they?

What are the relationships?

What are their spatial dependency?
What are the relationships

between the object and the scene?
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Visual Understanding

Orlglnal video (unlform sampllng)

Object Detectlon Object Trackmg o Video Summarization
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Face Recognltlon Relationship Reasoning Action Recognition
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Progress of Computer Vision

Having outperformed human-level performance on many tasks.

Object Recognition Kinship Verification
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Models of Deep Neural Networks
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Challenges for Visual Understanding
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Challenges for Visual Understanding
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Challenges for Visual Understanding:

What will be going on next?

) | j’bé i-VisionGroup




Challenges for Visual Understanding
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Challenges for Visual Understanding I

Home-service Robot
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Reinforcement Learning and Visual Understanding

[ Same or different ]

1

[ Distance Metrie: d7 (x,,x,) = "h(lz) - hf’”i ]
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Reinforcement Learning

Policy: i
Reward Function: r
Agent
Value Function: Q
Action Observation,
Reward
Models for Environment Interaction
Environment

Goal: Maximizing the expected rewards

Sutton R S, Barto A G. Introduction to reinforcement learning, Cambridge: MIT
press, 1998.
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Reinforcement learning has four basic elements. The first one is policy：decide to take which actions or get the distribution of actions. For example, when your play chess with your friends. The policy means to choose a chessman and move it.
 The Secord one is the reward function：the reward got from the environment after you take actions. In the chess, eating a chess piece from the other side, or occupying a key position will give you a positive reward, while you will obtain negative reward when your chess pieces are eaten. 
The next one is the Value functions: the value of each action in the whole progress. In the chess, the value of each action means Probability of winning when you take this action in this step.
The last one is the environment: who you take interaction with. In the chess, the environment is the  checkerboard.
The goal reinforcement learning is to maximizing the expected rewards. The expected reward usually are different from the reward above. For example, when you paly chess, the expected reward is to win, eat the king, rather than eating more other chess pieces.


Markov Decision Progress I

OMDP (X' A! P, q, pO)
x: State space

A: Action space

p(: |x, a):probability over next state x;.
q(: |x, a):probability over rewards R(x;, a;)
p,.Initial state distribution

O Policy: Mapping from the states to actions or
distribution over actions

l-|x) = Pr(4)
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RL usually formulate the Problem we need to deal with as a MDP。 MDP contains five basic Components。 State space， action space，the  probability over next state when take specific action。 the  probability over rewards when take specific action。 The last one is Initial state distribution。 

The Policy: Mapping from the states to actions or distribution over actions



Value Function I

[ State Value Function:

Vi) =K, | > A Ry, play)|z = o)
=0
] State-Action Value Function:

Q"(x) =K, | Y ' R(wy, plxy)|zo = 2, a0 = a)

| t=0
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For RL，There are two kinds of value functions. The first one is State Value Function：which is independent with the actions. While the next one is State-Action Value Function. The value function is determined by rewards at each step which is summed with discount parameter gamma。



Policy Evaluation I

OFinding the value function of a policy

O Bellman Equations

Via) =) plalz) |R(z,a)+7 ) pla'lz,a)VH ()

acA L r'e X |

Q'(x) = R(z,a)+y Y pla|r,a) Yy  pld|a")Q"(a',a)

r’'eX a €A
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How to evaluate current policy is the fundamental problem of RL. We need to find the value function of the policy.
However, the value function is hard to obtain, especially When the program is not over. For example, when you play chess, you  can not calculate the Probability of winning at each step since you don’t know which chesses your partner will chose and how to move it.
Fortunately, The Bellman equations point out the important Characteristics of the value function. The value function at current step can be calculated with current reward value and the value function of next step. 


Bellman Equations I

OBellman Optimality Equations

Q*(x,a) = R(z,a)+y Y pla'|a,a) max Q" (', d')

acA
r’eX

OIf 0*(x,a) = Q* (x,a) is available, then an
optimal action for sate x is given by any

a* € argmax Q" (x, a)
a
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So we can obtain value function of the policy through solve the Bellman Optimality Equations.  If we obtain the optimal value function, the best policy is to take the action which have the highest value function.



Policy Optimization I

OFinding a policy u* maximizing V#(x),x € x

OBellman Optimality Equations: V#(x) = V*(x),

V*(x) = max | R(z,a) + v Z p(a'|z, a)VH(x")

acA
L r'eX i

pu' = argmax V*(x)
L
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Another important problem for RL is to finding a policy to maximizing the State Value Function. Which is also solved by Bellman Optimality Equations.



Learning Methods I

O Offline Learning
Learning while interacting with a simulator

O Online learning
Leaning while interacting with environment
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Current RL learning methods can be divided into two classes. The offline learning and online learning. Offline leaning means Learning while interacting with a  simulator. For example, you learn to play chess  with chess manual. You know the value of each actions. The online learning means leaning while interacting with environment. For example, you play chess with your patterner without the instruction to practice your chess skill.  




Offline Learning I

® Agent interacts with a simulator

® Rewards/costs do not matter
no exploration/exploitation tradeoff

® Computation time between actions is not critical
® Simulator can produce as much as data we wish

® Main Challenge
How to minimize time to converge to optimal policy
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Online Learning I

® No simulator - Direct interaction with
environment

® Agent receives reward/cost for each action

® Main Challenges

» Exploration/exploitation tradeoff
Should actions be picked to maximize immediate
reward or to maximize information gain to
Improve policy

»Real-time execution of actions

»Limited amount of data since interaction with
environment is required
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Solutions

SARSA PEGASUS
Q-learning Genetic Algorithms
Value Iteration Policy Gradient o
“Taa. Algorithms

Algorithms Policy Search
Actor-Critic Algorithms
Algorithms
. Sutton, et al. 2000
’.‘ Konda & Tsitsiklis 2000
* Peters, et al. 2005

Bhatnagar, Ghavamzadeh, Sutton 2007
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The relationship of current methods is plotted in this figure. Policy gradient algorithms and genetic  algorithms is  policy search algorithms. Q-learning value interaction is value function algorithms, While actor-critic algorithms learn  both the value function and policy. 


Deep Reinforcement Learning

Google DeepMind:
AlphaGo Defeated Lee Shishi

At last — a computer program that
can beat a champion Go player PaGe 484

ALL SYSTEMS GO

[1]Human-level control through deep reinforcement learning (Nature 2015)
[2]Mastering the game of Go with deep neural networks and tree search (Nature 2016).
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Reinforcement learning has achieve significant success in decision making and planning problem. But it can not handle complex state like Go and images. In 2015, google deepmind combine the deep learning with reinforcement learning, and proposed the deep reinforcement learning. Deep reinforcement learning is a principled paradigm to learn how to make decisions and select actions online, which has achieved great successes in Atari games with the images as input. In 2016, alphaGo defeated the Go World Champion Li Shishi, which shocked human beings, since Go is the most difficult game in the history of human beings which was considered unsolvable for computer. 


The Basic Model of Deep Reinforcement Learning

l | Reward

Take _|Environment
action

parameter 6

Observe state

Ty N
a5
D
= T'si

’Pé i-VisionGroup


演示者
演示文稿备注
The basic model of deep reinforcement learning is as follows. The agent use a deep neural network like our brain to take current state as input and generate the distribution actions.


Applications for Deep Reinforcement Learning

Recommendation system Robotics

INVESTMENT

n® QO Q = @(K@ &

Inventory management Financial investment Medical assistant
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Deep RL has been widely used in several applications. Autonomous  Driving. Uber and Tesla have provided Autonomous  Driving service in their product. Recommendation system, like facebook friends recommendation and YouTube videos recommendation. Robotics for controlling and navigation.  Inventory management, Amazon, Financial investment and Medical assistant.
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Deep Reinforcement Learning

» Policy Learning

SOURCE: GOOGLE

Atari Game

> Discrete Optimazation

Autonomous Driving

1 _ . 1 ) From reward function R(s,a) to the
t /‘{“) R(S’ a)r log /‘h(s’ a) gradient of decision network

» Unsupervised (Weakly supervised) Learning
AlphaZero Learns from the rule of GO rather than chess manual
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Deep RL has several advantages compared with current prediction-based deep learning methods. 
The first one is policy learning: we can generate discrete or continues decisions for games of  applications like autonomous Driving.
The second one is  Discrete Optimization：current prediction-based methods need the loss function and network parameters are Differentiable, which usually can not be granted in some situation, such as network compression and binary feature learning. But DRL can connect them with reward functions.
The last one is Unsupervised (Weakly supervised) Learning:  AlphaZero Learns from the rule of GO rather than chess manual.




From Deep Reinforcement Learning to Computer Vision

(-1

Convolution Convolution Fully connected Fully connectex
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So how to apply the DRL to computer vision issues like recognition ,detection, and tracking to take the advantages of DRL. 


From Deep Reinforcement Learning to Computer Vision

» Decision Problem: Markov Decision Process (MDP) Modeling

Atari Game ) Object Tracking
Current Game States Input Image +
> State: (Ball’s position, Bricks condition) Current Tracking state
> Action: turn left, turn right or stop Move the bbx or finish tracking
> Reward: Game scores Accuracy of Tracking
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Here we give a comparison of Atari game to hit the bricks with single object tracking.  The state of Atari game is the Current Game States (Ball’s position, Bricks condition), while the state of object tracking is Input Image  and Current Tracking state such as the location of object. The action of Atari is move the bricks at the bottom to left or right, while the action of tracking is adjust the bbx of object. The reward of Atari is the game score, while we can define the accuracy of tracking as the reward.   So we can re-model the computer vision task as specific MDP problems and define the actions  and rewards according to the actual situation. 






Part 2: DRL for Video Analysis
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In this section, we will talk about the DRL-based video analysis problem


DRL for Video Analysis

O Object (face) Detection, Tracking, and Recognition
O Action Detection, Recognition, and Prediction
O Video Summary and Caption

Caption #1: A woman
Caption #2: A woman and sharing food with her dog.

Caption #3: A woman

- =3 o

E : I ol | I Action-ll_l_’[ Q Net] [Action]

b g 10 B e i L select

- :"""""""""'T """""""" — _.\ """ __'_‘.

c| . Action I IAcUon '

, _ 2] QNet (=] |Q-Net|-::>|SI | :
Caption: A person and puts a laptop into a bag. & elect e _EE'S_J :
The person stands up, puts the bag on one shoulder,and 7 TTTTTTTTTtettemmmmtgm s
walks out of the room. ( Environment )

@ it g,w&,é i-VisionGroup


演示者
演示文稿备注
Billions of videos are generated from  social platforms, like YouTube, Facebook, WeChat, and Surveillance cameras. Video analysis is becoming more and more important. Been different the single image, videos are more complex and difficulty to processing.   There are several important tasks of video analysis， such as Object detection，tracking and segmentation ，Action Detection, Recognition, and Prediction and Video Summary and Caption， where current deep learning based methods have not achieved Satisfactory result. 





DRL for Video Analysis

O VideoV={l|i=01,--,N—1,N}
x: = (I, hy) € x: State space
a;:hy = hy,1,a € A: Action space
p(: |x, a):probability over next state x;,4
q(- |x, a):probability over rewards R(x;, a;)

O Policy: Mapping from the states to actions or distribution over

actions
Frame

[ 3 I ] I rfn\' [ 3 I ]

i O Continue

O Stop & update

O Stop & ignore

u Restart

Framet Frame t+1 Frame t+1
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A video has a lot of frames，and there are many relationships between frames and frames.
We can model the Video analysis as a MDP. The state  at frame t contains two part: the images It and the hidden variable ht. Actions from action space can transition the   current hidden variable to ht+1. We need to got estimation or optimization the probability function over next state xt+1 and probability over rewards  𝑅( 𝑥 𝑡 , 𝑎 𝑡 ).
For example, in the tracking problem, we can define the location of object and the appearance feature as the hidden variables, and take actions to adjust the location object and the appearance feature. We can model the tracking problem as policy learning to  Map from the states to actions or distribution over actions.



Ob ject (face) Detection, Tracking, and
Recognition
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For the first application, Object (face) Detection, Tracking, and Recognition are very important in video analysis. We need to detect the targets, and link them cross different frames, then recognize them. Current Object or face detection and tracking may failed when the target is deformable or  occluded. And some frames are misleading and confounding so that low quality frames may harm the performance of recognition. So we need to apply DRL to solve those difficult problem above.


DRL with iterative shift for visual tracking

(a) Classification based methods (b) Iterative shift based method

Traditional methods: sampling candidate bbx and performs classification.
Problems: low efficiency, hard to overcome the quick shift and deformation.

Liangliang Ren, Xin Yuan, Jiwen Lu, Ming Yang, and Jie Zhou. "Deep Reinforcement

Learnini with Iterative Shift for Visual Trackini.” ECCV2018.
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For the tracking problem：
Given the initial box (green), classification based methods sample many proposals, select the box (red) with the highest classification score, and collect positive (yellow and red) and negative samples (blue) to fine-tune the classifiers online. There may not be enough good samples for online learning in these hard scenarios. In contrast, the proposed iterative shift tracking adjusts the bounding box step by step to locate the target (\emph{e.g.}, 3 steps for the vehicle and 2 steps for the athlete), and makes decisions formally when and how to update object models by reinforcement learning. The shift process generally tends to be more efficient since less candidate regions are evaluated than in classification based methods


Action-Decision Networks for Visual Tracking with

Deep Reinforcement Learning
O Sate:

pe € RM2*1123 = (b, F), by = {x©,y®, w®, 0} :image patch
within the bounding box

d, € R'19 k actions at t-th iteration,

Pe+1 = f*p(pt’ a)
der1 = fa(de ag)

Tracking Sequences

Yun, S., Choi, J., Yoo, Y., Yun, K., & Choi, J. Y. (2017, July). Action-Decision

Networks for Visual Trackinﬁ with Deei Reinforcement Learnini. CVPR2017
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There also another RL-based tracking method named ADNEt， Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning。 AD-Net defined the location and image patch within the bounding box as current state， and the network take Discrete movements to adjust bounding box before stop action or falling in the oscillation case.
Howerer，Discrete movements  are not efficient enough and may failed in some difficult situation since online decision and adaptive are ignored.


Tracking as Online Decision-Making:Learning a Policy from

Streaming Videos with Reinforcement Learning

} [ Run Tracker
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O Continue

O Stop & update

O Stop & ignore

O Restart

Frame t Frame t+1 Frame t+1

Supancic lll, James Steven, and Deva Ramanan. "Tracking as Online Decision-Making:
Learning a Policy from Streaming Videos with Reinforcement Learning." ICCV.2017
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Supancic et al proposed Tracking as Online Decision-Making:  Learning a Policy from Streaming. The proposed method can make decisions whether the object are occluded, and update or ignore to update the hidden apperance feature of the target.  And the proposed Decision-Making can improve traditional tracking methods, which indicate the necessary and efficiency of Decision-Making on tracking.


DRL with iterative shift for visual tracking

Network Architecture

Actor Network |
I| continue
| Stop & update

| Stop & ignore

JRE;tart =T
: . O
: L ] fe1o
: conv1 =R
' i LS

i ! i

] -

1 conv2
i conv3
; fca
1 &

512
: 3*3%512
1

11*11*356

= 100%1

51*51*96
! 107*107*3 Shared Layers

Prediction Network
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The overview of the DRL-IS tracking method. Given the initial bounding box of a target, we first extract deep feature f from fc4 layer. Then we concatenate the feature of a candidate box $f$ and the current target feature f*. We generate shift $\delta$ using the prediction network $\psi$ and employ the actor network $\theta$. For action $continue$, we adjust the bounding box of the target according to the output $\delta$ of $\psi$. For action $stop$ and $update$, we stop the iteration and update the appearance features of the target and the parameters of $\psi$, while we skip the update for action $stop$ and $ignore$. When taking action $restart$, the target may be lost, so we re-sample for the initial bounding box. In the training stage, we use a deep critic network to estimate the Q-value of current actions with $\delta$, and fine-tune the prediction network $\psi$ and actor network $\theta$ for online  adaption. 


DRL with iterative shift for visual tracking

Actions:

A = fcontinue;stop & update; stop & 1ignore;restartg

Reward: .1 omik), 07

r,= . 0 04 g(Blk) 07
"1 else
< 10=K, g(1%:1x,), 07

reg, = 0 0:4 - g(Islix,) - 0:7:
"7 5 else
<1 ¢1oU, >

'tk = 0 i 2<giu<?;
gl €ioUu " i’

Formulation: A= argmjgnL(AF Esa(Q(s;ajA); ri °Q(s”a%jAl )
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For action $continue$, we adjust the bounding box of the target according to the output $\delta$ of $\psi$. For action $stop$ and $update$, we stop the iteration and update the appearance features of the target and the parameters of $\psi$, while we skip the update for action $stop$ and $ignore$. When taking action $restart$, the target may be lost, so we re-sample for the initial bounding box. In the training stage, we use a deep critic network to estimate the Q-value of current actions with $\delta$, and fine-tune the prediction network $\psi$ and actor network $\theta$


DRL with iterative shift for visual tracking

Experimental Results on the TC128 and VOT-2016 Dataset

Precision plots Success plots
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Fig. 7. The precision and success plots over all sequences by using one-pass evaluation
on the Temple-Color Dataset. The legend contains the average distance precision score
and the area-under-the-curve score for each tracker

Table 1. Comparison with state-of-the-art methods in terms of robustness and accu-
racy ranking on the VOT-2016 dataset(the lower the better)

Baseline |MDNet_N|DeepSRDCF|Staplel MLDF |SSAT|TCNN|C-COT|DRL-IS
Robustness| 5.75 5.92 570 | 4.23 | 4.60 | 418 | 2.92 | 2.70
Accuracy 4.63 4.88 4.23 | 6.17 [3.42| 4.22 | 4.85 3.60
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We provide the Experimental results on TC128 and VOT， we compared  the performance of different trackers
in terms of precision and success rate based on center location error and overlap ratio. We also provide the Comparison with state-of-the-art methods in terms of robustness and accuracy
ranking on the VOT-2016 dataset


DRL with iterative shift for visual tracking

i-VisionGroup


演示者
演示文稿备注
There are several visual examples。 The first one the carscale。 DRL-IS tracks the deformable car well while other methods failed to adjust the  bounding box。





DRL with iterative shift for visual tracking

Visualization:
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Qualitative evaluation of our tracker, MDNet [4], ADNet [13] and CREST [44]
on 7 challenging sequences (from left to right and top to down: Bird1, Soccer, Human4,
ClifBar and Freeman4, Coupon and CarScale)


Dual-Agent DRL for Deformable Face Tracking

MDP iterations
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Guo, Minghao, Jiwen Lu, and Jie Zhou. "Dual-Agent Deep Reinforcement Learning 1
Deformable Face Tracking." ECCV2018
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Deformable face tracking has received considerable attention in computer vision recently with numerous applications such as human computer interaction, facial expression analysis, and person identification. The aim of deformable face tracking is to detect the key points around facial components and facial contours across all frames of a given face video. It is a challenging problem in practice because face samples are usually captured in unconstrained conditions, where large poses, heavy occlusions, illumination variations and motion artifacts usually occur.



Dual-Agent DRL for Deformable Face Tracking

Approach
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In this work, we propose a dual-agent deep reinforcement learning (DADRL) method for deformable face tracking, which performs bounding box generation and facial landmark detection in interactive manner. Specifically, we exploit the interaction of these two procedures in probabilistic manner by following Bayesian model. Unlike existing deformable face tracking methods which directly infer the decomposed form of joint probability for bounding boxes and facial landmarks, we train these two models to learn two conditional distributions simultaneously. Then, the connections between these two tasks are formulated as two marginal distributions, and their correlation is explicitly modeled with learnable parameters. Motivated by the observation that the face tracking complexity varies across frames, our method utilizes reinforcement learning as a principled way to learn how to make adaptive decisions during deformable face tracking. We formulate this sequential procedure as a Markov decision process, which models bounding box generation and face alignment as two agents. These dual agents predict a variable-length sequence of actions to position updates of bounding boxes and landmarks


Dual-Agent DRL for Deformable Face Tracking

B-0--D g+8
"

(a) Tracking-by-detection (b) Multi-task learning (c) DADRL

» No guarantee to hold the probabilistic duality.

» Assumes that two task share the same input space, which
IS too strong in many real applications.

» Explicitly exploits the synergy between these two tasks.
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Here are the main difference compared with other methods。


Dual-Agent DRL for Deformable Face Tracking

Experimental Results on the 300VW:
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(a) Comparison between DADRL and state-of-the-arts on Category 3 of 300- VW for 49 inner points. (b) Comparison between DADRL and state-of-the-arts on Category 3 of 300-VW for 68 points.


Dual-Agent DRL for Deformable Face Tracking
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Bounding box tracking comparison. (a) Success plots for all videos on Category 3 of 300-VW. (b) Success plots for several videos with extreme pose variation on Category 3 of 300-VW

CED curves (left) and averaged errors comparisons (100%) (right) of several videos with heavy occlusions and motion artifacts on Category 3 of 300-VW.


Dual-Agent DRL for Deformable Face Tracking

Experimental Results
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(a)(b) Examples of alignment results for 68 points and 3D projected 84 points on Category 3 of 300-VW. (c) Sequential actions decided by tracking agent for two frames in Video #533 of 300-VW Category 3


Collaborative DRL for Multi-Object Tracking
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The key idea of our proposed C-DRL method for multi-object tracking. Given a video and the detection results of different objects for the $t$th frame, we model each object as an agent and predict the location of each object for the following frames, where we seek the optimal tracked results by considering the interactions of different agents and environment via a collaborative deep reinforcement learning method. Lastly, we take actions to update agents in the $(t+1)$th frame according to the outputs of the decision network.


Collaborative DRL for Multi-Object Tracking
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The framework of the proposed C-DRL for multi-object tracking. In this figure, there are three objects in the $t$th frame. We first predict the locations of these three objects in the $t+1$th frame. Then we use a decision network to combine the prediction and detection results and make decisions for each agent to maximize their shared utility. For example, Agent 2 is blocked by its neighborhood (Agent 1). Agent 1 updates itself by using the nearest detection result, and Agent 3 ignores the noisy detection. We initialize Agent 4 by using the remaining detection result in the environment. Lastly we use the locations of each agent as the tracking results in the $(t+1)$th frame.


Collaborative DRL for Multi-Object Tracking
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The framework of the prediction network. The prediction network learns the movement of the target object given an initial location of the object, which contains three convolutional layers and three fully connected layers.


Collaborative DRL for Multi-Object Tracking
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Collaborative DRL for Multi-Object Tracking

Experimental Results on the MOT16 Dataset

Mode Method MOTATMOTPHFAF}|MT(%)1|ML(%){] FP] | FNJ
TBD [45] 337 | 765 | 1.0 | 7.2 54.2 | 5804 [112587

Offline| LTTSC-CRF [49] | 37.6 | 759 | 2.0 | 0. 552 [11969|101343
LINF1 [42] 410 | 748 | 13 | 11.6 | 51.3 | 789699224

MHOT DAM_16 [44]] 458 | 763 | 1.1 | 162 | 43.2 |6412|01758
NOMT [7] 464 | 767 | 1.6 | 18.3 | 41.4 |9753 | 87565

NLLMPa [50] 476 | 785 | 1.0 | 17.0 | 40.4 |5844 89003

LMP [51] 48.8 | 79.0 | 1.1 | 182 | 40.1 |6654|86245

OVET [52] 384 | 754 | 1.9 | 7.5 47.3 |11517| 99463

Online] EAMTT pub [53] | 38.8 | 75.1 | 1.4 | 7.0 40.1 | 8114 |102452
CDA DDALv2 [47]| 43.9 | 747 | 1.1 | 10.7 | 444 |6450] 95175
AMIR [9] 472 | 758 | 0.5 | 140 | 41.6 |2681|92856

Ours 473 | 746 | 1.1 | 174 | 39.9 |6375 88543
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our method achieved
the best MOTA result among all online MOT methods and is comparable to the
best offine methods such as LMP [41] and FWT [13].


Collaborative DRL for Multi-Object Tracking
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Collaborative DRL for Multi-Object Tracking

Experimental Results
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Some tracking results on the MOT15 and MOT16 public detections, where
the trajectory of each object has been painted from the first frame in the same
color as its bounding box


Attention-aware DRL for video based face recognition

Video Face Recognition:

»Redundancy

»Noisy

NEE

Yongming Rao, Jiwen Lu, and Jie Zhou. "Attention-aware deep reinforcement learning for

video face recognition." ICCV2017.
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After tracking and alignment， we need to recognize those targets。 There have been a variety of studies on how to effectively integrate information across frames for video face representation. These methods exploit video information from all frames, which is usually considered as equal importance. However, some features are misleading and confounding so that low quality frames may harm the performance of recognition. 


Attention-aware DRL for video based face recognition
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.Our approach takes a pair of face videos as the input and produces the temporal-spatial representations for each frame by using multiple stacked modules, including a convolutional neural network (CNN), a recurrent layer and a pooling layer with locality constraints, respectively. Then, a hard attention model with a frame evaluation network is trained by the proposed deep reinforcement learning method, which finds the attentions of the video pair for face verification.


Attention-aware DRL for video based face recognition

Approach

»Finding key information in the video by attention model
»Train an agent to imitate human actions to find key information
» Markov Decision Model: deleting frames progressively
> State: current frames
> Action: delete one frame or stop

> Reward: recognition accuracy (No extra label data required)
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Markov decision process (MDP) of finding the focuses of attentions. States represent remaining frames after t steps, actions represent the decisions of dropping frames. Action at may lead to two states: state st+1 and termination. Reward signal (R) is decided by the face recognition network C1 depending on states and actions. States, actions, reward signals and terminations in MDP are illustrated by circles, rectangles, rhombuses and rounded rectangles, respectively.


Attention-aware DRL for video based face recognition

Attention Agent: Frame Evaluation Network
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.The architecture of frame evaluation network. The kernel sizes of convolution layers are 9×9, 4×4 and 3×3, respectively. Both the max pooling layers have kernel size 2 × 2 and stride 2. The feature dimension of the first two fully connected layers are set as 64. All hidden layers use PReLU [13] as the activation functions.


Attention-aware DRL for video based face recognition

Experimental results:

Method Accuracy Year Method Control | Handheld
YTF: | | e PaSC: ] |
LM3L [16] 81.3 4+ 1.2 2014 PittPatt 48.00 38.00
IDTPIANL, [[15] Sk Lz | 20 DeepO2P [27] 68.76 60.14
DeepFace-single [35] 914+ 1.1 2015
DeeplD2+ [ 3] 93.2+0.2 | 2015 SPDNet [18] 80.12 72.83
FaceNet [37] 95.12 4 0.39 | 2015 GrNet [21] 80.52 72.76
Deep FR [3 1] 973 2015 TBE-CNN [10] 97.80 96.12
NAN [43] 95.72 4+ 0.64 | 2016 Ours-CNN 91.02 79.91
Wen et al. [10] 94.9 2016 Ours-CNN (finetuned) 93.76 91.34
TBE-CNN [10] 94.96 &= 0.31 | 2017 Ours-TR 01.92 ]2 43
~LIRL 95.96 £ 0.59 Ours-ADRL 93.13 83.69
ADRIL -finetune 96.52 & 0.54 Ours-ADRL (finetuned) | 95.67 | 93.78
100 YTF dataset 100 PaSC-Control 1.00 I _ PaSC-Handheld
, - _ : ‘
['JJ,J—‘J_'J_H 095
oas| __HJ | 0,85 - wreverrerverrerecescrceeeeeeeveesespos e g O s asmespens s s e srsso] ool
E E g 0.85
ROC: %090 E:.g‘: %_0.50——
=i =a | ™/ = DY/
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Fa\se(t;;ept Rate(FAR) False Accept Rate(FAR) (h) False Accept Rate(FAR)
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We compared our method with nine state-of-the-art face recognition methods, which are presented in Table 1. We see that our proposed ADRL method outperforms all other state-of-the-art methods except the deep FR method. The reason is that the deep FR method benefits a lot from front face selection and triplet loss embedding with carefully selected triplets. Compared to their work, our embedding method is more easy to implement.


Attention-aware DRL for video based face recognition

i-VisionGroup


演示者
演示文稿备注
. Examples from the YTF dataset. Faces in left column are the first three frames dropped from videos, faces in right column are the remaining frames that have the smallest Q, faces are sorted by Q. 
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Action recognition is an important research direction in computer vision, which has worldwide applications, such as video surveillance, human-robot interaction and so on. Compared with the conventional RGB videos, the skeletonbased sequences contain compact 3D positions of the major body joints, which are robust to variations of viewpoints, body scales and motion speeds [1]. Thus, skeleton-based action recognition has attracted more and more attention in recent years


DRL for Skeleton-based Action Recognition

0 Temporal Domain: distil the most informative frames by DRL.

[ Spatial Domain: capture the dependency between the joints by
graph convolutional neural network.
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we proposed a deep progressive reinforcement learning (DPRL) method for action recognition in skeleton-based videos, which aims to distill the most informative frames and discard ambiguous frames in sequences for recognizing actions. Since the choices of selecting representative frames are multitudinous for each video, we model the frame selection as a progressive process through deep reinforcement learning, during which we progressively adjust the chosen frames by taking two important factors into account: (1) the quality of the selected frames and (2) the relationship between the selected frames to the whole video. Moreover, considering the topology of human body inherently lies in a graph-based structure, where the vertices and edges represent the hinged joints and rigid bones respectively, we employ the graph-based convolutional neural network to capture the dependency between the joints for action recognition


DRL for Skeleton-based Action Recognition
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The pipeline of our proposed method for skeleton-based action recognition in the testing period. Given a video of human body joints, we first select key frames with a frame distillation network (FDNet), which is trained by the proposed deep progressive reinforcement learning method. 


DRL for Skeleton-based Action Recognition
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 we employ a graph-based convolutional neural network (GCNN), which retains the dependency between human joints, to deal with the selected key frames for action recognition. (Best viewed in color) 


DRL for Skeleton-based Action Recognition

Experimental results:

Action recognition accuracy (%)
on NTU-RGBD dataset:

Method CS | CV | Year
Skeleton Quads [10)] 38.6 | 41.4 | 2014
Lie Group [44] 50.1 | 52.8 | 2014
Dynamic Skeletons [20)] 60.2 | 65.2 | 2015
HBRNN-L [V] 59.1 | 64.0 | 2015
Part-aware LSTM [ 5] 62.9 | 70.3 | 2016
ST-LSTM + Trust Gate [ 1] | 69.2 | 77.7 | 2016
STA-LSTM [42] 734 | 81.2 | 2017
LieNet-3Blocks [ 1] 61.4 | 67.0 | 2017
Two-Stream RNN [10] 71.3 | 79.5 | 2017
Clips + CNN + MTLN [25] | 79.6 | 84.8 | 2017
VA-LSTM [55] 79.2 | 87.7 | 2017
View invariant [ 1] 80.0 | 87.2 | 2017
Two-Stream CNN [2Y] 83.2 | 89.3 | 2017
LSTM-CNN [25] 829 | 91.0 | 2017
Ours-CNN 79.7 | 84.9

Ours-DPRL 82.3 | 87.7

Ours-DPRL+graph’ 82.5 | 88.1

Ours-DPRL+graph? 82.8 | 88.9

Ours-DPRL+graph 83.5 | 89.8

Tsinghua University

Action recognition accuracy (%)

on SYSU dataset

Method Acc. | Year

LAFF(SKL) [19] 54.2 | 2016

Dynamic Skeletons [20)] 73.5 | 2015

ST-LSTM(Tree) [ 1] 73.4 | 2017

ST-LSTM(Tree) + Trust Gate [*1] | 76.5 | 2017

Ours-CNN 75.5

Ours-DPRL 76.7

Ours-DPRL+graph 76.9
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Comparisons of action recognition accuracy (%) on the NTU dataset

DPRL training process. This figure demonstrates that, with training, the positive ratio gradually becomes stably above the level of 1, which demonstrate the effectiveness of the progressive refinement process

Visualizations of the selected results. The horizontal axis denotes the frame index, while the vertical axis represents the number of frames selected in the neighbourhood corresponding to the index. 


Part-Activated DRL for Action Prediction
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Behavior prediction:1. Unlike behavior recognition, only part of the video is input as already observed data.2. Some videos have greater singularity and larger intra-class distance than the full video. According to the human skeleton selection area, local features are extracted, arranged in the order of the human skeleton, and the structural information of the human body is maintained. According to the behavior, the feature block is activated or suppressed by deep reinforcement learning, and the activated feature is a feature block with strong current expression ability. Existing methods:1. Each frame as a whole, ignoring the structural information of the human body, ignoring the difference in the significant expression of different human body parts2. Consider behavioral prediction as a behavioral identification problem for partial observations, ignoring the differences in incomplete motions.


Part-Activated DRL for Action Prediction
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The red points represent the activated parts in corresponding features. The large black circle represents the whole feature which is decided by the all activated parts in the feature. The black circles from left to right reflect the temporal evolution of the action. Yellow arrow is the predicting evolutionary direction of the action. Black dashed line is the actual evolutionary direction of the action. 


Part-Activated DRL for Action Prediction
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The activated part is the corresponding part of original state. The deactivated part is the original part multiplying by 0. The deactivated part can be reactivated by adding the corresponding original part. We define a part-wise product to generate the new state. The new state S t+1 is computed by the part-wise product of the last state S t and corresponding action A t .


Part-Activated DRL for Action Prediction

_ ‘ UTI Sct #1 UTI Set #2 o
Methods OR=0.5 | OR=1.0 | OR=0.5 | OR=1.0 = 1 =
y
SVM [26] 25.3 69.2 27.2 69.2 . 4 o
Bayesian [26)] 20.9 78.0 21.8 50.7 T w0 ] T o
TBoW [26] 65.0 81.7 15.7 59.3 g = Bkl e ,
DBoW [26] 70.0 85.0 51.2 65.3 5w Iy g w
SC 28] 70.0 76.7 63.5 80.0 i~ g Eaes i
MSSC [28] 70.0 83.3 71.0 81.5 £ rr-iese s B
Lan [29] 83.1 88.4 78.3 82.0 R L B
TSI 2] 8.3 95.0 4.3 873 " " VideoOvsenaton Rato. | " VdeoOvsenaton Rato |
AAC [17] 88.3 95.0 75.6 63.9
MMAPM [30] 78.3 95.0 75.0 87.3 (a) UTI Set #1 (b) UTT Set #2
PA-DRL, 01.7 06.7 83.3 01.7 o
Methods BIT dataset UCF101 e _
crieds OR=0.5 | OR=1.0 | OR=0.5 | OR=1.0 -2 “é
TBoW [20] 10.2 43.0 74.6 76.0 - - 8
DBoW [26] 46.9 53.1 53.2 S8R o —+-1BOW 5
— - § » —=-DBOW §
MSSC 28] 184 68.0 62.6 61.0 - e 3
MTSSVM [27] 60.0 76.6 82.3 82.5 Ew e’ &
Lai et. al [5] 79.4 85.3 - - w© Sl Tl
Deep SCN [4] 78.1 90.6 85.5 86.7 s B AR S B R * i o1 o3 o+ o5 95 o7 o os
CniD [-L()} —)7 ()UG SU(} 82-1 Video Observation Ratio Video Observation Ratio
PA-DRL 85.9 91.4 87.3 87.7 (¢) BIT-Interaction (d) UCF101
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From Table 1 and Table 2, we clearly see that PA-DRL achieves the performance of the state-of-the-art on three datasets


Video Summary and Caption

Caption #1: A woman
Caption #2: A woman and sharing food with her dog.

Caption #3: A woman

Caption: A person and puts a laptop into a bag.
The person stands up, puts the bag on one shoulder, and

walks out of the room.
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Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. 


FFNet: Video Fast-Forwarding via
Reinforcement Learning

Normal Playing [*
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Lan, Shuyue, et al. "FFNet: Video fast-forwarding via reinforcement
learning.” CVPR2018.
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For many applications with limited computation, communication, storage and energy resources, there is an imperative need of computer vision methods that could select an informative subset of the input video for efficient processing at or near real time.
Given a video stream, our FFNet decides which frame to process next and presents it to users while skipping the irrelevant frames in an online manner. Top-row shows the representative frames in the normal playing portion and bottom-row shows the irrelevant frames in the fast-forwarding portion. 


FFNet: Video Fast-Forwarding via
Reinforcement Learning
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FFNET learns a strategy for fast-forwarding videos. At each time step k we use the Q network to select the action ak, i.e., the number of frames to skip next. The state sk+1 is updated with the frame it jumps to. Then, the reward rk for action ak in state sk is computed with the interval annotation gk. A transition in a quadruple form (sk ak sk+1 rk) is used to update the Q network.
The immediate reward consists of two parts that model the “skip” penalty (SP) and the “hit” reward (HR), as explained below.
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Video Captioning via Hierarchical

Reinforcement Learning

OHigh-level: manager

« operates at a lower temporal resolution and emits a
goal for the worker to accomplish

OLow-level: worker
* generates a word for each time step by following
the goal
proposed by the manager

O Internal Critic

 to determine whether the worker has accomplished
a goal

Wang, Xin, et al. "Video captioning via hierarchical reinforcement
learning." CVPR2018.
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This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, this approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. 
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The proposed HRL framework follows the general encoder-decoder framework (see Figure 2). In the encoding stage, video frame features v = {vi} are first extracted by a pretrained convolutional neural network (CNN) [10] model in the temporal order. Then the frame features are passed through a low-level Bi-LSTM2 encoder and a high-level LSTM3 encoder successively to obtain low-level encoder output context (the encoder associated with the Worker), and high-level encoder output (the encoder associated with the Manager).  HRL agent plays the role of a decoder, and outputs a language description.
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Video Captioning via Hierarchical
Reinforcement Learning

GROUND TRUTH:

people dancing and singing on the beach .
yvoung men and women sing and dance in beach
party fashion .

XE-BASELINE:

people are dancing .

RL-BASELINE:
a group of people are dancing .

HRL:
a group of people | are dancing on the beach.

(a)

GROUND TRUTH:

a person is mixing some food .

awoman adds green vegetables to a tiny pot of
boiling water .

XE-BASELINE:

there is a woman is making a dish .
RL-BASELINE:

awoman is cooking in a pot in the kitchen .

HRL:

awoman | is cooking in a bowl | and mixing the

water. {b}
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:Learning curves of the CIDEr scores of different captioning models, including XE-baseline, RL-baseline and HRL models with goal dimension of 16, 32 and 64
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In this part, we will introduce the deep reinforcement learning methods for network structure learning including RL-based automated network architecture search for computer vision problems and DRL for learning dynamic networks.


DRL for Network Structure Learning

Recent success in visual recognition is mainly driven by the
advances in deep network architecture design.
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CNNs have demonstrated state-of-the-art performance on many computer vision tasks. For example, manually designed very deep CNNs like ResNet can surpass human performance on image classification. Recent success in visual recognition is mainly driven by the advances in deep network architecture design. 


DRL for Network Structure Learning
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In recent years, substantial efforts on deep network architecture have been made. One group of methods aim to achieve high-performance visual recognition, like VGG, GoogleNet, ResNet and Dense.


DRL for Network Structure Learning

Efficient CNNs for Mobile Vision Applications
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The other group methods focus on design efficient CNNs for Mobile Vision Applications, like ….... Both groups of method for high-performance and efficient recognition are based on manually designed architectures, which play a key role in CNN-based computer vision systems. 


DRL for Architecture Search

Automated architecture design through DRL:

* designing neural network architectures is hard

* thereis not a lot of intuition into how to design them well

Top-1 accuracy [%]
[=)] ~ ~ [+
w o w (=]

[=)]
(=}

w
w

Nl

\,’3 Ny \\\ex ‘ie'i_
Q\e Q\e e o Q 6\‘\

e*\% \“@\6 e ‘x‘box%\ﬂ *5“ R A% 45T > b
p.

A
\oe®

Inception-v4
80
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
75 ResNet-101
. ResNet-34
£ 70 ResNet-18
= ¥
8 GoogLeNet
3 ENet
S 65
'é' © sBn-NiN
F 60 5M 35M 65M 95M 125M 155M
BN-AlexNet
55 AlexNet
50 . - r - . r . v
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Canziani et al, 2017

i-VisionGroup


演示者
演示文稿备注

Because designing neural network architectures is important and hard, and we don’t completely understand why some architecture is better, and there is not a lot of intuition into how to design them well. Data-driven methods can be a good way to help us design or find good network architectures.  Therefore, DRL is also useful to search architectures.


DRL for Architecture Search

Automated architecture design through DRL:
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Since the structure or the type of operation in each layer and the connectivity between layers specify a neural network, the problem of architecture search can be formulate as learning to decide the types of a sequence of layers and their topology structure.  For example, given an input image or a input feature map, we begin with an empty architecture. Then, a sequential decisions are made to obtain the detailed network architecture, include the type of the current layer and the connectivity between previous layers and this layer.  The reward of the sampled network architectures can be defined as the evaluation performance of this network, for example, the classification accuracy on the validation set.


DRL for Architecture Search

Neural Architecture Search with Reinforcement Learning

** use a RNN (Controller) to generate the structures and
connectivity that specifies a neural network architecture

¢ use the validation accuracy as reward to update the Controller

Sample architecture A
with probability p

[ )

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

l )

Compute gradient of p and
scale it by R to update
the controller

Zoph B, Le Q V. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.
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The data-driven architecture discovery is achieve by combining a RNN network, called controller, with deep reinforcement learning algorithm to train this network. The RNN controller is used to generate the structures and connectivity that specifies a neural network architecture. During learning procedure, in each iteration, different network architectures are firstly sampled from probability distribution obtained from the controller network, then these networks are trained on the training set and evaluated on the validation set to get reward for each sampled network architectures. These rewards are then used to compute the gradient of the probability distribution and update the controller network.


DRL for Architecture Search

Neural Architecture Search with Reinforcement Learning
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In order to get all necessary details that specify a network, the RNN controller is designed to produce both the detailed information of each layer and the connectivity between layers.  For each layer, the controller needs to decide the size of filter, the size of stride, the number of filters, and input feature maps. The search space is quiet large. Therefore, RL algorithm needs to sample, train and evaluate large amount of candidate networks, which requires considerable computational resources, for example hundreds or thousands of GPUs.


DRL for Architecture Search

Neural Architecture Search with Reinforcement Learning

Model | Depth Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - TS
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al., 2015) - - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 5.22
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7TM | 6.61
ResNet (reported by Huang et al. (2016c)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016c) 110 1.7M 5.23
1202 10.2M 4.91

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

Performance on CIFAR-10
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Although the discovered architecture can outperform manually designed networks, the learning algorithm actually cannot scale well on large datasets like ImageNet. 


DRL for Architecture Search

Learning Transferable Architectures for Scalable Image Recognition
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The prior knowledge from manually designed network can be utilizing to reduce the size of search space and improve the transferability of architecture search algorithm.  For example, the architecture of ResNet consists of several repeated blocks and several stages with different spatial sizes. Therefore, the capacity of a ResNet model can be easily adjusted by adjust the number of repeated blocks, in other words, the depth of the ResNet model. So, we actually don’t need to search each layer, it is more efficient to search the structure the repeated block instead of the type of each layer.  Besides, the ResNets models for CIFAR and imagenet are also designed following the similar methodology. By simply increase the depth and number of channels, CIFAR model can be transferred to ImageNet.


DRL for Architecture Search

Learning Transferable Architectures for Scalable Image Recognition
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Besides, instead of searching for arbitrary convolution layers, it is more efficient to reduce the search space to several widely used operations, which have proven to be effective in manually designed models. Therefore, we can further accelerate searching by simplify the RNN controller, which now only needs to predict some key elements that specify a network,


DRL for Architecture Search

Learning Transferable Architectures for Scalable Image Recognition
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Models discovered by the RL-algorithm actually can achieve a better trade-off between complexity and accuracy compared to the models designed by humans.  By reducing the search space,  the models generated by controller that trained on CIFAR can also achieve good performance on ImageNet. Although the most recent methods for architecture search are based on other optimization techniques such as gradient descent or evolution strategy, the idea of designing efficient search space is still widely used.


DRL for Efficient Network Design

DRL for efficient network design:
¢ Light-weight network architecture search

Model # parameters Mult-Adds | Top 1 Acc. (%) Top 5 Acce. (%)
Inception V1 [58] 6.6M 1,448 M 69.8 89.9
MobileNet-224 42M 569 M 70.6 89.5
ShuffleNet (2x) ~ 5M 524 M 70.9 89.8
NASNet-A (4 @ 1056) 5.3M 564 M 74.0 91.6
NASNet-B (4 @ 1536) 5.3M 488 M 72.8 91.3
NASNet-C (3 @ 960) 4.9M 558 M 712.5 91.0

DRL-based architecture search with complexity constraints

Zoph B, Vasudevan V, Shlens J, et al. Learning transferable
architectures for scalable image recognition. CVPR. 2018.
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Another important application of DRL methods for network structure learning is learning efficient networks, which can be used for Mobile Vision Applications or other time or energy - sensitive applications. A direct solution for efficient network design is to add complexity constraint to network architecture search methods, The light-weight network architecture discorved DRL algorithm can outperform most advanced manually designed model such MoblieNet and ShuffleNet.


DRL for Efficient Network Design

DRL for efficient network design:
** Automated model compression/pruning
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Aside from light-weight network architecture,  if we already have a pre-trained model or a fixed network architecture, model pruning and quantization are two popular methods to further reduce the computational cost. 
Conventional model compression techniques rely on hand-crafted heuristics and rule-based policies that require domain experts to explore the large design space trading among model size, speed, and accuracy, which is usually sub-optimal and time-consuming. For example, it is hard to decide the pruning rates for each layer if the desired overall compression rate is given.�Therefore, the model pruning can be formulate as a sequential decision problem, and we can use a agent network to produce the pruning rate for each layer and leverage RL algorithm to train this agent. More specifically, the reinforcement learning agent receives the feature embedding from a layer t, and outputs a sparsity ratio. After the layer is compressed with the sparsity ratio, it moves to the next layer Lt+1. The accuracy of the pruned model with all layers compressed is evaluated. Finally, as a function of accuracy and FLOP, reward R is returned to the reinforcement learning agent.





DRL for Efficient Network Design

** Automated model compression
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AMC reinforcement learning agent  can prune the model to a lower density compared with human experts without losing accuracy. (Human expert: 3.4 times compression on ResNet50. AMC : 5 times compression on ResNet50.) 
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** Automated model compression
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Mobile inference acceleration has drawn people‘s attention in recent years. Not only can RL agent optimize FLOPs and model size, it can also optimize the inference latency. The RL agent can further compress compact network models like MobileNet [23], which is a highly compact network consisting of depth-wise convolution and point-wise convolution layers. The table show how much the RL agent can improve MobileNet’s inference speed. 



DRL for Efficient Network Design

** Automated model compression
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RL agents are also helpful to find the layers which are more critical. This is the pruning policy (sparsity ratio) given by the reinforcement learning agent for ResNet-50. With iterative pruning performed by the RL agent, we can find very salient sparsity pattern across layers: peaks are 1x1 convolution, crests are 3x3 convolution. The reinforcement learning agent automatically learns that 3 x3 convolution has more redundancy than 1x1 convolution and can be pruned more.
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¢ Automated model quantization with mixed-precision
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Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, Song Han. HAQ: Hardware-
aware Automated Quantization with Mixed-precision. CVPR, 2019
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RL method is also useful in improve model quantization. Nowadays, many hardware start to support multi-precision computation, like Apple’s new A12 chip. However, conventional quantization method could not use these features because they usually quantize every layer in the same way. 



DRL for Efficient Network Design

¢ Automated model quantization with mixed-precision
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If we want to utilize the multi-precision feature of hardware to further accelerate model, there comes another question. The design space is huge and different layer has different redundancy and hardware features, which is hard for human expert to design the quantization policy. So we need learning based method.


DRL for Efficient Network Design

¢ Automated model quantization with mixed-precision
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Therefore, a reinforcement learning method can be used to automatically search over the huge design space. For the RL agent, the actions are the bit numbers for each layer. The state is encoded by layer information, such as kernel size, input/output channels, groups, and so on. And The reward signal is computed according to accuracy, latency, and energy. 


DRL for Efficient Network Design

¢ Automated model quantization with mixed-precision

73
MobileNets (fixed 8-bit quantization)

b MobileNets (our flexible-bit quantization)

71

70

1 Accuracy (%)

69

Top

68
Model Size:

IMB 2MB 3MB
25 44 63 82 101 120

Latency (ms)
Flexible bit policies for MobileNets are much better than fixed 8bit policy
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The blue ones show top-1 accuracy of conventional 8 bit quantized models on ImageNet. And the yellow ones are mixed precision model learned with RL algorithm. We can see the RL agent could get the similar accuracy with much less latency. Flexible bit policies for MobileNets are much better than fixed 8bit policy




DRL for Efficient Network Design

¢ Automated model quantization with mixed-precision

depthwise:more bits pointwise:few Cl lms more params, fewer bits
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Model size constrained experiments for MobileNet-V2
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This is the model size constrained experiments for MobileNet-V2. In this experiment, we only quantize the weights of network. The blue bars are the bit-number for weights, and the red bars are numbers of parameters. The depth-wise layers are marked as light colors. The RL agent assigns more bits to depth-wise layers rather than point-wise layers, since the number of parameters in the depth-wise layers is much smaller than the point-wise layers. Therefore, we can see that RL is also helpful for us to understand the roles of different layers in an efficient model.



Learning Dynamic Networks with DRL

Dynamic Networks:
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Dynamic network is a group of networks that the layers or operations are executed dynamically conditioned on input data. For example, dynamic routing network  decide the layers or blocks that will be executed according to input image or current feature maps. dynamic skipping network is learned to skip some residual layers to reduce redundant computation for different input. Since the whole network is preserved compared to other fixed acceleration method and the network is executed conditionally, dynamic usually can achieve better trade-off on accuracy and speed.


Learning Dynamic Networks with DRL
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Network pruning method make neural network faster and allows neural network to deploy on mobile devices. But it will also harm recognition performance. For example, if the task is easy, network can also correctly recognize this cat image with much lower computational cost. 



Learning Dynamic Networks with DRL
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But when task is difficult, neural network after pruning may give a wrong answer. 



Learning Dynamic Networks with DRL

Difficult task, 1.5x speed-up
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Dynamic network for model pruning can prune neural network dynamically according to the input image. If task is easy, we can prune more parameter, and make network running faster. If the task if difficult, we need to prune fewer parameters, and make sure the network make the right prediction.  by doing so, we can adjust the capacity and the complexity of neural network dynamically based on the current condition.



Learning Dynamic Networks with DRL

Dynamic Network vs. Fixed Network

** Dynamic network can adjust complexity conditioned on
the inputs

** Compared to the fixed compressed/quantized network,
dynamic network can preserves the full ability of the
original network

** The balance point between accuracy and speed is easily
adjustable according to the available resources
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Compared to the fixed network, dynamic networks have the following advantages: 1 + which make the dynamic network more flexiable. 2. 3.


Learning Dynamic Networks with DRL

Learning dynamic networks with DRL:
O Inputimage Fy, =1

State: the set of executed operations x; and the output features F;
Action: the next operation to be executed a;: (x¢, Fy) = (X¢41, Fry1)
p(- |x, a):probability over next state(x;, F;)

q(- |x, a):probability over rewards R(x;, F;, a;)

Reward: recognition performance (accuracy, CE loss)
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Since a sequence of decision of which layers or operations to be executed have to made in dynamic network, dynamic network usually cannot be learned using the standard gradient descent. Therefore, DRL becomes a major tool to learn dynamic network. Given an input image I, state is the set of previously executed operations and the current output feature, action is the  next operation to be executed, reward is the recognition performance measured by accuracy or CE loss.


Dynamic Pruning for Image Recognition

Neural Runtime Pruning (RNP) framework

| RNN
A [
| _encoder | | decoder | | encoder | | decoder |
global pooling ‘ global pooling
prune
!

______________________________________

kernels kernels
___________________ Beo | K |
feature maps feature maps feature maps
Fi, F; Fiis
- calculated ::-_-_-_-_-j pruned

Lin, Ji*, Yongming Rao*, Jiwen Lu, and Jie Zhou. Runtime neural
pruning. NeurlPS. 2017.
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Runtime Neural Pruning (RNP) is a framework which prunes the deep neural network dynamically at the runtime. The RL agent judges the importance
of each convolutional kernel and conducts channel-wise pruning conditioned on different samples, where the network is pruned more when the image is easier for the task.  An encoder is used to encode the feature maps to a vector with global average pooling and fully-connected layers, and a RNN model is used to produce the pruning decisions.



Dynamic Pruning for Image Recognition

Approach: Bottom-up Runtime Pruning

e Backbone CNN C with conv layers Cy, Cs, ..., C,,,, corresponding kernels
K, K,, ..., K,,, #channels n;, producing feature maps F4, F,, ..., F,,
with sizen; X H X W.

* @Goal: find and prune the redundant convolutional kernels in K; 1, given
feature maps F;,i = 1,2, ..., m — 1, to reduce computation and achieve

maximum performance simultaneously.
min Ep, [Las(conv(F;, K[(F;)])) + Lpnt(h(F;))].
Ki‘l‘l '.h'
L s - classification loss, L, - computation penalty.
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The pruning is performed in a bottom-up, layer-by-layer manner, which we model as a Markov decision process
and use reinforcement learning for training.



Dynamic Pruning for Image Recognition

Approach: Layer-by-layer MDP

* State: Given feature map F;, extract dense feature embedding pg, with

global pooling, and use a encoder E, to project into a fixed length
embedding E(pF,).

e Action: actions for each pruning are defined in an incremental way:

taking actions a; yields calculating the feature map groups
Fll,Flz, i) F,i, [ = 1,2, alely k

* Reward: The reward of each action taken at the t-th step with action a;
is defined as:

(a;) = —aLgs+ (i — 1) x p, if inference terminates (t = m — 1),
ST (1—1) x p, otherwise (t <m — 1)
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Dynamic Pruning for Image Recognition

RNP model is alternatively optimized:

Algorithm 1 Runtime neural pruning for solving optimization problem (I):

Input: training set with labels {X }
Qutput: backbone CNN ', decision network D
1: initialize: train C' in normal way or initialize C' with pre-trained model
2: fori«+ 1,2,..., M do
3 // train decision network
4 forj+ 1,2,...,N; do
5: Sample random minibatch from {X }
6: Forward and sample e-greedy actions {s;, a; }
.
8

Compute corresponding rewards {r; }
: Backward () values for each stage and generate VyL,..
0: Update 6 using Vg L,..
10: end for
11: /I fine-tune backbone CNN
12: fork < 1,2,..., N5 do

13: Sample random minibatch from {X }

14: Forward and calculate L., after runtime pruning by D
15: Backward and generate Vo L

16: Update C' using VLo

17: end for

18: end for

19;: return C' and D

SEEY i-VisionGroup

Tsinghua University



演示者
演示文稿备注
The RNP model is  trained in an alternative manner, where the backbone CNN network and the decision network were trained iteratively. To help the training converge faster, this model is first initialized the CNN with random pruning, where decisions were randomly made. Then the CNN is  fixed to train the decision network, regarding the backbone CNN as a environment, where the agent can take actions and get corresponding rewards. Finally, the decision network is fixed to fine-tune the backbone CNN following the policy of the decision network, which helps CNN specialize in a specific task.



Dynamic Pruning for Image Recognition

Intuitive 3-class classification experiment on LFW-T
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To have an intuitive understanding of our framework, we first conducted a simple experiment to show the effectiveness and undergoing logic of our RNP. We considered a 3-category classification problem, consisting of male faces, female faces and background samples. It is intuitive to think that
separating male faces from female faces is a much more difficult task than separating faces from background, needing more detailed attention, so more resources should be allocated to face images than background images. In other words, a good tradeoff for RNP is to prune the neural network
more when dealing with background images and keep more convolutional channels when inputting a face image. We see that for this certain layer, computations for face images are almost 5 times of background images. The differences in computations show that RNP is able to find the relative difficulty of different tasks and exploit such property to prune the neural network accordingly.




Dynamic Pruning for Image Recognition

Results on CIFAR10 and CIFAR-100
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This is the results of dynamic pruning method and fixed compression model on CIFAR-10/100. We see that for fixed compression baseline, the
accuracy suffered from a stiff drop when computations savings were than 2.5 times. While dynamic pruning method
consistently outperformed the baseline model, and achieved good performance even with a very large computation saving rate.



Dynamic Pruning for Image Recognition

Speed-up (in FLOPs) dx 4x 5x | 10x
Jaderberg et al. [26] ( [69]'s implementation) | 2.3 97 29.7 -
Asymmetric [69] - 3.84 - -
Filter pruning [36] (our implementation) 32 86 146 -
Taylor expansion [45] 23 48 - -
ThiNet [43] 1.98 - - 7.94
Ours 232 323 358 | 4.89

The increase of top-1/top-5
error (%) and GPU inference
time (ms) under different
theoretical speed-up ratios
on the ILSVRC2012-val set.

Comparisons of increase
of top-5 error on
ILSVRC2012-val (%) with
recent state-of-the-arts.
(base top-5 error: 10.1%)

Speed-up solution

&top—l,f top-5 err.  Inference time

VGG-16 (1x) 0/0 3.26 (1.0x)
RNP-VGG-16 (3x) 2.98/2.32 1.38 (2.3 %)
RNP-VGG-16 (4x) 4.01/3.23 1.07 (3.0%)
RNP-VGG-16 (5x) 4.88/3.58 0.880 (3.7x)
RNP-VGG-16 (10x) 6.12/4.89 0.554 (5.9x)

ResNet-50 (1x) 0/0 2.54 (1.0x)
RNP-ResNet-50 (2x) 2.90/2.14 1.94 (1.31x)
RNP-ResNet-50 (3x) 5.21/3.66 1.68 (1.51x)
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The dynamic pruning method also works well on large-scale datatset and can achieve better performance compared to other sota static pruning methods. Since filter pruning is used in RNP, this method can also achieve actual speed up on GPUs.


Dynamic Pruning for Image Recognition

Feature map visualization
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Visualization of the original images and the feature maps of four convolutional groups, respectively. The presented feature maps are the average of corresponding convolutional groups. From the figure, we see that the base convolutional groups have highest activations to the input
images, which can well describe the overall appearance of the object. While convolutional groups with higher index have sparse activations, which can be considered as a compensation to the base convolutional groups. So the undergoing logic of RNP is to judge when it is necessary to compensate the base convolutional groups with higher ones: if tasks are easy, RNP will prune the high-order feature maps for speed, otherwise bring in more computations to pursue accuracy.




Dynamic Routing in Convolutional Networks

Runtime Network Routing aims at learning to selects an optimal path inside
the network during inference conditioned on the input image
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Yongming Rao, Jiwen Lu, Ji Lin, and Jie Zhou. “Runtime Network Routing for Efficient
Image Classification.” T-PAMI, 2019.
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This kind of framework can also be extended to other setting like dynamic Network Routing, which aims at learning to selects an optimal path inside the network during inference conditioned on the input image. By learning N networks that have the same arctecture, dynamic rounting method can achieve better performance compared to a single network without increasing computation cost. 


Dynamic Routing in Convolutional Networks

—— RNN — i RNN —
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More specifically, for network with 4 paths. We can first encode the feature maps from previously executed convolutional blocks to a vector with global average pool and fully-connected layer, then a RNN is used to produce the decision for the next layers.  During training, the backbone CNNs can be first trained using random soft decisions, which aggerate features from different paths with random weights. Then, an RL agent can be learned to find the optimal path for the current image.


Dynamic Skipping in Convolutional Networks

SkipNet learns to skip convolutional layers on a per-input basis

recurrent module is used to
learn cross-layer dependency

z) \gi Yis Y
il Residual \ ™ xi RemdualSO U5 Remduall

Block Block Block

Wang X, Yu F, Dou 2, et al. Skipnet: Learning dynamic routing in
convolutional networks. ECCV, 2018.
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For residual networks, dynamic skipping have proven to be a good strategy to reduce redundant computation while maintain competitive accuracy. SkipNet learns to skip convolutional layers on a per-input basis, which uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. 



Dynamic Skipping in Convolutional Networks

Hybrid RL algorithm to learn policies and backbone CNN simultaneously

VoJ (0) =ExVs > po(glx)Lo(g,x)

= Ex Z’Pe (g]x)Vo L + Ex Zpe (g|x) Vg log pe(g|x)Le(g, %)
g g

N
= ExEgVoL — BxEg Y Vi log po(gi|x)r:.

1=1

Algorithm 1: Hybrid Learning Algorithm (HRL+SP)
Input: A set of images x and labels y
Output: Trained SkipNet
1. Supervised pre-training (Sec. 3.3)
95 P SGD(LCross—Entropy, Skijet' Grelax(x))
2. Hybrid reinforcement learning (Sec. 3.2)

Initialize O rr,+sp With Osp
O rr+sp < REINFORCE(J, SkipNet-G(x))
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a hybrid learning algorithm that combines supervised learning and reinforcement learning is proposed to address the challenges of non-differentiable skipping decisions.  This hybrid RL algorithm  is useful to effectively leverage labeled data to learn model parameters for both the base network and the gating networks at the same time.


Dynamic Skipping in Convolutional Networks
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This figure shows the computation reduction of the dynamic skipping method which can preserve the full network accuracy. The computation cost includes the computation of gates. Dynamic skipping method is able to reduce computation costs by 50%, 37% and 86% of the deep  models on the CIFAR-10, 100 and SVHN data. Compared
to using supervision method only, fine-tuning with hybrid RL algorithm can gain another 10% or more computation
reduction. 


Dynamic Networks for Video Understanding

Neural Networks for Video Classification

aggregatio
n module
_________________ (pooling,

RNN, etc.)

video frames

» The cost of video recognition model is linear to the number of
input frames, which has become the crucial factor in determining
the overall computation

» T times computational cost compared to image classification.

X 5 N
I EEE
~
T
ua University

i-VisionGroup


演示者
演示文稿备注
Dynamic network is also useful for video understanding. The cost of video recognition model is linear to the number of input frames, which has become the crucial factor in determining the overall computation. T times computational cost compared to image classification. 



Dynamic Networks for Video Understanding

Two existing strategies to reduce temporal computational cost:
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Both strategies assume:
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As the video stream is by nature very redundant, effectively reducing the number of sampled frames could be significant to the overall computation reduction. Conventional approaches uses two kinds of temporal reduction approaches: (1) Uniform down-sampling
at the raw video stream and (2) Hierarchical temporal pooling in the middle of the deep neural networks. These two strategies have been proven to
effectively reduce the computation and maintain decent accuracy. However, there is one significant drawbacks of the above two methods is that they treat all the frames equally. Both these two strategies assume: frames inside a video are of equal importance and all videos are of equal importance. These assumptions obviously are not hold in most cases.






Dynamic Networks for Video Understanding

A subset of most informative frames (in blue g I
boxes) is sufficient to understand this video. > ><
Therefore, video frames should be pruned R X

non-uniformly and dynamically

i-VisionGroup


演示者
演示文稿备注
Actually, A subset of most informative frames is sufficient to understand this video. In a video clip, some of
the frames are more informative than others in determining the video category and some of the less informative frames could be even misleading.  
For example, we can know the video clip is about ‘high jump’ if the informative frames in blue boxes are  given. Therefore, If we can find an approach
to prune out the less informative frames while preserving the informative ones, we can reduce the computation
and at the same time maintain high accuracy. 

So, we think the video frames should be pruned non-uniformly and dynamically. 


Dynamic Networks for Video Understanding

Dynamic Progressive Pruning proposes to insert a decision module at the
beginning of each stage to selectively prune less informative frames
conditioned on feature maps produced by previous layer.
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Yongming Rao, Ji Lin, Jiwen Lu, Jie Zhou. Dynamic Progressive Pruning for
Efficient Video Classification. 2019.
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Dynamic Progressive Pruning method for efficient video understanding proposes to insert a decision module at the beginning of each stage to selectively prune less informative frames conditioned on feature maps produced by previous layer. The pruning of video frames is accomplished by employing small decision. This decision network takes the output of the current layer and previous decisions as inputs and produces a binary decision to drop or keep the corresponding video frames. 



Dynamic Networks for Video Understanding
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This is the detailed architecture of the decision module. We firstly perform spatial global average pooling to aggregate feature maps into a group of temporal features and encode these features to fixed dimension using a convolution layer with kernel size 1. 
We then average all temporal features along temporal dimension to obtain the global representation of the input video. Temporal feature of time t, video feature and the corresponding position embedding vector is fed into a recurrent cell (eg., GRU module) together with hidden state to produce the final decision



Dynamic Networks for Video Understanding
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One important problem with frame pruning in spatio-temporal 3D models is the support of batching. After pruning, the number frames for different videos can be different in a batch, therefore, standard 3D convolution or shift operation cannot be used. Since batching is crucial for utilizing the parallelism of hardware to achieve high throughput, this could be a significant issue for both training and testing. Dynamic Video
Batching strategy is proposed to support the batching of variable-length videos. The basic idea of Dynamic Video Batching is to
first concatenate the video clips into a long video, convolution on the merged video, and then handle the bordering condition. By applying dynamic video batching, state-of-the-art temporal shift module and 3D convolution can be directly used for dynamic video network






Dynamic Networks for Video Understanding

Method Backbone #Frame FLOPs #Param Top-1 Top-5
TSN [39] BNInception 25 50G 24.3M 69.1 88.7
TSN [Y] (our impl.) ResNet-50 8 33G 24.3M 68.8 88.3
ECO [17] BNInception + 3D ResNet-18 8 32G 47.5M 67.8 -
ECO Lite [17] BNInception + 3D ResNet-18 16 47G 37.5M 64.4 -
TSM-8f[21] ResNet-50 8 33G 24.3M 70.6 89.5
TSM-16fP [21] ResNet-50 16 39G 24.3M 70.9 89.7
. . Ours (2x) ResNet-50 16 35G 24.5M 71.7 90.2
Kinetics _ — _
TSN [39] ( [45]'s impl.) BNInception 8 16G 10.7M 63.3 -
TSN [39Y] (our impl.) ResNet-50 5 21G 24.3M 67.9 87.6
TRN-Multiscale [15] BNInception 8 16G 18.3M 63.2 -
ECO [17] BNInception + 3D ResNet-18 4 16G 47.5M 66.2 -
TSM-4f[21] ResNet-50 4 17G 24.3M 68.2 87.9
TSM-16fP [21] ResNet-50 16 20G 24.3M 67.2 87.5
TSM-8fP[21] ResNet-50 8 19G 24.3M 68.4 88.0
Ours (3.3 %) ResNet-50 16 19G 24.5M 69.8 89.1
Method Backbone #Frame FLOPs #Param UCF-101 HMDB-51
TSN [29] ([45]’s impl.) BNInception 8 16G 10.7M 82.69 -
UCF'lOl & TRN-Multiscale [-15] BNInception 8 16G 18.3M 838 -
H M D B'S 1 ECO [47] BNInception + 3D ResNet-18 4 16G 47.5M 874 58.1
TSM-4f[21] ResNet-50 4 17G 24.3M 92.1 66.6
Ours (2x) ResNet-50 8 17G 24.5M 93.2 67.8
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This is the experimental results for the dynamic video network. The dynamic network can achieve 71.7 top-1 accuracy on kinetics with only 35 G flops, which can significantly outperform the strong baseline of Temporal shift model.  

This method also generalize well on UCF and HMDB datatsets. 


Part 4:

DRL for Image Editing & Understanding
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In this part, I will introduce the deep reinforcement learning methods for computer tasks about image including Image Editing & Understanding.


DRL for Image Editing

O Image Cropping & Alignment
O Image Super-resolution & Enhancement

Input image

\, —>[++brightness] x 3 2 [++contrast] x 1>[++brightness] x 1 /‘
->[++contrast] x 6> [++color saturation] x 7 >[STOP]
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Here, I would like to focus on  two kinds of tasks of image editing where reinforcement algorithm is useful, including image cropping& alignmnet, and image enhancement and super-resolution


DRL for Image Editing

O Original Image I,
State: current image I; and editing history x; = (x;_q, I})
Action: operation onimage a;:I; = I;,1,a € A
p(: |x, a):probability over next state x;, 4
q(- |x, a):probability over rewards R(x;, a;)

e §
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Image editing can be formulated as reinforcement learning problem because in this task usually the process of image editing can be modeled as a sequence of  decisions of image operation.  For example, in image cropping problem, humans usually don’t get the final results directly, instead, the bounding box for the final images is adjusted by several steps. Therefore, the state can be the current image and the editing history, and the action is current operation on this image. The reward can be similarity between cropped image and the ground-truth results.


DRL for Image Cropping

h--------

Step T-2 Step T-1 Step T: Termunation & Output

Li, Debang, et al. "A2-RL: aesthetics aware reinforcement learning
for image cropping." CVPR. 2018.
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Image cropping aims at improving the aesthetic quality of images by adjusting their composition. This figure shows the sequential decision-making based automatic cropping process. The cropping agent starts from the whole image and takes actions to find the best cropping window in the input image. At each step, it takes an action (yellow and red arrow) and transforms the previous window (dashed-line yellow rectangle) to a new state (red rectangle). The agent takes the termination action and stops the cropping process to output the cropped image at step T.


DRL for Image Cropping
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To learn a agent that can iteratively improve the quality of cropped image, the reward function should lead the agent to find a more pleasing window at each step. Therefore, aesthetic score is used to evaluate the pleasing degree of images naturally. The reward function consists of two term, the first term is  the difference between the aesthetic scores of the new cropping window and the last one, which encourage the agent to find better window.  the second term is a penalty term to encourage the cropping process to have less steps.

This figure shows how to design a agent to perform iterative cropping. In the forward pass, the feature of the cropping window (local feature) is extracted and concatenated with the feature of the whole image (global feature). Then, the concatenated feature vector is fed into the actor-critic branch which has two outputs. The actor output is used to sample actions from the action space so as to manipulate the cropping window. The critic output (state value) is used to estimate the expected reward under the current state. In addition, the feature of the cropping window is also fed into the aesthetic quality assessment branch. The output of this branch is the aesthetic score of the input cropping window and stored to compute rewards for actions


DRL for Image Cropping

Method Annotation I Annotation II Annotation III

Avg loU | Avg Disp Error | Avg IoU | Avg Disp Error | Avg IoU | Avg Disp Error
eDN [27] 0.4636 0.1578 0.4399 0.1651 0.4370 0.1659
RankSVM+DeCAF; [1] | 0.6643 0.092 0.6556 0.095 0.6439 0.099
LearnChange [ V] 0.7487 0.0667 0.7288 0.0720 0.7322 0.0719
VEN+SW [5] 0.7401 0.0693 0.7187 0.0762 0.7132 0.0772
A2-RL w/o nr 0.6841 0.0852 0.6733 0.0895 0.6687 0.0895
A2-RL w/o LSTM 0.7855 0.0569 0.7847 0.0578 0.7711 0.0578
A2-RL(Ours) 0.8019 0.0524 0.7961 0.0535 0.7902 0.0535

Table 2. Cropping accuracy on CUHK Image Cropping Dataset [2V]. The best results are highlighted in bold.

Vo \"i
e Vool [ Top THaIo0
RankSVM+DeCAF; [1] | 0.6019 0.1060 Fang et al. [%] 0.6998
VEN+SW [5] 0.6328 0.0982 Kao er al. [11] 0.7500
A2-RL wlo nr 0.5720 0.1178 A2-RL w/o nr 0.7089
A2-RL w/o LSTM 0.6310 0.1014 A2-RL w/o LSTM 0.7960
A2-RL(Ours) 0.6633 0.0892 A2-RL(Ours) 0.8204

Table 3. Cropping accuracy on Human Cropping Dataset [V']. The
best results are highlighted in bold.

Table 1. Cropping accuracy on Flickr Cropping Dataset [1]. The
best results are highlighted in bold.
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We can see that RL-based image cropping method can significantly outperform previous methods on several dataset, including 


DRL for Color Enhancement

Input image

\ —[++brightness] x 3 2[++contrast] x 1=>[++brightness] x 1
—[++contrast] x 6= [++color saturation] x 7 =[STOP]

Park, J., Lee, J. Y., Yoo, D., & So Kweon, |. Distort-and-recover: Color
enhancement using deep reinforcement learning. CVPR, 2018.
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The process of image color enhancement can be also modeled as a Markov Decision Process where actions are defined as global color adjustment operations , such as brightness, contrast, or white-balance changes. Actually, Consider a human professional, the retouching procedure is also a sequence of iterative decision making. A human professional iteratively applies retouching operations until the color distribution fits the individual’s taste. DRL method can help the agent to process image in the same way, which models iterative, step-by-step human retouching process using deep neural networks.


DRL for Color Enhancement
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The reward function can be define as the improvement of L2 distance between current image and the ground-truth image. 

A Q leanring method is apply to train the agent. 12 actions are defined for automatic color enhancement  to adjust contrast, saturation, brightness, and whit-balance. Each action increases or decreases the value by 5%. 

Given an image I(t) at a sequential adjustment step t,  a contextual feature with a pre-trained CNN and a color feature are extracted. These features are forwarded to the agent network, then the agent determines an optimal action A to make the image look better. the action then is applied to the current image, and repeat this process until the agent produces a “stop” signal. Under the Deep Q-Network framework, this agent is trained to maximize the reward defined as a pixel-level distance between an input and a target retouched image.


DRL for Color Enhancement

; o s .
Human Ors Yan er al. Pix2Pix Hwang er al.
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This is the results of the RL-based color enhancemnet method. We can see, benefited from the iterative process, results produced by RL-agent are closer to ground-truth results produced by human experts. 


DRL for Face Hallucination

States
Polk'y Network Poll:y Network Pollcy Network
Local F.nlunumm Local Enhncemell Local En.h.loemmt Local Enluncement
Network Network Network Network
Attended part
enhancement
t1 ta ti t; + T

Cao, Q,, Lin, L., Shi, Y., Liang, X., & Li, G. Attention-aware face hallucination
via deep reinforcement learning. CVPR, 2017.
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Different from color enhancement tasks that apply global changes on input image,  local information plays a key role in face hallucination task.  Therefore, deep reinforcement learning can be used for sequentially discovering attended patches and then performing the facial part enhancement by fully exploiting the global interdependency of the image. �
Specifically, in each time step, the recurrent policy network is proposed to dynamically specify a new attended region by incorporating what happened in the past. The state (i.e., face hallucination result for the whole image) can thus be exploited and updated by the local enhancement network on the selected region. 


DRL for Face Hallucination

¢ Recurrent Policy Network

O State:
1) the enhanced hallucinated face image I; from previous step
2) the latent variable h; obtained by forwarding the encoded
history action vector h;_; into the LSTM layer

O Action: selecting one region from all possible locations

0 t<T
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In this framework, two networks are learned to achieve iterative face hallucination. 

The first one is a recurrent policy network which aims to find the attentive region in current face image. 

The state of the decision process can be formulated as two parts. one is the enhanced hallucinated face image  𝐼 𝑡  from previous step, the other is the latent variable  ℎ 𝑡  obtained by forwarding the encoded history action vector  ℎ 𝑡−1  into the LSTM layer

the action is to one region from all possible locations

reward is the L2-distance between the final results produced by the network and the ground-truth face image


DRL for Face Hallucination

+» Local Enhancement Network

O up-sample the image I;,.to the same size as high-resolution
image I,- with Bicubic method.

O generates a residual map

Policy
Network Local Enhancement Network

| |
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The local enhancement network is constructed by two fully-connected layer  for encoding It−1 and 8 cascaded convolutional layers for image patch enhancement. By applying the local enhancement network on the selected patch, a new face hallucination result can be generated by replacing the local patch with an enhanced patch.


DRL for Face Hallucination
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We can see the iteratively generated face hallucination results is much better compared to other methods.


DRL for Image Understanding

O DRL for Joint Object Search
O DRL for Global Optimized Object Detection
O DRL for Visual Relationship Detection

skateboard helmet shirt yellow surfboard —= on
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DRL method is also very useful in image understanding tasks that focus on object relationship, such Joint Object Search, Global Optimized Object Detection and Visual Relationship Detection


DRL for Joint Object Search

Collaborative deep reinforcement learning for joint object search

(a) Single agent detection (b) Joint agent detection

200 iterations 15 iterations

Kong, Xiangyu, Bo Xin, Yizhou Wang, and Gang Hua. "Collaborative deep
reinforcement learning for joint object search." CVPR. 2017.
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Joint object search is a problem that aims to improve the localization performance of multiple objects under interaction by considering their relationship. For example, for the image of person riding a bicycle, objects under interaction such person and bicycle, often can provide contextual cues to each other to facilitate more efficient search. 

This figure shows the comparisons of Joint agent detection with single agent detection. Successful detections are highlighted in green.  We can see that both objects were detected within 15 iterations by joint detection while single agent detection failed to locate the bicycle even after 200 iterations. 

The problem of iterative object search actually can be effectively solved using Collaborative reinforcement learning algorithm.


DRL for Joint Object Search

O Single Agent RL Object Localization:
R(a,s » s') = sign(loU(b’,g) — IoU(b, g))

Sequence of attended regions to localize the object
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In object search problem, the entire image is viewed as the environment. The agent transforms a bounding box according to a set of actions. The goal of the agent is to land a bounding box at the target object’s location. Specifically, the set of actions were defined as several operations on current bounding box, such as move right, move down, scale bigger, scale smaller and son on. Each action makes a discrete change to the box by a factor relative to its current size. The process is terminated when the object is find.

the reward of each action can be defined as a thresholding function of IoU. If the IoU between current box and the ground-truth bbox is improved when taking this action, the reward is positive. otherwise, the reward is negative.


DRL for Joint Object Search

O Collaborative RL for Joint Object Localization:
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For joint object search problem, one would naturally desire a Q that facilitates inter-agent communication. Therefore,  an agent-wise Q-function can be defined, which consider both the agent and the inter-agent communication massage. 

This figure shows the detailed architecture the Q-network. The message is passed using a gating network. Addition to the single agent object localization network, the hidden features of two agents are fused using a learnable gating gated module. By doing so, the agent network can make decisions by jointly considering the current object and the related objects.


DRL for Joint Object Search

Joint Agent

Single Agent

Figure 4. Joint agent detection (mid) compared with single agent detection (bottom). The bounding box trajectories are indicated by gradual
color change with blue and red each for one detector. Successful detections are highlighted in bold green.
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These are the some experimental results for joint agent detection and single agent detection. In these cases, joint detection model can successfully locate objects from both categories,  but the single agent model often can only detect one or neither of them correctly. The locations of the final bounding boxes from the joint model also seem better overlapped with the ground truth objects. Moreover, the number of steps taken by the joint model is much smaller.

These results proves the relation between objects is very useful for improving object localization.


DRL for Object Detection

Learning Globally Optimized Object Detector via Policy Gradient
gy

ground truth
boxes

policy gradient

Yongming Rao, Dahua Lin, Jiwen Lu, and Jie Zhou. "Learning globally optimized
object detector via policy gradient." CVPR. 2018.
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RL method can be also used to improve the training of object detector. 

Compared to the classification task, object detection is more challenging because it requires accurate localization and classification of multiple objects at the same time.  
To tackle this problem, most CNN-based object detectors like Faster R-CNN are trained through a reduction that converts object detection into a multi-task learning for each object independently. Therefore, inter-object information is not utilized during training. 

This reduction introduces a gap between learning and inference, where the process of learning only needs to evaluate each possible object proposal and feed back to the detector, but the process of inference is supposed to perform an optimal selection of redundant candidates 







-
DRL for Object Detection I
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In order to utilize the global information in object detection, an end-to-end detector training framework that aims to maximum evaluation metric mean AP between detection results and ground truth bounding boxes can be proposed.  

Since NMS is an undifferentiable operation on detection results, the objective on mean AP  cannot be solved by standard gradient decent. Policy gradient method is adopted to obtain approximate gradient

In this framework, Detectors such as Faster R-CNN can be viewed as an agent that receives a reward of mean AP. The aim of the agent is to get maximum possible mean AP and learn a good policy to select bounding boxes from candidates.









DRL for Object Detection
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This is the detailed architecture of our framework. By adding the idea of global optimization to the detector training procedure, our method ensures that better detection candidates have higher confident scores, and makes detector aware of the NMS during training. 







DRL for Object Detection

Results on COCO:

Detection model training method | greedy NMS  soft NMS | mAP | mAPso | mAPys | mAPs mAPy mAPL
Faster R-CNN standard v 36.3 57.3 38.8 17.7 42.4 51.4
Faster R-CNN standard v 36.9 37.2 40.1 18.0 427 52.1
Faster R-CNN OHEM v 36.9 57.3 40.2 17.7 42.7 524
Faster R-CNN ours (v = 0) v 37.6 60.0 40.2 19.6 42.6 52.0
Faster R-CNN ours (v = 1) v 38.3 60.6 40.9 20.7 43.2 52.6
Faster R-CNN ours (y = 1) v 38.5 60.8 41.3 20.9 43.4 52.7
Faster R-CNN with FPN standard v 37.7 58.5 40.8 19.3 41.7 52.3
Faster R-CNN with FPN ours (v = 1) v 39.5 60.2 43.3 227 44.1 51.9
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This is the results on COCO detection benchmark. The globally optimization method is performed on the baseline object detection models, where their performance cannot be further improved by continuing training. We can see globally optimized detector can significantly improve the performance of baseline detector. 

The left image is the visual results of original Fast R-CNN detector and the right one is the globally optimized Fast R-CNN detector. We only show bounding boxes with high confident scores. We can see that wrong detections with high confident scores can be barely found in the globally optimized model. 




DRL for Visual Relationship Detection
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Visual Relationship detection is a task that aims to find Visual relationships in a image. Visual relationships are a pair of localized objects connected via a predicate. For example, in the left image, ‘man’, and ‘ skateboard’ is connected via a predicate ‘standing on’. 

For this task, a reinforcement learning agent can be learned to sequentially detect relationships.




DRL for Visual Relationship Detection

O Directed Semantic Action Graph

G = (V, E) is a directed semantic graph to organize all possible
object nouns, attributes, and relationships into a compact and
semantically meaningful representation.
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To sequentially detect visual relationship, the first step is to model the relationships as a directed semantic graph, which also is the action space for RL agent. 

The directed semantic graph G = (V, E) is built to organize all possible object, attributes, and relationships into a compact and semantically meaningful representation. The nodes V consist of the set of all candidate object categories C, attributes A, and predicates P. 



DRL for Visual Relationship Detection
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Then, a reward function can be defined to reflect the detection accuracy of taking action. If the predictions have overlap with ground-truth object, the reward is positive. otherwise, the agent should receive negative reward. 


DRL for Visual Relationship Detection I
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The agent can be learned using the Q-learning algorithm, where we optimize agent using the loss function for both objects and the predicate from a relationship pair. 


DRL for Visual Relationship Detection
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This is the results of RL-based visual relationship detector. The RL-agent can generate a rich understanding of the image, including the localization and recognition of objects, and the detection of object relationships and attributes. For instance, the agent can correctly detect interactions (“person on elephant”, “man riding motor”), spatial layouts (“picture hanging on wall”, “car on road”), parts of objects (“person has shirt”, “wheel of motor”), and attribute descriptions (“television old”, “woman standing”).


Part 5: Conclusion and Future Directions
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Summary

O Deep reinforcement learning has been developed as one of the
basic techniques in machine learning and successfully applied to
a wide range of computer vision tasks (showing state-of-the-art
performance).

O We overview the trend of deep reinforcement learning techniques
and discuss how they are employed to boost the performance of
various computer vision tasks (solve various problems in
computer vision).

O We briefly introduce the basic concept of deep reinforcement
learning and show the key challenges in different computer vision
tasks.

O We present several applications of deep reinforcement learning
in different fields of computer vision.
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Future Directions I

O Inverse-RL:
« To learn from experts without designed rewards

O Multi-agent:
* |Interaction and communication
« Competition and cooperation

0 Robotic vision
* Visual grasping
* Visual navigation
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We show three possible future directions of Deep RL methods for computer vision. 
The first one is inverse-RL. Since most existing RL methods largely rely on carefully designed rewards, the inverse-RL can provide a way to learn from experts or demonstrations without designed rewards. Which can be useful when the reward function is hard to designed or manually designed reward is imperfect.
 The second one is Multi-agent RL. Most existing deep RL method for computer vision is based on single agent, which may ignore the iteraction and communication between objects or steps. Multi-agent method can also utilize the competition and cooperation among agent to improve training.
 RL method is also widely used in robotic vision. Many robotic vision tasks like visual grasping and visual navigation can benefit a lot from RL.
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