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ABSTRACT

In this paper, we investigate the problem of action recognition
in RGB-D egocentric videos. These self-generated and em-
bodied videos provide richer semantic cues than the conven-
tional videos captured from the third-person view for action
recognition. Moreover, they contain both appearance infor-
mation and 3D structure of the scenes from the RGB modal-
ity and depth modality respectively. Motivated by these ad-
vantages, we first collect a video-based RGB-D egocentric
dataset (THU-READ) with diverse types of daily-life actions.
Then we evaluate several approaches including hand-crafted
features and deep learning methods on THU-READ. To im-
prove the performance, we further develop a tri-stream convo-
lutional network (TCNet) method, which learns to exploit the
fuse with both the RGB and depth modalities for action recog-
nition. Experimental results show that our model achieves
competitive performance with state-of-the-art methods.

Index Terms— Action recognition, RGB-D, egocentric
videos

1. INTRODUCTION

Action recognition [1–5] is a broadly researched field, which
attempts to discriminate the action category in a video. Re-
searchers have proposed different methods to learn spatio-
temporal descriptors for action representation. These descrip-
tors can be divided into two catagories: hand-crafted fea-
tures [1,4,6,7] and deep-learned features [8–10]. Most hand-
crafted features describe the local visual patterns based on
salient region of actions, while most deep-learned features au-
tomatically learn the global representation using deep neural
network trained from huge quantity of labeled videos.
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Fig. 1. An overview of our egocentric dataset. We sample
pair-wise representative frames from each type of action video. The
RGB-based frames are at the top half, while their counterparts of
depth modality are at the bottom half.

With the development of wearable cameras such as Go-
Pro [11], Google Glass [12] and Pivothead [13], the num-
ber of egocentric videos is growing dramatically in recen-
t years. Different from the videos captured from the third-
person view, these videos are self-generated and embod-
ied [14], which provide richer semantic cues. For these rea-
sons, increasing works have been proposed to investigate the
egocentric videos from different aspects, like video summa-
rization [15–17], visual recognition [18–21], social interac-
tion [22], gaze detection [23] and many others. Among
these problems, action recognition in egocentric videos is
a valuable research issue which presents significant impor-
tance for some real-world applications like life logging [24],
virtual reality [25] and tele-rehabilitation [21, 26]. Howev-
er, conventional methods [20, 21, 27, 28] have been present-
ed based on the RGB modality, which lack the utilization of
the depth modality and lose 3D structural information of the
scenes. Moreover, to our best knowledge, there are few RGB-



Fig. 2. The equipment and method of data collection. We mount-
ed the RGB-D sensor (left top) on a helmet (left bottom) to make an
egocentric equipment (middle). The subject was looking at his hand,
plants and the bottle while performing the water plant action, which
was recorded by the egocentric camera on his head (right).

D video-based datasets for egocentric action recognition.
To address these limitations, we first collect an RGB-D e-

gocentric dataset, which consists of diverse types of daily-life
actions as shown in Fig. 1. In order to incorporate RGB and
depth modalities, we propose a tri-stream convolutional net-
work (TCNet) which learns to fuse with the complementary
information extracted from both modalities. Experimental re-
sults show that our model achieves competitive performance
on our proposed dataset with state-of-the-art methods.

2. RGB-D EGOCENTRIC ACTION DATASET

In this section, we describe our RGB-D egocentric action
dataset (THU-READ) collected in Tsinghua University.

2.1. Data collection

We collected our THU-READ by using the Primesense
Carmine camera [29], which has the capability of recording
RGB-based and depth-based video sequences simultaneously
at 30 fps. Resolutions of these two modalities are both 640 ×
480. Fig. 2 shows the equipment and method of data collec-
tion. We mounted the RGB-D sensor on a helmet in the same
direction with the subject’s eyesight so as to simulate the real
conditions. We encouraged the subjects to perform the action-
s as naturally as possible, which brought greater challenges of
shifting backgrounds and various motion speeds to the task of
action recognition. For the depth modality, the sensor cap-
tured the image frames ranging from 0.3 m to 5 m effectively,
covering the space where the subjects performed the actions
from the first-person view. We collected our dataset in 5 dif-
ferent scenarios: lab, bathroom, conference room, dormitory
and restaurant. In order to balance the data distribution, we
asked 8 subjects (6 males and 2 females, height ranging from
162 cm to 185 cm) to repeat performing the action of each
class for the same N times (here we chose N = 3). Finally, we
obtained 1920 video clips, where

1920 = 8 (subjects) × 2 (modalities) × 40 (classes) × 3 (times)

Table 1. A detailed list of all the actions that appear in THU-READ.
We classify them according to two criteria: 1. the number of hands in
the scenes (single-handed/double-handed) and 2. whether the hands
interact with other object (hand-object/non-hand-object).

single-handed double-handed

hand-
object

bounce ball, clean table
close drawer, insert tube
knock door, lift weight

water plant, open drawer
use mobilephone, open door
push button, use chopstick

sweep floor, use mouse
throw paperplane

cut fruit, cut paper, draw paper
fetch water, manicure, open laptop
plug, read book, squeeze toothpaste

stir, tear paper, tie shoelaces
twist tower, fold, open umbrella

wash fruit, wear glove, wear watch
use stapler, write, zip up

non-
hand-
object

thumb, wave hand clap hand, wash hand

Table 2. Publicly released egocentric datasets

Dataset Task Camera Frames Classes
GTEA [20] Action RGB 31,253 71

GTEA
gaze [28] Action RGB 52,260 40

GTEA
gaze+ [28] Action RGB — 44

UCI ADL [21] Activity RGB 93,293 18
WCVS [31] Activity RGB-D — 20

GUN-71 [30]
Grasp

Understanding RGB-D 12,000 71

THU-READ Action RGB-D 343,626 40

We sample pair-wise representative frames from each type
of action videos and present them in Fig. 1. Table 1 shows the
list of 40 actions which appear in our dataset in detail. For one
thing, our dataset is “all-about-hand”, which is classified in-
to two classes of “single-handed” and “double-handed”. For
another, we divide our dataset into two categories: “hand-
object” and “non-hand-object”, according to whether “the
hands interact with other objects”.

We summarize some major statistics of our dataset and the
existing related egocentric datasets in Table 2, which shows
the advantages on modality, scale and diversity of our dataset.
Besides, all of these datasets are video-based except GUN-71
[30], which consists of image sets of different grasp actions.

2.2. Data Preprocessing

Since the sensor is sensitive to illumination, and its estimation
algorithm is not robust enough, a few depth frames are espe-
cially dark compared to others and thus have to be removed.
Having removed an estimated 5% of depth frames and their
RGB counterparts, we have 343,626 valid frames in aggre-
gate. The length of each action video instance varies from 34
to 859, depending on the natural lasting time of the action.
On average, there are 179 frames per instance. We have re-



leased our dataset at http://ivg.au.tsinghua.edu.
cn/dataset/THU_READ.php.

3. TRI-STREAM CONVOLUTIONAL NETWORKS

Having obtained the dataset, we introduce a model to take
advantage of both the RGB-based and the depth videos effec-
tively. To address this problem, we propose a tri-stream con-
volutional network (TCNet) method by including additional
stream to learn depth cues and adopt the similar way of fusing
each stream as described in [3]. In this part, we will introduce
our TCNet model for RGB-D egocentric action recognition.

3.1. Network Input

We prepare pair-wise RGB-D egocentric videos for the TC-
Net as we mentioned in section 2.2. The frames are resized
to 224 × 224 to fit the input of our network. The RGB-based
videos are first decomposed into spatial and temporal compo-
nents as RGB images and optical flow. Then, we adopt data
augmentation used in [32]. After that, the RGB images are
sent into the appearance stream. And the optical flow, which
is a 3D volume of 224 × 224 × 2L (L is the number of stack-
ing flows), is sent into the temporal stream to capture dynamic
motion. Simultaneously, the depth-based videos are extracted
into depth frames of the size 224 × 224 × 3, and are sent into
the depth stream. In order to extract optical flow fields as we
mention above, we adopt the TVL1 algorithm [33] due to its
easy usage and promising performance. We empirically set L
= 10 optical flow as the input of the motion stream.

3.2. Network Architecture

Fig. 3 shows the architecture of our proposed TCNet mod-
el, which contains three streams in order to utilize the static
appearance, dynamic motion and depth information respec-
tively. For the appearance stream and the motion stream, we
choose the Two-stream ConvNet model [3], where we replace
each stream, which is VGG-M model employed in [34], to
VGG-16 model adopted by [35]. The VGG-16 model con-
sists of 13 convolutional layers, 5 max-pooling layers and 3
fully-connected layers. For the depth stream, we employ the
same network architecture as the other two streams. In order
to match the input size, we modify the input layers to 20 for
the motion stream. Also, at the end of each stream, the di-
mension of the output layers is changed from 1000 to 40 (our
dataset consists of 40 types of action). As a result, we obtain a
40-dimension action confidence score si (i = 1, 2, 3) for each
modality. Finally, we combine the three streams together by
averaging their classifier scores and obtain the prediction s-
core s, where the index of the max element indicates the final
action category.

Fig. 3. An overview of our TCNet model. We use an egocen-
tric sensor to capture RGB-D data as the input of the TCNet. The
RGB videos are first decomposed into spatial and temporal com-
ponents as RGB images and optical flow, which are sent into the
appearance stream and motion stream respectively, while the corre-
sponding depth images are fed into the depth stream. We finally fuse
the class score of different modalities at the end of each stream to
predict the action label.

3.3. Training Procedure

We used the MatConvnet [36] toolbox and 3 Nvidia Tesla K80
GPUs to train our TCNet model. We employed the VGG-16
model pre-trained on ImageNet [37] and fine-tuned them on
the training set of our proposed dataset. The batchsize of each
stream was equally set to 96 and the momentum was set to
0.9. We chose a fixed learning rate of 0.001, and the training
procedure stopped at the 50th iteration.

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental Setup

For each action class, we randomly sampled about 30% video
clips for training and used the rest clips for testing. We em-
ployed some existing methods and our TCNet model on our
dataset, after which we evaluated them by classification accu-
racy as well as class confusion matrix. The size of this matrix
M is 40 × 40, and each element Mij represents the percentage
of the i-th class testing samples classified into the j-th class.

4.2. Results and Analysis

Hand-crafted Features: We first employed IDT [4] features,
due to its better performance compared with exsiting hand-
crafted spatio-temporal descriptors [6, 38]. We obtained the
HOG [39], HOF [2] and MBH [40] features, which were ex-
tracted based on the trajectories of IDT, as well as their com-
bination on both RGB-based and depth-based videos on our e-
gocentric dataset. Then, we employed the higher-dimensional
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Table 3. Recognition results on RGB-based and depth-based videos
of our egocentric action dataset on 3 descriptors used in IDT [4] and
their combination, respectively.

Method RGB Depth
HOG [39] 24.61% 64.40%
HOF [2] 26.32% 63.30%

MBH [40] 28.88% 63.44%
Combined Feature [4] 42.67% 66.29%

Table 4. Main accuracy of several deep learning models of different
modalities and their combination on our egocentric action dataset.

Method Accuracy
Appearance Stream 68.4%

Motion Stream 40.9%
Depth Stream 52.7%

Two-stream ConvNet (RGB) [3] 73.3%
TCNet (RGB & Depth) 76.5%

encodings methods [41], with gmmSize empirically set to
256 to generate good performance. We tested several en-
coding methods, and finally chose the super vector coding
(SVC) [42] due to its higher performance than other encoding
algorithms mentioned in [41]. Table 3 shows the classification
accuracy. On one hand, the hand-crafted features on depth-
based videos achieve much more promising performance than
that on RGB-based videos, i.e. , they are respectively 39.79%,
36.98%, 34.56% higher on the 3 descriptors and 23.62% high-
er on their combined feature. The results demonstrate the im-
portance of depth input of our dataset, and reveal that, the 3D
structural cues of depth data are more effective for trajectory-
based hand-crafted features extracting. On the other hand, the
combination of these three descriptors on RGB-based videos
improved the accuracy by about 16% than using them sepa-
rately, while that of the depth-based combined features only
improved about 3%.

Deep Learning Methods: We have also evaluated each
single stream (i.e., the appearance stream, the motion stream
and the depth stream) of our proposed model and the Two-
stream ConvNet [3]. Table 4 reports their performances. For
each single stream, using appearance information achieves
the best value (68.4%) of the three. This indicates the virtual
importance of the appearance input. The performances of the
motion stream and the depth stream are 40.9% and 52.7% re-
spectively, relatively poorer than the appearance stream. Two-
stream ConvNet [3], which combines the depth stream and the
motion stream together, achieves 73.3% recognition accuracy
on our dataset and performs better than adopting these two
streams separately.

TCNet model: To evaluate the effectiveness of the TCNet
model, which integrates the three recognition streams, we fi-
nally tested it on our proposed dataset. Table 4 reports its clas-
sification accuracy which attains the performance of 76.5%
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Fig. 4. The confusion matrix of the TCNet model on our
dataset. The ground truth label is displayed on the vertical axis,
while the predicted label is shown as the horizontal axis.

(highest of all the methods in this paper, 3.2% over RGB-
based architecture [3] and 23.8% over depth-based stream).
This demonstrates the efficiency of our TCNet model in com-
parisons with the state-of-the-arts. Fig. 4 shows the confu-
sion matrix of recognition results. Most of them were clas-
sified correctly except several actions like “wash hand” and
“clean table”. Since “wash hand” was often confused with
“wash fruit” (they both performed “wash”, but the objects
were different) and “clean table” was sometimes misclassi-
fied to “wave hand” (hand kept moving around in these two
actions). Moreover, we also employed several ways to fuse
the features extracted from fc7, such as average fusion, sum
fusion and concat fusion. However, this is not feasible be-
cause these features were extracted from different modalities,
and the conventional fusion methods mentioned above are not
efficient enough to explore their complementary information.

5. CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of action recog-
nition in RGB-D egocentric videos. We have presented and
released an RGB-D action dataset (THU-READ) with diver-
sity and scale, which is captured from the first-person view.
We have also proposed a tri-stream convolutional network to
take advantage of both the RGB and depth inputs. The ex-
periment achieves competitive performance with the state-of-
the-art methods on our dataset. In the future, we will explore
to share more semantic information between the RGB and
depth modalities for action recognition. Moreover, it is desir-
able to perform more visual tasks like hand-segmentation and
human-object interaction on our dataset.
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