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ABSTRACT

Anatomical landmark detection has important applications
in cerebrovascular analysis and clinical treatments, which is
challenging due to the complex structure, various natural vari-
ations and pathological changes. In this paper, we propose
a multi-task deep learning network for accurate detection of
19 landmarks in cerebral Magnetic Resonance Angiography
(MRA) images, which is robust to anatomical variations. Be-
sides landmark detection, the network is trained to perform
landmark attribute classification, semantic artery segmenta-
tion and arterial segment attribute classification simultane-
ously. The attributes of landmark and arterial segment are
defined as local bifurcation appearance and absence varia-
tion, respectively, which enhances the contextual information
and incorporates the structural prior knowledge explicitly.
Experiments on both public and private datasets demonstrate
the superior performance of the proposed method.

Index Terms— Cerebrovascular landmark detection,
multi-task, anatomical variations, attribute classification

1. INTRODUCTION

Cerebrovascular diseases, such as aneurysms and stenosis,
have become one of the most serious diseases threatening hu-
man health in the world [1]. Anatomical landmark detection
plays an important role in cerebrovascular analysis and clini-
cal treatments, which models the vascular hierarchical topol-
ogy explicitly and provides essential structural knowledge for
subsequent medical image processing, such as centerline la-
beling [2] and vascular network registration between different
periods or different subjects [3]. In this paper, we focus on the
Circle of Willis (CoW) in cerebral MRA images, which has
a high incidence of vascular diseases [4] and can normally be
divided into 20 arterial segments according to 19 bifurcation
landmarks [5] (see Fig. 1(a) and (b)). There are many physi-
ological variations in CoW, including loss of one or multiple
arterial segments [6] (see Fig. 1(c) and (d)). The detection of
landmarks at both ends of missing arterial segment is partic-
ularly difficult, which always relies on spatial symmetry and
clinical experience in manual annotation. In addition, disease

Fig. 1. Illustration of (a) anatomical landmarks, (b) semantic
segmentation, (c,d) natural variations, and (e,f) pathological
changes of cerebrovascular.

related changes of vessels are also challenging. For example,
aneurysm and stenosis cause mutations in vascular diameter
and change the local blood flow velocity, blurring the vascular
appearance in MRA images (see Fig. 1(e) and (f)).

There have been numerous efforts for anatomical land-
mark detection, and remarkable success was achieved using
encoder-decoder network based heatmap regression meth-
ods [7–13]. Compared with predicting absolute landmark
coordinates directly, these voxel-wise heatmap regression
approaches are intrinsically more suitable for landmark de-
tection, as they focus on each position. Meanwhile, many
deep learning-based methods have been developed for cere-
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(a) Right PCoA (b) Missing Right PCoA

Fig. 2. Arterial segment variation and related changes of local
bifurcation appearance around corresponding landmarks.

brovascular analysis, such as segmentation [14–19], arterial
labeling [2, 20] and lesion detection [21]. Although yielding
promising predictions, little attention has been paid to cere-
brovascular landmark localization, which is still a challenging
problem due to the complex structure and various variations.

Recently, multi-task framework has been widely explored
in many domains, including medical segmentation [22] and
disease diagnosis [23], which demonstrates that leveraging
the synergy among different tasks could boost the individual
performance. In this paper, we propose an variation-robust
multi-task network for accurate cerebrovascular landmark de-
tection in MRA images. Similar to [13], we introduce vascu-
lar semantic segmentation as auxiliary objective. The label
of semantic segmentation is defined by dividing the vascular
binary segmentation according to the landmark distribution.
In this way, the semantic segmentation task is highly corre-
lated with landmark detection, which enhances the contextual
information and incorporates structural prior explicitly. Dif-
ferently from [13], considering that anatomical variations are
very common in cerebrovascular, we further perform attribute
classification of landmarks and arterial segments in parallel.
Obviously, when the CoW is complete, all landmarks are lo-
cated at vascular bifurcations. While there is a missing arte-
rial segment, the landmarks at both ends will not have local
forked appearance. Therefore, there is a corresponding re-
lationship between landmark attribute (i.e., whether has local
bifurcation characteristics) and arterial segment attribute (i.e.,
whether exists). Constraining the outputs of two classification
tasks guides the network to obtain self-consistent predictions.

In summary, the main contribution of this work is three-
fold. Firstly, we propose a multi-task network for automatic
and accurate cerebrovascular landmark detection in MRA
images, which is robust to anatomical variations. Secondly,
we introduce anatomical landmark and arterial segment at-
tribute classification tasks, which reflect the vascular anatom-
ical variations and local bifurcation appearance changes of
related landmarks. A self-consistency loss function is ap-
plied to supervise the rationality of two attribute predictions.
Thirdly, extensive experiments on both public and private
datasets demonstrate the effectiveness and robustness of the
proposed method. The manual landmark annotations of 40
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Fig. 3. Overview of the proposed framework.

public MRA images are released to promote further study1.

2. METHODS

2.1. Attributes of Landmarks and Arterial Segments

Compared with other anatomical tubular structures, such as
airway and aorta, the biggest challenge of cerebrovascular
landmark detection is that natural variations are very com-
mon. How to model and deal with the problem of missing
arterial segments is a key issue in cerebrovascular analysis.
Note that in this paper, we hypothesis that all the landmarks
exist regardless of the vascular variations. When a certain ar-
terial segment is missing, the local appearance of landmarks
at both ends will be affected. For example, when the right
PCoA exists (see Fig. 2(a)), the landmark A and B at both
ends have forked appearance. However, when the right PCoA
is missing (see Fig. 2(b)), A and B are located at the smooth
arterial segments with no local bifurcation. We regard the vas-
cular absence and related changes of bifurcation characteris-
tics as additional attributes of the arterial segment and land-
mark, respectively, and convert attribute computation to clas-
sification problems. That is, the network is trained to judge
whether each arterial segment exists and whether there is a
local bifurcation at each landmark position simultaneously.
In this way, the cerebrovascular variations can be associated
with landmark detection explicitly. The anatomical prior and
structural information are incorporated at the same time.

Furthermore, although feature representations can be
shared between two attribute classification tasks, the ratio-
nality of the outputs still needs to be supervised. That is, the
two attribute predictions should be self-consistent. Note that
in common physiological variations, only part of the arterial
segments may be missing (e.g., ACoA, PCoA, PCA-P1, and
ACA-A1), and only the attributes of the related landmarks
may be changed. Specifically, we assume that prediction of

1The manual landamrk annotations of public dataset are available at
https://cloud.tsinghua.edu.cn/d/4f4caabfbe5941768e90/
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Fig. 4. Quantitative results on both public and private test
sets. Performance is measured using MRE (in mm).

the arterial segment attribute is more intuitive and robust. For
segment attribute predictionys, the corresponding landmark
attribute ~yl can be derived. Then we apply a cross-entropy
loss function between~yl and landmark attribute predictionyl :

L self = �
X

i 2 �

~yi
l log(yi

l ) (1)

where the superscripti represents thei th landmark, and� de-
notes the set of landmarks whose attributes may be changed
due to the arterial segment absence. The proposed self-
consistency loss function supervises the uniform of the two
attribute classi�cation predictions, which leads the network to
be more sensitive of the local appearance around landmarks.

2.2. Multi-Task Framework

We propose a multi-task framework for landmark detection,
where the cerebrovascular semantic segmentation, landmark
and arterial segment attribute classi�cation are introduced
as auxiliary tasks. The detailed architecture is illustrated in
Fig. 3. Inspired by [7], we convert landmark detection to
a heatmap regression task. Each landmark has a separate
volumetric output where a Gaussian spot centered at the land-
mark position. The heatmapGi (x) of voxelx ranges in [0,1],
which represents the probability to be thei th landmark and is
determined by the distance from voxelx to thei th landmark
positionx i . More formally, the heatmap is de�ned as:

Gi (x) = e� 1
2 � 2 (x � x i )2

; i = 1 ; 2; :::; 19: (2)

where the standard deviation� controls the size of distribu-
tion. During inference, we derive the landmark position by
performing the argmax operation on the heatmap prediction.

The cerebrovascular semantic segmentation task is con-
sidered as a voxel-wise multi-class classi�cation problem,

Fig. 5. Comparison of network architectures with different
auxiliary task con�gurations on all 20 testing data, where the
mean MRE is marked in the legend (in mm). Y-axis is non-
linear for better visualization.

where arterial segments are regarded as different semantic
classes. In preparing semantic segmentation ground truth, the
arterial segments are divided from the binary segmentation
around the CoW. That is, the landmark is located at the center
of the interface between adjacent segments. By emphasizing
the different arterial segments, we enhance the contextual
information and provide more feature representations.

We exploit a modi�ed U-Net [24] as our backbone in the
multi-task framework. The plain convolution layer is replaced
by ResNet block [25] to avoid gradient vanishing,which con-
tains two convolution operators and a shortcut connection.
The skip connection between encoder and decoder path incor-
porates the low-level �ne features with the high-level abstract
features, preserving more spatial details for better localiza-
tion. Then the network is split into four parallel branches to
complete different tasks simultaneously. In this way, the net-
work learns a joint representation among landmark detection,
semantic segmentation, and attribute classi�cation tasks. The
synergy among them guides the network to capture discrimi-
native features and boosts the �nal performance.

We apply L2 loss, Dice loss and cross-entropy loss func-
tions for landmark heatmap regression, semantic segmenta-
tion and attribute classi�cation tasks, respectively. To address
the class imbalance problem, we weighted the L2 loss and
Dice loss functions according to the voxel number ratio of the
background to each kind of foreground class. The �nal objec-
tive is de�ned as a linear combination of all loss functions.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

We evaluated the proposed method on both public and pri-
vate datasets. The public dataset is comprised of 40 healthy
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Fig. 6. Visualization of landmark detection results. (a,b) im-
ages from public dataset; (c,d) images from private dataset.

cerebral MRA volumes randomly selected from UNC dataset
(https://public.kitware.com/Wiki/TubeTK/Data), which con-
tains 109 images totally. The private dataset contains 40 clin-
ically collected MRA images with aneurysms or stenosis. For
each volume, 19 anatomical landmarks and binary segmenta-
tion around the CoW region were annotated manually �rst by
one of the authors and then veri�ed by an experienced neuro-
surgeon. The landmark annotations of the public dataset have
been released. The semantic segmentation label was estab-
lished based on the binary segmentation and landmark distri-
bution, followed by manual correction. Then the attributes
of landmarks and arterial segments were determined accord-
ingly. We performed intensity-based rigid registration by tak-
ing a training sample as template �rstly, and all images were
spatially normalized to0:513� 0:513� 0:8 mm3. Each dataset
was split randomly into a training set (25 images), a valida-
tion set (5 images), and a testing set (10 images). The network
was trained using all 50 training images jointly.

Considering the initial coarse registration, only random
translation was applied for data augmentation. The whole
framework was implemented in TensorFlow. We trained the
proposed network using Adam optimizer (� 1 = 0 :5; � 2 =
0:999) with the learning rate of 0.0001 for 150 epochs.

3.2. Results

We utilize the mean radial error (MRE, in mm) as the met-
ric to evaluate our method, which refers to the mean Eu-
clidean distance between the ground truth and predicted
landmark positions. The quantitative results, as shown in
Fig. 4, demonstrate that the proposed method achieves excel-
lent performance on both public and private datasets. Some
landmarks are challenging intrinsically due to the complex
structure and show higher detection error. For example, there
may be mulitple extra branches in the MCA segment, and

Fig. 7. Cerebrovascular registration using landmark predic-
tions between (a) different periods and (b) different people,
where the data shown in orange represents the template.

the landmarks between M1 and M2 segments (i.e., landmark
3 and 8) may be misidenti�ed as other bifurcations. Fig. 6
shows some typical results, where the ground truth and pre-
dicted positions are represented with green and red dots. For
auxiliary objectives, the mean Dice coef�cient of the seman-
tic segmentation is 54.25%, mainly because of the curvilinear
structure and unobvious class interface, which will be ex-
plored in the future. The classi�cation accuracy of landmark
and arterial segment is 88.95% and 97.25%, respectively.

To verify the components of the proposed mechanism, we
conduct ablation experiments on all 20 testing data. We com-
pare the performance of the backbone network with different
task con�gurations. As shown in Fig. 5, adding each of auxil-
iary tasks successively brings better overall results. Note that
the network with only heatmap regression task is similar to
[7], where the backbone network is replaced by a modi�ed
U-Net. We also compare our method with [13], which ex-
ploits semantic segmentation and orientation �eld regression
as auxiliary tasks. The experimental results demonstrate the
effectiveness and robustness of the proposed method, espe-
cially for clinically signi�cant landmarks.

Furthermore, as shown in Fig. 7, we illustrate cerebrovas-
cular registration results using landmark predictions between
different periods and different people, which is bene�cial for
disease progression tracking and population analysis.

4. CONCLUSION

In this paper, we have proposed an multi-task network for
cerebrovascular landmark detection in MRA images, which
is robust to anatomical variations. Semantic segmentation, at-
tribute classi�cations of landmark and arterial segment are in-
troduced as auxiliary objectives to guide the network to learn
more discriminative features. We de�ned the attributes of the
landmark and arterial segment as local bifurcation appearance
and absence variation, respectively, incorporating the contex-
tual information and structural prior explicitly. Experiments
on both public and private datasets demonstrate the effective-
ness of the proposed framework. In the future, we will extend
our method to other anatomical tubular structures.
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5. COMPLIANCE WITH ETHICAL STANDARDS

This study got ethical approval of Xuanwu Hospital of Capi-
tal Medical University (2020009) for using the clinically col-
lected cerebral MRA dataset. The UNC dataset is publicly
available.
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