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Abstract—During the past decade, many efforts have been made to use palmprints as a biometric modality. However, most of the

existing palmprint recognition systems are based on encoding and matching creases, which are not as reliable as ridges. This affects

the use of palmprints in large-scale person identification applications where the biometric modality needs to be distinctive as well as

insensitive to changes in age and skin conditions. Recently, several ridge-based palmprint matching algorithms have been proposed to

fill the gap. Major contributions of these systems include reliable orientation field estimation in the presence of creases and the use of

multiple features in matching, while the matching algorithms adopted in these systems simply follow the matching algorithms for

fingerprints. However, palmprints differ from fingerprints in several aspects: 1) Palmprints are much larger and thus contain a large

number of minutiae, 2) palms are more deformable than fingertips, and 3) the quality and discrimination power of different regions in

palmprints vary significantly. As a result, these matchers are unable to appropriately handle the distortion and noise, despite heavy

computational cost. Motivated by the matching strategies of human palmprint experts, we developed a novel palmprint recognition

system. The main contributions are as follows: 1) Statistics of major features in palmprints are quantitatively studied, 2) a segment-

based matching and fusion algorithm is proposed to deal with the skin distortion and the varying discrimination power of different

palmprint regions, and 3) to reduce the computational complexity, an orientation field-based registration algorithm is designed for

registering the palmprints into the same coordinate system before matching and a cascade filter is built to reject the nonmated gallery

palmprints in early stage. The proposed matcher is tested by matching 840 query palmprints against a gallery set of 13,736 palmprints.

Experimental results show that the proposed matcher outperforms the existing matchers a lot both in matching accuracy and speed.

Index Terms—Palmprint, orientation field, density map, data fusion, distortion, matching, cascade filtering, generalized Hough

transform, naive Bayes classifier.

Ç

1 INTRODUCTION

THE human palm consists of two main features: flexion
creases and friction ridges [1]. Flexion creases are

formed due to the folding of the palm. The three most
salient flexion creases, termed major creases or principal
lines [1], divide the palm into three regions: thenar,
hypothenar, and interdigital (see Fig. 1). The palm also
contains many minor creases, which are not as permanent
as the major creases [1]. Friction ridges are formed as a
result of a buckling instability in the basal cell layer of
the fetal epidermis [2]. And an imaging resolution of
about 500 ppi is required to observe the ridge feature. The
patterns formed by the friction ridges on the palm are
both unique and persistent, making it useful as a
biometric trait for person identification. Law enforcement
agencies throughout the world have been routinely
collecting palmprints, together with fingerprints, from
criminals since the early 20th century [3].

Existing research on palmprint recognition mainly
concentrates on low-resolution palmprint images which
can be acquired using cheap cameras [4], [5], [6], [7], [8], [9],
[10], [11]. The images are usually captured in a contactless

manner, and the resolution is about at 100 ppi. At such low
resolution, ridges cannot be observed and matching is
mainly based on major and minor creases. In [12], [13], [14],
[15], researchers tried to explicitly extract and match major
creases. In [5], [16], [17], [18], crease information is encoded
and compared in various forms such as Gabor phase.

However, major biometric modalities used in large-scale
person identification systems, such as forensic and border
control systems, need to be both distinctive and insensitive
to changes in age and skin condition. Thus, palmprint
recognition systems for these applications have to be based
on ridge features, although creases may be used as
supplementary features. In fact, 500 ppi is the standard
resolution for capturing palmprints in forensic applications
[19] and person identification based only on ridge features
(such as minutiae) is accepted in courts of law [1].

The literature of ridge-based palmprint recognition has
still been very sparse until now. In [20], Jain and Feng
proposed a minutiae-based palmprint recognition system
achieving acceptable accuracy. In this system, a region
growing algorithm was proposed to extract the ridge
orientation in presence of creases and a novel minutia
descriptor, MinutiaCode, was designed. In [21], a multi-
feature-based palmprint recognition system was proposed
by Dai and Zhou, where multiple features, including
minutia points, orientation field, density map, and major
creases, are extracted and compared to achieve higher
accuracy.

Despite the available techniques, there are still some
problems remaining to be solved for large-scale applica-
tions. Some of the most important problems are:
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1. Skin distortion. Unlike the finger tip, the palm
contains many joints and its size is much larger. As a
result, distortion is quite common between different
impressions of the same palm and is much more
serious than the distortion of fingerprints. Fig. 2 shows
an example of palmprints with distortion. Since the
algorithms in [20], [21] used a global rigid transforma-
tion model, they are fragile to large distortion.

2. Diversity of different palm regions. Different regions
of palmprints have varying quality and distinctive-
ness. While the existing algorithms in [20], [21] treat
the identifying information from the different regions
of a palm equally, it is important to weight such
information according to its quality and distinctive-
ness to have a reliable matching procedure.

3. Computational complexity. Because palmprints in
operational palmprint databases are usually not
positioned in a common coordinate system, minu-
tiae matching algorithms have to try all possible
rotation and translation or all possible correspon-
dence of minutiae. Since palmprints contain much
more minutiae than fingerprints, those matching
algorithms which are basically adapted from finger-
print matching algorithms are very inefficient in
matching palmprints. For example, a well-known
commercial matcher, VeriFinger [22], can perform
more than 15,000 fingerprint matches per second,
but only three palmprint matches per second. The
matching algorithms in [20], [21] are also very slow.

The limitations of the existing palmprint matching
algorithms in [20], [21] can be summarized as that these
algorithms are basically adapted from fingerprint match-
ing algorithms [23], [24]. To develop an accurate and
efficient palmprint matching algorithm, the intrinsic
characteristics of palmprints have to be utilized.

Motivated by the matching strategies of human palm-
print experts [1], [25], such as registering palmprints using
clues from orientation field and rejecting nonmated
palmprints based on partial region, we developed a novel
palmprint matching system for 1:N matching. The main
contributions include

1. A quantitative statistical study of various character-
istics of palmprints is conducted to guide the design
and parameter selection of the matching system.

2. To deal with the distortion and the varying
discrimination power of different palmprint regions,
a segment-based palmprint matching and fusion
algorithm is proposed. The whole palmprint image
is divided into small segments, which are then
separately matched to deal with distortion. The
similarity between two palmprints is calculated by
fusing the similarity scores of different segments
using a Bayesian framework.

3. To reduce the computational complexity, an or-
ientation field-based registration algorithm is de-
signed for registering palmprints of different
positions and rotations into the same coordinate
system before matching. Furthermore, a cascade
filter is built to reject nonmated gallery palmprints
in an early stage by comparing just a small portion
of the whole palmprint.

Experimental results of matching 840 query palmprints

against a gallery set of 13,736 palmprints show that the

proposed algorithm achieves large improvement in both

matching accuracy and speed. In full-to-full palmprint

matching experiments, a True Acceptance Rate (TAR) of

97.9 percent is obtained by the proposed algorithm when the

False Acceptance Rate (FAR) is controlled at 2� 10�7. This

TAR is 17 percent higher than that of the algorithm in [21]

and 40 percent higher than that of the algorithm in [20]. In

partial-to-full palmprint matching, the TAR is 91.9 percent

at a FAR of 3� 10�8, 34 percent and 65 percent higher than

the TARs of the algorithms in [21] and [20], respectively.

Experimental results also show that the proposed algorithm

can improve the palmprint matching speed by a factor of

132 compared with the algorithm in [21].
The rest of this paper is organized as follows: In

Section 2, the statistics of palmprint characteristics is

analyzed. Section 3 describes the proposed palmprint

matching algorithm. In Section 4, the experimental results

are presented and analyzed. Finally, we finish with

conclusions in Section 5.

2 STATISTICAL ANALYSIS OF PALMPRINTS

While qualitative knowledge on palmprints is sufficient for

human experts, in order to design an automatic system and

optimize its parameters we need a quantitative study of

palmprint features. In this section, the statistical character-

istics of different palmprint features, different palmprint

regions, as well as palmprint distortion are discussed.
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Fig. 1. Crease and ridge features in a palmprint.

Fig. 2. A pair of mated palmprints with large distortion, as indicated by
the corresponding triangles.



2.1 Statistical Analysis of Different Features

The goal of a statistical study of palmprint features is to

identify good features for registration and matching. A

criterion is that the features with high consistency among

different palms and low consistency among different

regions of the same palmprint are useful for registering

palmprints into the same coordinate system, while the

features with high diversity among different palms are

more important for matching.
To conduct a quantitative analysis of the features in

palmprints, including orientation field and density map,

we utilized 200 palmprints from 200 different palms. And

they are composed of the first impressions of 40 different

palms in the training set of the THUPALMLAB (see Table 3

for the details of this database) and another 160 palmprints

further gathered from 160 palms. The palmprints are

manually transformed into the same coordinate system,

and those from the right hands are mirrored to increase the

number of samples.

2.1.1 Region Mask

The region mask M of a palmprint I is a binary image

where 1 indicates a valid palmar region. Region mask is

estimated using the algorithm in [20]. As shown by the

average palmprint region mask in Fig. 3, the central regions

of about 50 percent palmprints are missing. This is very

common in palmprints captured using contact-based

techniques.

2.1.2 Orientation Field

The orientation field characterizes the ridge orientation at

each location in the palmprint. To study its statistical

characteristic, the palmprint is divided into nonoverlapped

blocks of 64� 64 pixels, and ridge orientation is estimated at

each block using the algorithm in [20]. Let �iðx; yÞdenotes the

orientation at ðx; yÞ of the ith palmprint. We map it to a

complex number of unit magnitude ziðx; yÞ ¼ cosð2�iðx; yÞÞ þ
j sinð2�iðx; yÞÞ for computational convenience. The mean of zi
at ðx; yÞ is

�zðx; yÞ ¼
P

i2T ziðx; yÞMiðx; yÞP
i2T Miðx; yÞ

; ð1Þ

in which Miðx; yÞ is the region mask at ðx; yÞ of the

ith palmprint.
The average and the circular standard deviation values

for the orientation field at ðx; yÞ are calculated by [26]

��ðx; yÞ ¼ 1

2
Argð�zðx; yÞÞ;

��ðx; yÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln �zðx; yÞ

p
:

8><
>: ð2Þ

The derived average and circular standard deviation

images are shown in Figs. 4a and 4b. As shown in Fig. 4b, a

large portion of the palmar region has low deviation, and

the circular standard deviation is below 15 degrees in about

67 percent palmar region. This indicates there is a general

ridge flow often repeated in the majority of the palmprints.

Some common patterns in the orientation field of palm-

prints have been defined by palmprint experts [25], as

shown in Fig. 5. In the thenar region, ridge flow forms a

semicircular pattern around the thumb, which is termed

“half-moon.” In the hypothenar region, the characteristic is

that ridges flow down and out of the hand. Near the top of

the hypothenar region, ridges funnel toward the center. The

ridges at the top side of the funnel are usually much flatter

than those at the lower side. The orientation field shows a

common pattern between different palms and has large

variance in different regions of the same palmprint, making

it a good feature for registering different palmprints.

2.1.3 Density Map

Density map depicts the ridge density of different locations

in the palmar region. Density map is estimated by the

algorithm in [21]. The average and standard deviation

images of density map are shown in Figs. 6a and 6b, which

are calculated by
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Fig. 3. Average palmprint region mask. The bright pixels correspond to
the location that tends to be a valid palmar region.

Fig. 4. Statistical characteristics of orientation field: (a) and (b) are the
mean and circular standard deviation for the orientation field, respec-
tively. Note that bright pixels in (b) correspond to the location where
singular points tend to appear.

Fig. 5. Common ridge flow patterns in the average orientation field.



�dðx; yÞ ¼
P

i2T diðx;yÞMiðx;yÞP
i2T Miðx;yÞ

;

�dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2T ½ðdiðx;yÞ�
�dðx;yÞÞ2�Miðx;yÞ�P

i2T Miðx;yÞ�1

r
;

8>><
>>: ð3Þ

in which diðx; yÞ is the ridge distance (reciprocal of ridge
density) estimated at the 16� 16 pixels block around ðx; yÞ
for the ith palmprint, �dðx; yÞ and �dðx; yÞ are the average
and standard deviation values of the ridge distance at ðx; yÞ.
As is shown in the statistical results, the average ridge
distance scatters in the range of 8 to 12.5 pixels, while the
standard deviation values are higher than 1.3 pixels in
almost all the palmar region, showing low consistency
among different palms.

2.2 Discrimination Power of Palmprint Features and
Regions

Since ridge patterns in different palmar regions have
different characteristics, the discrimination power of differ-
ent regions also varies. In order to study this problem, a
statistical experiment is conducted using the eight impres-
sions of 40 different palms in the training set. All the
palmprints are transformed into the same coordinate system
manually. Next, the transformed palmprint images are
divided into nonoverlapped blocks of 64� 64 pixels to save
computational cost. The discrimination power of the 510�
510 pixel local region centered at each block is studied. The
size is chosen so that there are sufficient features within to
align successfully. When matching two palmprints, each
block’s local region is separately matched to the correspond-
ing block’s local region if they are valid palmprint regions.
A total of 1,120 genuine matches and 101,280 impostor
matches are performed using the algorithm in [21].

With the similarity scores of genuine and impostor

match pairs from all the segments, the discrimination

power of different features at different segments can be

reflected by the True Acceptance Rate when the False
Acceptance Rate is set as 10�4, as shown in Fig. 7.

It can be seen from Fig. 7 that the discrimination power
of different area varies significantly. The interdigital and the
hypothenar regions show better discrimination power than
the thenar region. This is because there are many creases in
the thenar which significantly affect the extraction of ridge-
based features. It is also shown that among the features of
minutiae, orientation field, and density map, density map
achieves the highest accuracy in most of the regions.
Density map outperforms minutiae and orientation field
in about 85 and 91 percent palmar regions, respectively, in
the experiment. Some researchers have tried to apply it to
fingerprint recognition but did not get a good result [27].
But this experiment proved that it is indeed a discriminat-
ing feature for palmprint recognition.

2.3 Distortion

The human hand has 27 bones, including the carpals in the
wrist, the metacarpal bones running along the palm, and
the phalanx bones in the fingers [28]. Due to the multiple
degrees of freedom of the skeleton beneath the palm,
distortion is very common in the palmar region. To study
the distortion characteristic, a statistical experiment is
conducted on the training set.

The registered palmprint images are divided into
nonoverlapped blocks of 64� 64 pixels as above. The
distortion of the 510� 510 pixel local region centered at
each block is studied. The eight impressions of each palm
are finely aligned with each other, generating 1,120
matching pairs in total. Each local region is aligned to the
corresponding local region, respectively, using the general-
ized Hough transform (GHT)-based minutiae matching
algorithm [23], and the displacement parameters for all the
local regions are recorded. For a given matching pair, let
ð�xk;�yk;��kÞ denote the displacement parameters for the
kth local region, then the mean displacement between two
palmprints is calculated by

��x ¼ 1
Na

XNa

k¼1

�xk;

��y ¼ 1
Na

XNa

k¼1

�yk;

��� ¼ 1
2 atan

XNa

k¼1

sin 2��k
cos 2��k

 !
;

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

in which Na is the number of corresponding local regions
for the matching palmprint pair.
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Fig. 6. Statistical characteristics of density map: (a) and (b) are the mean
and standard deviation for the ridge distance, respectively.

Fig. 7. TARs of three different features at different palmprint regions when the FAR is set as 10�4: (a) minutiae, (b) orientation field, (c) density map.



To characterize the distortion, the relative displacement

ð ~�xk; ~�yk; ~��kÞ for each local region is calculated by

subtracting the mean displacement from ð�xk;�yk;��kÞ.
Finally, the average of the absolute values for the relative

displacement parameters in each local region are calculated

using all the matching pairs.
The calculated average absolute values are shown in

Fig. 8. As shown in the image, distortion widely exists in

the palmprint images, especially at the thenar region. The

adduction/abduction movement of the human thumb is

controlled by its carpal-metacarpal joint at the thenar

region which is highly flexible [29], leading to greater

susceptibility of the thenar regions toward distortion. And

the distortion of other regions still cannot be ignored. Due

to the universality of distortion in palmprints, distortion

tolerant algorithms are required to achieve high accuracy

for large-scale applications.

2.4 Summary

Major conclusions pertaining to palmprint characteristics

are summarized as follows:

1. Orientation field shows high consistency among the
same region of different palms and low consistency
among different regions of the same palmprint.

2. Different regions and different features of the
palmprint have varying discrimination power.

3. Distortion widely exists in the palmprint images.

3 PROPOSED PALMPRINT MATCHING SYSTEM

3.1 System Outline

Motivated by the matching strategies of human palmprint

experts and based on our quantitative study of palmprint

statistics, we design a novel palmprint matching system for

1:N matching. The outline of the proposed palmprint

matching system is shown in Fig. 9. The system is

composed of three modules: palmprint registration, seg-

ment-based matching and fusion, and cascade filtering. The

relations between the three modules and the major

characteristics of palmprints summarized in Section 2.4

are shown in Fig. 10.
Since different palmprints share a lot of common ridge

flow patterns, orientation field is used for palmprint
registration, which transforms palmprints of different
rotations and displacements into the common coordinate
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Fig. 8. Distortion characteristics of the palmprints: (a), (b), and (c) show the average absolute values of ~�xk, ~�yk, ~��k, respectively. ~�xk and ~�yk are
in pixels, while ~��k is in degrees.

Fig. 9. Outline of the proposed palmprint identification system.

Fig. 10. Relations between the three characteristics of palmprints and
the three modules of the proposed matching algorithm.



system. Thus, tight position constraint can be enforced in
the matching algorithm, and matching speed can be
greatly improved.

The segment-based matching and fusion algorithm is
proposed to deal with distortion and varying discrimina-
tion power of different regions. Registered palmprints are
divided into small segments. During palmprint matching,
all the corresponding segments are finely aligned and
compared, respectively. When distortion occurs, the seg-
ments will rotate and shift to compensate for the distortion.
In this way, the influence of distortion can be effectively
reduced. The similarity score is calculated at each segment
for each feature, respectively, and the weights of various
features at different segments are determined by learning.

As some segments in palmprints are very distinctive, it is
possible to discard many nonmated gallery palmprints by
just comparing these distinctive segments. The cascade
filter is based on this idea.

In application, the proposed palmprint matching system
operates as follows:

1. Palmprint registration is performed for the gallery
palmprints in the enrollment stage and for the
query palmprints in the identification stage sepa-
rately. The gallery palmprints are generally full
palmprints, while the query palmprints are live-
scanned full palmprints from unknown suspects or
latents recovered from crime scenes. The full
palmprints are automatically registered by the
proposed algorithm, while the latents are manually
registered due to small palmar area, which is a
common practice.1

2. Corresponding segments between the query and the
gallery palmprints are compared sequentially based
on an ordering determined by the cascade filter.
Gallery palmprints which are very dissimilar to the
query are rejected at once. Generally, a large portion
of the gallery palmprints are rejected after compar-
ing just a few segments.

3. After cascade filtering, the query palmprint is
matched with the remaining gallery palmprints by
the segment-based matching and fusion algorithm to
determine the true mate of the query palmprint.

3.2 Registration

Palmprint images in law enforcement databases are gen-
erally not in the same coordinate system since they are
usually captured without posture and position restriction.
Registration is thus necessary to bring different palmprints
into the same coordinate system to facilitate the matching.
Registration is an indispensable step in most biometric
recognition techniques, such as iris [31], face [32]. Iris is
generally registered by its inner and outer circular contours,
while face is generally registered by the location of eyes. The
acceleration gained by registration is due to the tight
position constraint in matching registered images. In case
of minutiae matching, a minutia point in the query
palmprint just needs to be matched with a small portion
of the minutia points in the gallery palmprint whose

location and direction are similar to it, reducing the
computational complexity significantly.

The key to registration is to find a good feature, which is
similar between different palms, contains sufficient infor-
mation to determine the correct position, and is robust to
noise and incomplete impressions. Existing palmprint
registration methods, which are based on intervals between
fingers [4], [5], [33], [34], [35], hand contour [36], or principal
lines [13], are mainly designed for contactless low-resolution
palmprint verification systems. The low-resolution palm-
prints are captured by contactless devices, which ensures
the whole palmar region and the finger roots are visible.
However, in palmprints captured using contact-based
techniques (such as inking and FTIR sensors, see Fig. 11),
fingers are not available and principle lines and hand
contours are usually incomplete or not reliable, making
registration a challenging task. The statistical analysis in
Section 2.1 shows that the orientation fields of different
palms are quite similar and the orientation fields in different
palmar regions are very distinctive, making orientation field
a promising feature for palmprint registration.

Given the orientation field of an original (unregistered)
palmprint, the registration algorithm first estimates the
rigid transformation between the unregistered orientation
field and the reference orientation field, and then registers
the original palmprint with respect to the reference. The
average orientation field shown in Fig. 4 is used as the
reference orientation field for all the palmprints. And
the unregistered orientation field is registered to both the
reference orientation field (left palmprint) and the
mirrored version (right palmprint). The unregistered
palmprint is deemed left/right if it is more similar to
the left/right reference. The algorithm in [20] is used to
estimate orientation field on nonoverlapped large blocks
(64� 64 pixels) in order to suppress noise and reduce the
computational complexity of the registration algorithm.

The orientation field of an unregistered palmprint can be
viewed as a transformed and noisy version of the reference
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Fig. 11. Palmprint images captured (a) by contactless techniques in
laboratory environment and (b) by contact-based techniques in
operational environment. The left one in (a) is from the CASIA palmprint
database [16] and the right one in (a) is from the PolyU palmprint
database [30].

1. The latents recovered from crime scenes are few and valuable.
Palmprint experts usually manually mark the ridge features and determine
the locations of latents based on the latent shape as well as some fine
orientation field and crease features [25].



orientation field. The optimal rigid transformation between
two orientation fields is found using the generalized Hough
transform algorithm [37]. All possible pairs of blocks
between the unregistered and reference orientation fields
are considered to vote for the corresponding transformation
parameters: rotation, horizontal, and vertical translation.

Since the features which are similar between different
palms are important for registration, higher weights should
be assigned to the votes from the regions with high
orientation field consistence. Let wðx; yÞ denote the weight
for the vote given by ðx; yÞ in the coordinate of reference
orientation field, it is calculated by

wðx; yÞ ¼ 1

1þ ��ðx; yÞ
; ð5Þ

in which ��ðx; yÞ is the corresponding circular standard
deviation of orientation field as defined in (2).

After all pairs of blocks are considered, the bin in the
transformation space with the largest number of votes is
chosen as the transformation parameter.

The palmprint registration algorithm is used to speed up
matching with as small accuracy reduction as possible.
Therefore, it is important to examine whether the different
impressions of the same palmprint can be consistently
transformed to the same coordinate system with small
deviation. We conducted a systematic experiment to auto-
matically evaluate the consistence of registration for different
impressions of the same palmprint. Eight impressions of the
40 different palms in the training set of THUPALMLAB are
used in this experiment. The ground truth transformation
parameters between palmprints are first estimated using the
minutiae matcher in [21] and then manually verified. Fig. 12
shows the histograms of the difference between the registra-
tion parameters estimated by the proposed registration
algorithm and the ground truth. The vast majority of the
palmprints can be successfully registered with small
difference. The example in Fig. 13 shows that although the
three different impressions of the same palmprint are quite
different in direction and impression region, the registration
results are very consistent. According to the histograms of
registration consistence in Fig. 12, the maximum rotation and
displacement allowed in matching are set as 20 degrees and
five blocks of 64� 64 pixels, respectively, in our experiments.

3.3 Segment-Based Matching and Fusion

As shown by the statistical results in Section 2, distortion
usually occurs between palmprints, and the different
features from different segments have large differences in
discrimination power. Although some distortion models

have been proposed for fingerprint [38], [39], [40], they are
not suitable for palmprint because they are not efficient
enough and the distortion of palmprints is much more
serious. A segment-based matching and fusion algorithm is
proposed to deal with the distortion and the varying
discrimination power of different segments.

The registered palmprints are divided into 4� 4 non-
overlapped segments of 510� 510 pixels uniformly as in
Fig. 9. The size is chosen so that there are sufficient features
within each segment for successful minutiae matching,
while the distortion within the segment is sufficiently small.
Although there are numerous possible segmentation stra-
tegies, here we adopted this simple strategy to verify the
effectiveness of our algorithm. The following procedures
are performed at the segment level.

Each segment of 510� 510 pixels from the query
palmprint is matched with the corresponding segment
from the gallery. Since the registration is coarse and may
produce some deviations, the gallery segment is enlarged to
610� 610 pixels to completely contain the query segment.
So, the segments in the gallery palmprint are overlapped.

Before the matching is performed, first, the algorithm tests
the completeness of the matching segments, which is
measured by the foreground area size and the minimum
minutiae number of the gallery and query segments within
their overlapped palmprint region. In our algorithm, if the
foreground area size is smaller than 76,800 pixels or the
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Fig. 12. Difference between the registration parameters estimated by the palmprint registration algorithm and the ground truth.

Fig. 13. Palmprints successfully registered by the proposed registration
algorithm: (a) three original images from the same palm, (b) outputs of
the registration algorithm.



minimum minutiae number is less than 20, then the matching
segments are deemed to be very incomplete and are not
considered.

Next, the remaining matching segments are finely
aligned by the generalized Hough transform-based minu-
tiae matching algorithm [41] with small tolerance. The
maximum rotation and displacement allowed are set as
20 degrees and five blocks of 64� 64 pixels, respectively.
After a segment is aligned, the number of matched
minutiae within it is counted, and the orientation field
and density map are compared at blocks of 16� 16 pixels
using the equations in [42] and [21]. The notation used in
feature similarity calculation is summarized in Table 1, and
the similarity scores are calculated as

Sm ¼
M

M þME
� M2

MgMq
; ð6Þ

So ¼
No

No þNoE

� ð1�Do=90�Þ; ð7Þ

and

Sd ¼
Nd

Nd þNdE

� 1

Nb

XNb

i¼1

expð�jdgðiÞ � dqðiÞjÞ; ð8Þ

in which ME , NoE , and NdE are set as 5, 100, and 100,
respectively.

After the above procedure, we get the similarity scores of
three types of features for each segment. In addition, we
observed that the consistence of the spatial transformations
of segments can be used to distinguish genuine pairs from
impostor ones, as shown in Fig. 14. The relative displace-
ment described in Section 2.3 depicts the consistence and is
used as the feature.

Finally, the relative displacement, the similarity scores of
minutiae, orientation field, and density map are combined
by Bayesian inference to output a match score. The
probability that an observed palmprint match pair is
genuine or impostor can be denoted by P ðY jfð ~�xk; ~�yk;
~��k; Smk

; Sok ; SdkÞk¼1;...;16gÞ, in which ð ~�xk; ~�yk; ~��kÞ denote
the relative displacement parameters for the kth segment,
Smk

, Sok , and Sdk are the segment’s similarity scores of
minutiae, orientation field and density map, respectively, Y
can take two values: G (Genuine) or I (Impostor). The
dimension of the feature vector of the whole palmprint is
96. To avoid the curse of dimensionality, the features are
supposed to be independent. The likelihood ratio of
genuine versus impostor can be decomposed as

L ¼ P ðGjfð
~�xk; ~�yk; ~��k; Smk

; Sok ; SdkÞkgÞ
P ðIjfð ~�xk; ~�yk; ~��k; Smk

; Sok ; SdkÞkgÞ

¼ P ðGÞ
P ðIÞ

P ðfð ~�xk; ~�yk; ~��k; Smk
; Sok ; SdkÞkgjGÞ

P ðfð ~�xk; ~�yk; ~��k; Smk
; Sok ; SdkÞkgjIÞ

¼ P ðGÞ
P ðIÞ

Y16

k¼1

P ðð ~�xk; ~�yk; ~��k; Smk
; Sok ; SdkÞjGÞ

P ðð ~�xk; ~�yk; ~��k; Smk
; Sok ; SdkÞjIÞ

¼ P ðGÞ
P ðIÞ

Y16

k¼1

P ð ~�xkjGÞP ð ~�ykjGÞP ð ~��kjGÞ
P ð ~�xkjIÞP ð ~�ykjIÞP ð ~��kjIÞ

P ðSmk
jGÞP ðSok jGÞP ðSdk jGÞ

P ðSmk
jIÞP ðSok jIÞP ðSdk jIÞ

¼ P ðGÞ
P ðIÞ

Y16

k¼1

LskL
d
k;

ð9Þ

in which P ðGÞ
P ðIÞ is the prior likelihood ratio, Lsk and Ldk are the

likelihood ratio values estimated according to the similarity
scores and displacement parameters of the kth segment,
respectively. And the likelihood ratio values for the
incomplete segments are set as 1.

To avoid the influence of very poor quality segments on
genuine matches, a regularization term is added. So, the
equation takes the form of
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TABLE 1
Notation in Feature Similarity Calculation

Fig. 14. Spatial transformations of segments for genuine and imposter
match pairs: (a) and (b) are two different impressions of the same palm,
(c) is the spatial transformations of aligning (a) to (b), (d) and (e) are the
impressions of two different palms, (f) is the spatial transformations of
aligning (d) to (e).



L ¼ P ðGÞ
P ðIÞ

Y16

k¼1

�
�þ LskLdk

�
; ð10Þ

where the regularization term � is empirically set as 0.001.
In (9), P ðGÞ=P ðIÞ is set as 1 and the PDFs are estimated

using the results of matching the full palmprints from the
training set. Gaussian Mixture Model (GMM) is used to
approximate the 192 PDFs in (9). The Expected Maximiza-
tion (EM) algorithm [43] is performed to search for the best
fit between the models and the observed samples.

3.4 Cascade Filtering

Human experts can declare a pair of palmprints as
unmatched as long as a portion of them is not matched
[1]. The statistical result in Section 2.2 shows that some
regions of the palmprint possess high discrimination
power. Considering these facts, we develop a cascade
filtering scheme to first compare these distinctive regions
and quickly reject the dissimilar gallery palmprints.
Cascade filtering is an important speedup technology in
computer vision [44], [45], and multibiometrics [46]. Here,
we first describe how the cascade filtering works and then
present how to construct the cascade filters.

A cascade filter containing M filters can be denoted by
F ¼ fðCm; TmÞm¼1;...;Mg, in which Cm and Tm are the indices
of the set of segments and the corresponding threshold used
by the mth filter, respectively. In cascade filtering, a pair of
palmprints passes through the filters sequentially. At the
mth filter, the segments within Cm are matched, and the
likelihood ratio is computed by

LCm ¼
P ðGÞ
P ðIÞ

Y
k2Cm

�
�þ Lsk

�
: ð11Þ

The formula is different from (10) in that just the likelihood
ratio terms estimated by the similarity scores within the
segments of Cm are used since just the segments within Cm
are available. If the calculated likelihood ratio, LCm , is lower
than Tm, then the match pair is deemed unmatched and
quickly dropped. Otherwise, it is passed to the next filter
and the above procedure repeats. In this way, most
nonmated gallery palmprints can be rejected by just
comparing a small region of the whole palmprint, resulting
in a significant reduction of computational cost.

To construct a cascade filter, which segments to use in
each filter should be determined and appropriate thresholds
should be chosen to exclude the nonmated palmprints while
retaining the mated ones. Feature selection technique is
brought in to determine the arrangements and parameters
by viewing each segment as a feature. In most cases, the filter
with more features can reject more nonmated pairs, while it
takes more time to perform the filtering. To trade off
between these two effects, our goal is to construct filters
achieving desired True Rejection Rate (TRR) while keeping
the False Rejection Rate (FRR) as 0 by using as few segments
as possible. When building a filter, the possible combina-
tions of segments form a search tree. The algorithm travels
across this search tree in a breadth-first procedure. All
possible filters using just one segment are first tested, and
the best of them are selected. If the best one can reach the
desired TRR, then the traversal procedure stops and the

filter is built. Otherwise, all possible combinations of two
segments are tested. The traversal procedure continues until
the desired TRR cannot be achieved even using Nmax

segments. When a filter is built, it is added to the cascade
filter. The segments used by the current filter are marked as
occupied and the samples filtered are deleted. The algorithm
tries to build the next filter with the left segments and
training samples. So, the cascade filter building procedure is
a combination of greedy algorithm and exhaustive strategy.
When building a specific filter, the exhaustive strategy is
utilized. Once a filter is found, it will not change in the
following search procedure, which is greedy.

The pseudocode of the algorithm for cascade filter
construction is shown in Table 2. The inputs are the
likelihood ratios of all the segments in the training samples,
L, and label array of the training samples, Y . In the
algorithm of ComputeTRRandThreshold, the threshold, TiN ,
is set as the minimum likelihood ratio of the genuine match
pairs and the corresponding TRR, TRRiN , is calculated.

4 EXPERIMENTS

4.1 Palmprint Database

Till now, there has been no publicly available high-resolution
palmprint database to our knowledge. To test the algorithm,
we collected 1,280 palmprint images from 80 subjects (two
palms per person and eight impressions per palm) using a
commercial palmprint scanner of Hisign. To increase the size
of the gallery, 13,616 different palmprints (one impression
per palm) provided by a local police department are used as
the background database. All these palmprints images are of
2;040� 2;040 pixels and 500 ppi. The former set of 1,280
palmprints is termed a multi-impression subset and the latter
is termed a uni-impression subset. As a whole, the database
is termed the THUPALMLAB, and it contains 320 more
palmprints than the former database used in [21]. The
multiimpression subset of THUPALMLAB is available at
http://ivg.au. tsinghua.edu.cn. To simulate the latent prints
recovered from crime scenes, we created partial palmprints
from different regions of the full palmprints. For each palm
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TABLE 2
Pseudocode of the Cascade Filter Construction Algorithm



in the multi-impression subset, seven partial images are
cropped from the thenar, hypothenar, and interdigital
regions of the last seven impressions, respectively. As a
result, we obtain 160� 21 partial palmprints from 160 differ-
ent palms. Since the partial palmprints are cropped to
simulate the latents, they are manually registered as in real
applications. In experiments, the prints from the first
40 palms of the multi-impression subset are used for training,
while the left prints are used for testing. Among all the
palmprint images, about 20 percent of them are of relatively
poor quality due to large amount of creases, deformation,
smudges, blurs, incompleteness, etc. The database is
summarized in Table 3.

4.2 Performance of Each Module

In this section, we evaluate the performance of each of the
three modules, i.e., registration, segment-based matching
and fusion, and cascade filtering.

4.2.1 Registration

To test the speedup gained by registration, the GHT-based
minutiae matching algorithm is used to match different
impressions of the same palm. The average time for the fine
alignment is counted on the whole THUPALMLAB. With-
out registration, we cannot make assumptions about the
relative position between the matching palmprints. The
maximum rotation allowed is 360 degrees and the max
displacement allowed is set as half of the palmprint image
size. It takes about 5.1 seconds to match two full palmprints
on average. When registration is performed, tight transla-
tion and rotation constraints can be applied. According to
the histograms in Fig. 12, the maximum rotation and
displacement allowed are set as 20 degrees and five blocks
of 64� 64 pixels, respectively. The average time cost of
matching two full palmprints using the same minutiae
matcher is reduced to 78 ms, which is about 65 times faster
than without registration.

The computational cost of the registration procedure
itself is composed of voting and best parameter searching,
which are denoted by Tv and Ts. Tv is OðNu �NrÞ and Ts is
OðD�D��Þ, where Nu and Nr are the numbers of
nonoverlapped 64� 64 foreground blocks in the unregis-
tered and reference palmprints, respectively, D and � are
the maximum displacement and rotation allowed between
the unregistered and reference palmprints. In experiments,
Tv and Ts are about 900 for full palmprints, D and � are set
as half of the palmprint image size and 360 degrees,
respectively. The execution time of the registration proce-
dure is about 1.12 s in our experiment. Since it is performed
in the enrollment stage for the gallery palmprints and in the
identification stage for the query palmprint only once, its

computational cost takes a very small portion of the online
identification procedure.

As for accuracy, 44 palmprints are not successfully
registered, which is 0.3 percent of all the palmprints within
the database. All the failure cases are due to improper
impression or bad image quality. Two of the failed
palmprints are shown in Fig. 15. Currently, we do not have
an automatic method to determine whether the registration
is correct or not. So, these 44 palmprints also go through the
cascade filtering and matching.

4.2.2 Segment-Based Matching and Fusion

The segment-based matching and fusion algorithm com-
prises the advantages of being robust to skin distortion and
making better use of varying discrimination of different
palmprint regions. To verify the above advantages, we
design three matching algorithms with different combina-
tions of matching and scoring methods. In the first system,
palmprints are aligned with global rigid transformations
and feature similarity scores are calculated at global level as
in [21]. The derived similarity scores are fused by a naive
Bayesian with GMM. In the second system, palmprints are
aligned at segment level, while feature similarity scores are
still calculated globally and fused by a naive Bayesian. In
the third system, palmprints are aligned and similarity
scores are calculated at the segment level. The performance
of these three matching algorithms in full-to-full and
partial-to-full matching experiments are shown in Figs. 16.
The experiment settings are the same as in Section 4.3.

It can be seen from Fig. 16a that aligning at segment level
can greatly improve the performance of matching full
palmprints, for which distortion is a serious problem. The
results of aligning the palmprints in Fig. 2 at global level
and at segment level are shown in Fig. 17. It can be seen that
aligning at segment level can effectively deal with the
serious distortion. In partial-to-full matching, the system
calculating and fusing similarity scores at segment level
achieves higher accuracy than the system performs the
operations at global level, as shown in Fig. 16b.

4.2.3 Cascade Filtering

The cascade filter is trained on the training set of
THUPALMLAB. The maximum number of segments to
use, Nmax, and the desired TRR are set as 2 and 20 percent,
respectively. The constructed cascade filter and its perfor-
mance are shown in Fig. 18. The first filter uses the segment
of C2, which corresponds to the region with outstanding
discrimination power (see Fig. 7). By comparing one
segment, this filter can reject up to 55.7 percent nonmated
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TABLE 3
Summary of the THUPALMLAB Database

Fig. 15. Two palmprints not successfully registered by the registration
algorithm.



gallery palmprints while retaining all the mated gallery
palmprints. The second filter uses the segment combination
of B2 and D3, and 60.0 percent of the remained nonmated
gallery palmprints can be rejected. But 1.1 percent of the
mated gallery palmprints are also rejected. The third filter
uses the segment combination of B3 and C3, resulting in a
TRR of 22.4 percent and a FRR of 0 percent. As a whole, the
constructed cascade filter achieves a TRR of 86.3 percent
when the FRR is 1.1 percent. It can effectively reject the
nonmated gallery palmprints by just comparing a small
region of the palmprints.

The acceleration gained by cascade filtering is significant.
Without cascade filtering, the segment-based matching and
fusion algorithm takes about 151 ms to match an impostor
matching of full palmprints. When the cascade filtering is
performed, the time is reduced to 39 ms, resulting in an
average acceleration rate of about 3.9.
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Fig. 16. ROC curves of three matching and fusion methods:
(a) matching 840 full palmprints against the gallery set of 13,736
palmprints, (b) matching 2,520 partial palmprints against the same
gallery set.

Fig. 17. Aligning the palmprints in Fig. 2 at different levels: (a) global level, (b) segment level.

Fig. 18. Constructed cascade filter and its performance in filtering the
matchings of 840 full palmprints against the gallery set of 13,736
palmprints.



In our experiment, when cascade filter is performed, the
TAR of the proposed matching algorithm is about
97.9 percent when the FAR is set as 2� 10�7, which is
1.1 percent lower than the TAR of the algorithm without
cascade filtering.

4.3 Overall Performance

The proposed matching algorithm was compared to the
algorithms in [21] and [20] on the THUPALMLAB. The same
feature extraction algorithm in [21] was used for all three
matching algorithms. Both full-to-full palmprint matching
and partial-to-full palmprint matching experiments were
conducted. In these experiments, we used the full palmprints
from 40 palms in the multiimpression subset as the training
set to estimate the PDFs in (9). The first impressions of the rest
120 palms in the multi-impression subset are combined with
the uni-impression subset to form the gallery set of 13,736
palmprint images. The same galley set is used in both
experiments. In the full palmprint matching experiment, the
remaining seven impressions of each of the 120 palms in the
multi-impression subset are searched against the gallery set.
In the partial palmprint matching experiment, the 21 partial
impressions of each of the 120 palms are searched against the
gallery set. When matching partial to full prints, the cascade
filter is not used because the partial prints are very
incomplete.

The performance is shown in both identification Receiver
Operating Characteristic (ROC) curves [47] and verification
ROC curves. Verification ROC curve is routinely reported
for the convenience of comparison, while identification
ROC curve measures the performance of the identification
system. The identification system operates as follows: Given
a query print, the system returns the gallery print whose
similarity with the query is larger than the predefined
threshold and is the largest one in all gallery prints. If there
is no gallery print whose similarity is larger than the
threshold, no gallery print is returned. An identification
system may make two kinds of error: false negative
identification and false positive identification. When the
mate of the query is contained in the database but not
returned by the system, a false negative identification
occurs. When the database does not contain the mate of a
query, but the system returns a gallery print, a false positive
identification occurs. The false negative identification rate
(FNIR) can be measured by performing a number of query
whose mate is contained in the database and the false
positive identification rate (FPIR) can be measured by
performing a number of query which does not have a mate
in the database. Since, in our case, each query print has a
mate in the database, the FPIR is obtained by setting the
similarity with the mate as the lowest value. Another
frequently used indicator, true positive identification rate
(TPIR), is equal to 1-FNIR. By changing the similarity
threshold, we can obtain a set of TPIRs and FPIRs and plot
the identification ROC curve.

The identification and verification ROC curves of the full
palmprint matching experiment are shown in Fig. 19. In the
identification ROC curves, the TPIR of the proposed
algorithm is about 97.9 percent when the FPIR is set as
2� 10�3, and it is about 17 and 43 percent higher than the
algorithms in [21] and [20], respectively. In the verification

ROC curves, the TAR of the proposed algorithm is about
97.9 percent when the FAR is set at 2� 10�7, which is about
17 percent higher than the algorithm in [21] and 40 percent
higher than the algorithm in [20].

The performance of partial-to-full palmprint matching
systems are shown in Fig. 20. According to the identification
ROC curves, a TPIR of about 91.9 percent is achieved by the
proposed algorithm when the FPIR is set as 5� 10�4, about
34 and 65 percent higher than the algorithms in [21] and
[20], respectively. According to the verification ROC curves,
the TAR of the proposed algorithm is 91.9 percent when the
FAR is 3� 10�8, 34 and 65 percent higher than the TARs of
the algorithms in [21] and [20], respectively. The perfor-
mance improvement for the partial-to-full matching system
is more significant than that for the full palmprint matching
system. That is because the influence of varying discrimina-
tion power of different palmprint regions is stronger for
partial prints, as shown in Section 4.2.2.

To facilitate comparison with other algorithms, we also
report the performance on the public multi-mpression subset
of THUPLAMLAB, containing 1,280 palmprints from 160 dif-
ferent palms. Since the first 40 palms have been used in the
statistical study, the impressions from the left 120 palms are
compared against each other in the testing stage. So, 3,360
genuine matchings and 456,960 impostor matchings are
generated to measure the performance. Since the gallery size
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Fig. 19. Identification ROC and verification ROC curves of the proposed
algorithm, the algorithms in [21] and [20] in matching 840 full palmprints
against the gallery set of 13,736 palmprints: (a) identification ROC
curves, (b) verification ROC curves.



(120) is very small, the performances of the proposed

algorithm and the algorithms in [21], [20] are shown as the

verification ROC curves in Fig. 21. Besides, we have made our

algorithm publicly available on the website of http://

ivg.au.tsinghua.edu.cn so that other researchers can test it

on other palmprint data sets.
The computational costs of different algorithms are

measured on a PC with Intel 2.4 GHz CPU and Windows

XP operating system. The feature extraction algorithm in
[20] is used for all three matchers, which takes about 55 s for
processing a full palmprint. The matching time of different
algorithms is shown in Table 4. The cascade filtering is not
used for partial-to-full matching, so the speed of the
proposed algorithm in partial-to-full matching is slower
than that in the full-to-full matching. It should be noted that
the proposed algorithm just uses a simple GHT-based
minutiae matching algorithm to align palmprints, which is
the same as in [21]. The experimental results show that the
proposed algorithm improved the speed of the original
matching algorithm in [21] by a factor of 132 for full-to-full
impostor matching, which consumes most of the computa-
tional resources in large identification systems. Note that
the acceleration is not only effective for GHT-based
minutiae matching algorithm but also for other matching
algorithms as well, including other minutiae-based meth-
ods [48], [49], [50], texture-based methods [24], [51], image-
based methods [38], and so on.

5 CONCLUSION AND FUTURE WORK

In recent 10 years, a number of palmprint recognition
algorithms have been proposed and most of these algo-
rithms are based on crease features extracted from low-
resolution contactless palmprints. However, crease-based
palmprint recognition has not been successfully used for
large-scale person identification applications because of
some inherent limitations. Ridge features in palmprints are
proven unique and persistent and identification-based
ridge features is accepted in courts of law. Recently, a few
ridge-based palmprint recognition systems have been
proposed. Although there is some novelty in the feature
extraction algorithms, the matching algorithms of these
systems are basically adapted from fingerprint matching.
Thus, the accuracy of these systems is limited despite heavy
computational cost. Motivated by the matching strategies of
human palmprint experts, we quantitatively analyzed the
statistics of palmprint characteristics and proposed a novel
palmprint matching algorithm based on the obtained
statistics which achieves higher accuracy as well as lower
computational cost than the previous systems. The main
contributions include:

1. A quantitative statistical study on palmprints is
conducted to guide the design of a robust and
efficient 1:N palmprint matching system.

2. A segment-based palmprint matching and fusion
algorithm is proposed to deal with distortion and
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Fig. 21. Verification ROC curves of the proposed algorithm and the
algorithms in [21], [20] on the publicly available multi-impression subset
of THUPALMLAB.

TABLE 4
Computational Costs of Different Algorithms

Fig. 20. Identification ROC and verification ROC curves of the proposed
algorithm, the algorithms in [21] and [20] in matching 2,520 partial
palmprints against the gallery set of 13,736 palmprints: (a) identification
ROC curves, (b) verification ROC curves.



varying discrimination power of different palmprint
features and regions.

3. An orientation field-based registration algorithm and
a cascade filter is designed to reduce the computa-
tional complexity in 1:N palmprint matching.

The proposed algorithm may also provide assistance

for the low-resolution palmprint recognition [5]. The

segment-based matching and fusion provides a strategy

to deal with distortion and varying discrimination power

of different regions for palmprint matching, while the

cascade filtering idea may also be useful for acceleration.
The current registration algorithm is designed for

registering full palmprints. But the palmprint experts can
determine the location of a small latent palmprints based on
certain clues, including the latent shape, some fine orienta-
tion field and crease features [25]. How to extend the
current registration algorithm to partial and latent palm-
prints is an interesting but challenging problem. The
registration algorithm needs to not only estimate the best
spatial transformation but also output a confidence value
associated with the transformation. Large law enforcement
databases can contain as many as millions of palmprint
images. While the current matcher is already significantly
faster than existing matchers, its efficiency still requires
large improvement.
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