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Abstract—Recently, subspace constraints have been widely exploited in many computer vision problems such as multibody grouping.

Under linear projection models, feature points associated with multiple bodies reside in multiple subspaces. Most existing factorization-

based algorithms can segment objects undergoing independent motions. However, intersections among the correlated motion

subspaces will lead most previous factorization-based algorithms to erroneous segmentation. To overcome this limitation, in this paper,

we formulate the problem of multibody grouping as inference of multiple subspaces from a high-dimensional data space. A novel and

robust algorithm is proposed to capture the configuration of the multiple subspace structure and to find the segmentation of objects by

clustering the feature points into these inferred subspaces, no matter whether they are independent or correlated. In the proposed

method, an Oriented-Frame (OF), which is a multidimensional coordinate frame, is associated with each data point indicating the point’s

preferred subspace configuration. Based on the similarity between the subspaces, novel mechanisms of subspace evolution and voting

are developed. By filtering the outliers due to their structural incompatibility, the subspace configurations will emerge. Compared with

most existing factorization-based algorithms that cannot correctly segment correlated motions, such as motions of articulated objects, the

proposed method has a robust performance in both independent and correlated motion segmentation. A number of controlled and real

experiments show the effectiveness of the proposed method. However, the current approach does not deal with transparent motions and

motion subspaces of different dimensions.

Index Terms—Computer vision, motion segmentation, subspace constraints.

�

1 INTRODUCTION

IN various computer vision problems, multibody motions
are frequently encountered and segmenting the scene into

multiple entities is of fundamental importance. Motion
segmentation techniques have been broadly employed in
many applications such as shape from motion, video
coding, surveillance, etc.

Among many proposed segmentation techniques, the
factorization method, originally developed by Tomasi and
Kanade [23], is particularly interesting. It is revealed that
under linear projection models, points trajectories of a single
body lie in a three or less dimensional linear manifold.
Therefore, feature points of multibody reside in multiple
subspaces. Most existing methods cope with independent
multibody motion segmentation by enforcing the constraint
that the trajectory subspaces, spanned by objects’ feature
trajectories, must be independent: i.e., 8p 6¼ q, T p \ T q ¼ f0g,
where T p and T q correspond to the trajectory subspace of

object p and q. (Here, the trajectory of each feature is a column
vector concatenating feature’s image coordinates through
successive frames. The detailed description of trajectory
subspace will be given in Section 2.) Under this assumption,
Boult and Brown [2] recursively grouped columns of
trajectory matrix into independent subspaces. Gear [6] used
the reduced row echelon form of the trajectory matrix and
formulated the problem as weighted graph matching.
Costeira and Kanade [3] presented a multibody factorization
method in which a shape interaction matrix, Q ¼ fQijg, is
introduced, where Q ¼ VVT and V comes from the SVD of
the trajectory matrix W;W ¼ U�VT . In a noise-free case, if
any features i and j are from different objects,Qij will be zero,
otherwise,Qij may have nonzero values. They then grouped
features by thresholding and sorting Q. Based on the property
of Q, some extensions have also been made. Ichimura [10]
applied a discriminant criterion to select the most represen-
tative vectors in Q for feature grouping. Wu et al. [29]
decomposed Q into orthogonal subspaces and then grouped
these fragment subspaces. Kanatani [12] developed a method
through dimension correction and model selection.

However, the problem of multibody grouping with
correlated motions, such as segmenting an articulated
moving structure, poses a great challenge. For instance,
considering a simple scenario of a moving arm involving two
dependently moving objects: the upper arm and the lower
arm, the dependence of motions is revealed by the intersec-
tions of trajectory subspaces, i.e., 9p 6¼ q, T p \ T q 6¼ f0g,
where T p and T q denote the trajectory subspace of object p
and q. In the presence of multiple correlated motions, the
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existing methods [2], [6], [3], [10], [29], [12] will be led to
erroneous segmentation for the reason explained in Section 2.

In [30], Zelnik-Manor and Irani clearly describe the
problem of dependencies among motions and suggest an
algorithm to separate them. They use the information
extracted from the most dominant eigenvectors, V, of
WTW, which indicates the feature point’s identity, to build
a Q̂Q instead of Q for segmentation. It can handle correlated
motions, of different dimensions, but performs poorly in the
presence of noise.

Kanatani and Sugaya proposed a multistage optimiza-
tion algorithm [13]. By explicitly modeling the noise and
assuming the known number of objects, the method
classifies the feature points into objects in an EM-like
manner, which has a robust performance against noise for
correlated and transparent motion segmentation. However,
because their method assumes the number of objects to be
known and fixed, the presence of outliers, i.e., wrong data
points, will significantly deteriorate its performance by
possibly taking up an object identity and forcing the true
points to be clustered into fewer objects.

A method combining Generalized Principle Component
Analysis (GPCA) [25] and PowerFactorization for motion
segmentation with missing data is proposed in [24]. With
perfect data, i.e., in noise-free case, GPCA is provably
correct for subspace structure identification and, thus, can
handle transparent and correlated motions, with the motion
subspaces being of different dimensions. However, this
method alone does not handle outliers or noise properly.
Additional pre and postprocessing is indispensable.

Compared with [30], [13], [24], our method does not deal
with the transparent motions and motions of different
dimensions and we shall say that the proposed approach is
not provably correct in the absence of noise, unlike [13], and
is not optimal in the presence of Gaussian noise, unlike [24].
This is because [13], [24] treat this problem as fitting a set of
subspaces onto the data, which turns out to be theoretically
sound. However, practically, these methods are largely
confronted with the issue of handling the noise, especially
the outliers, which violate the subspace structures and up to
now cannot be perfectly addressed by these subspace fitting
methods alone. As for [13], even if one outlier takes up an
object identity by chance, the result will be poor because the
number of objects is assumed known and fixed, thus the
true points have to be classified into fewer objects instead.

Considering the correspondence between the multibody
motions and their trajectory subspaces, if we can extract
those subspaces no matter whether they are independent or
correlated, both independent and correlated motion seg-
mentation can be unified, which will lead to a broader
application scope of multiple motion segmentation. How-
ever, dealing with noise and outliers in subspace identifica-
tion is a hard problem. It is helpful to have several types of
smoothing methods. In this paper, we propose a novel
method to exploit the spatial relationship among the data
points, which can properly discard outliers due to their
subspace incompatibility.

The remainder of the paper is organized as follows: In
Section 2, the problem of multibody grouping is presented.
Related work on inference of subspaces is reviewed. Section 3
details the proposed Oriented-Frame (OF)-based multiple
subspaces inference technique. Section 4 provides the
comparative results between our method and some conven-
tional and recent algorithms on both synthetic and real image
sequences. Conclusions are summarized in Section 5.

2 BACKGROUND

2.1 The Problem of Multibody Grouping

Suppose there are m moving objects in the scene, each

object contains piði ¼ 1; . . . ;mÞ points. Their homogeneous

coordinates is represented by a 4� pi matrix Si

Si ¼
x1
i x2

i � � � xpii
y1
i y2

i � � � ypii
z1
i z2

i � � � zpii
1 1 � � � 1

2
664

3
775: ð1Þ

When a linear projection (orthographic, affine, etc.) is

assumed, we collect the projected image coordinates ðu; vÞ of

these pi points over F frames into a 2F � pi matrix, Wi, i.e.,

Wi ¼MiSi; ð2Þ

where

Wi ¼

u11 � � � u1pi

v11 � � � v1pi

u21 � � � u2pi

v21 � � � v2pi

� � � � � � � � �
uF1 � � � uFpi
vF1 � � � vFpi

2
666666664

3
777777775
; Mi ¼

M1i

M2i

� � �
MFi

2
664

3
775;

and (ufj; vfj) (j ¼ 1; . . . ; pi) are the image coordinates of the

feature points in the fth frame. Mi is a 2F � 4 matrix with

Mfiðf ¼ 1; . . . ; F Þ being the 2� 4 projection matrix related

to object i in the fth frame.
The pi columns of Wi reside in a 4D trajectory subspace T i,

which is spanned by the four columns of Mi, i.e., T i ¼
spanðMiÞ. Here, each column of Wi can be regarded as

trajectory of the corresponding feature point.
Then, let W1 (of size 2F � p1) and W2 (of size 2F � p2) be

the image coordinate matrices of two objects. LetT 1 andT 2 be

the two corresponding trajectory subspaces. Given ½W1jW2�
up to a permutation of its columns, we would like to classify

feature trajectories, i.e., columns of ½W1jW2�, according to

objects. Denote dimð�) as the dimension of a subspace. Then,

T 1 and T 2 can have different configurations:

1. Independent trajectory subspaces: When T 1 \ T 2 ¼
f0g, then

dimðT 1 [ T 2Þ ¼ dimðT 1Þ þ dimðT 2Þ:

This happens when the motions M1 and M2 of the

two objects are independent.
2. Correlated trajectory subspaces: When T 1 \ T 2 6¼
f0g, T 1 6� T 2, and T 2 6� T 1, then

maxðdimðT 1Þ; dimðT 2ÞÞ < dimðT 1 [ T 2Þ
< dimðT 1Þ þ dimðT 2Þ;

which means that intersections occur between sub-

spaces T 1 and T 2. This happens when the motions M1

and M2 of the two objects are correlated.

After the SVD of ½W1jW2�, i.e., ½W1jW2� ¼ U�VT ,

Costeira and Kanade [3] constructed the “shape interac-

tion matrix”
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Q ¼ VVT ¼ ST1 ��1
1 S1 0
0 ST2 ��1

2 S2

� �
;

whose block diagonal structure is the foundation of most
factorization-based algorithms. In [30], Zelnik-Manor and
Irani pointed out that since columns of V are the
eigenvectors of

W1jW2½ �T W1jW2½ � ¼
ST1 MT

1 M1S1 ST1 MT
1 M2S2

ST2 MT
2 M1S1 ST2 MT

2 M2S2

2
4

3
5;

Q will have a block diagonal structure only if the motion
matrices M1 and M2 are independent. When M1 and M2

are correlated, the off-diagonal blocks ST1 MT
1 M2S2 and

ST2 MT
2 M1S1 are nonzero. Hence, the block diagonal form of

Q and the basic assumptions of algorithms like [2], [6], [3],
[10], [29], [12] will vanish, which may lead them to
erroneous segmentations.

We give an example of correlated motions in Fig. 1a. Three
transparent spheres are generated. Each of them undergoes
random translation and different rotation around its own axis
which is parallel to the y-axis. Assume that the camera’s
optical axis is along the z-axis and orthographic projection is
employed, the motion matrices will have the form

M ¼

M1

M2

� � �
MF

2
664

3
775 ¼

R
ð1Þ
11 0 R

ð1Þ
13 tð1Þx

0 1 0 tð1Þy

R
ð2Þ
11 0 R

ð2Þ
13 tð2Þx

0 1 0 tð2Þy
� � � � � �

R
ðF Þ
11 0 R

ðF Þ
13 tðF Þx

0 1 0 tðF Þy

2
6666666666666664

3
7777777777777775

: ð3Þ

Note that the second column of M are same for all the
spheres so that their motions are correlated, i.e., the trajectory
subspaces spanned by columns of Ms have intersections.
Fig. 1b shows the matrix Q, where the number of columns and
rows in Q is equal to the number of feature points. The values
of Qij are transformed to the gray scale between [0, 255].
Darker color represents lower value. It is seen that the Q loses
its block diagonal form and, therefore, it is very difficult for

most existing factorization-based methods to find the correct
segmentation of correlated motions.

We now introduce our formulation of multibody grouping
as a multiple subspace inference problem. Recall the
formation of Wi in (2), let rp and rq denote the positions of
any two columns of Wi, which are vectors in a 2F -dimensional
space. Their relative position denoted by vector rpq ¼ rp � rq
actually resides in a 3D subspace spanned by the first three
columns of Mi because the last row of Si is all 1s. We denote
Mi to represent this 3D subspace formed by vectors
rpqðp; q 2 ½1; pi�; p 6¼ qÞ, which we call the motion subspace.

Tracking all features of the m objects through F frames,
we obtain a 2F � P matrix, W, i.e.,

W ¼ W1W2 . . . Wm½ �; ð4Þ

whereP ¼
Pm

i¼1 pi is the total number of feature points. Now,
each object i has its own 3D motion subspace. Then, multibody
grouping can be equivalently achieved by inference of the
structure of the m motion subspaces and then classifying
columns of W into their own motion subspaces.1 In this
paper, we propose a novel and robust Oriented-Frame (OF)-
based subspace inference algorithm toward this goal,
regardless of the independencies or correlations of the motion
subspaces.

2.2 Subspace Constraint and Subspace Structure
Inference

Subspace constraints exist in various vision problems, which
has come into being an active and interesting research topic
recently. Tomasi and Kanade [23] developed a factorization
method based on subspace constraints to recover both the
shape and the motion of an object from a sequence of images.
Irani [11] showed that multiframe subspace constraints can
be used for constraining the 2D correspondence estimation.
In the problem of structure from motion, iterative methods
incorporating subspace constraints have also been devel-
oped by Soatto and Perona [20] and Heyden et al. [9]. An
interesting application incorporating subspace constraints is
epipolar geometry estimation. Tang et al. [21] formulated the
problem of epipolar geometry estimation as one of inferring
hyperplane (a 7D manifold) in an 8D space analogous to
plane detection in a 3D space. They extended the idea of
tensor voting [8] to N-dimensional and achieved a robust
performance.

The solutions to the space share an essential character that
the low-dimensional subspace structure embedded in the
high-dimensional data space must be properly revealed and
estimated. Outliers should be discriminated and inliers
should be classified to its own subspaces.

To the best of our knowledge, the algorithmic issues on the
inference of subspaces in high-dimensional space have
remained largely unexplored in the literature. A probabilistic
approach, Mixture Probabilistic Principal Component Ana-
lysis (MPPCA), is proposed in [22] by estimating the
maximum a posteriori for a distribution model of a mixture
ofsubspaces.ThisisusuallydoneinaniterativeEMalgorithm,
which suffers from the sensitivity to the initialization and the
unknown number of potential subspaces. A geometric
approach is proposed by Vidal et al. [25], [24], called
Generalized Principal Component Analysis (GPCA). GPCA
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1. The motion subspace Mi, which is to be inferred, is spanned by the
first three columns of Mi. While the trajectory subspace T i, which is
introduced for convenience of analysis, is spanned by all the four columns
of Mi.

Fig. 1. An example of correlated motions: (a) A view of the synthetic
scene. (b) The “shape interaction matrix” Q [3], used by previous
algorithms for segmentation. The number of columns and rows in Q is
equal to the number of feature points. The values of Qij are transformed
to the gray scale between [0, 255]. Darker color represents lower value.
The ideal block-diagonal structure of Q is lost, which makes it difficult for
previous methods to find the correct segmentation of correlated motions.



shows a sound theoretical approach to the identification of
mixture of subspaces in noise-free case. However, how to
enhance the performance of GPCA when a large amount of
noise is present still remains an open issue.

In general, there are two main difficulties in identifying
the structure of multiple subspaces. One difficulty stems
from the unavoidable outliers inherent in the data set. If a
significant portion of the data is corrupted by noise, the
detection of subspaces will be difficult and the result will be
so imprecise thus damaging the efficiency of applying
subspace constraints to practical applications. For ap-
proaches like MPPCA or GPCA, a preprocessing of outlier
rejection is indispensable to achieve a good performance.
LMedS [16] and RANSAC [4] are considered to be some of
the most robust methods. However, these methods require
a majority of the data be correct. Another difficulty is that
when the number of clusters exceeds two (e.g., the inliers
reside in multiple subspaces), these robust methods may
fail or become less attractive.

As for the problem of subspace inference for multibody
grouping, our method can pertinently address and over-
come these two difficulties: 1) disturbance caused by heavy
noise and outliers and 2) existence of multiple clusters
(subspaces), which will be detailed in Section 3 and
validated in Section 4.

3 MULTIPLE SUBSPACE INFERENCE AND

MULTIBODY GROUPING

In this section, we present a novel technique for multiple
subspaces inference and apply it to multibody grouping. The
input data is a 2F � P matrix W without prior knowledge of
the number of moving objects. Each data point is a
2F -dimensional vector denoted by riði ¼ 1; . . . ; P Þ. Our
purpose is to extract multiple motion subspaces Mks out of
W. Each Mk is a 3D subspace formed by the vectors rij ¼
ri � rj (i; j 2 Objectk; i 6¼ j) or, equivalently, the subspace
spanned by the first three columns of Mk. Multibody
grouping is equivalently achieved by classifying ri to these
motion subspaces Mks. Our technique for inferring these
subspaces mainly consists of four stages:

1. conversion to Oriented-Frames (OF),
2. evolution of OFs,
3. voting, and
4. outlier rejection and subspace inference.

3.1 Conversion to Oriented-Frames

Initially, the set of P data points does not possess any
information about their own subspace configurations. There
is a need to give each point a configuration which can
facilitate the communication of data points to exchange
information about their subspace structures.

For any points, i and j, of the same object k, rijð¼ ri � rjÞ
resides in the same 3D motion subspaceMk. Therefore, the
unit vector, r̂rij ¼ rij=rij, can be used as point j’s contribution
for the inference of point i’s motion subspace, where rij is the
norm of rij. Each point collects this information from all other
points. If many of the r̂rij reside in (roughly) the same
3D subspace, we say that there is a high likelihood the
3D subspace accommodating the majority votes (r̂rij) has a
similar configuration to the current point’s motion subspace.
To estimate the agreement (or coherence) of the votes
collected at point i, we compute the second order moment,
Oi, of these 2F -dimensional vectors r̂rij, or equivalently, a

2F -dimensional hyperellipsoid having the same moments
and principal axes.

Balancing the contributions from different points should
also be considered. We refer to the motion’s smoothness
constraint, which has been successfully used in motion
analysis such as layered motion representation [26] and
Markov random field motion modeling [27]. The motion
smoothness constraint claims that objects are usually com-
posed of spatially contiguous regions in real scenes. So, we set
the strength of the contributions inversely proportional to the
distance between the “contribution-caster” and the “con-
tribution-collector.” In practice, the decay of the contribution
takes the form of expð�r2

ij=�
2
dÞ; where �d is a scale factor. In

our experiment, we take �d ¼ 0:3� rmed, where rmed is the
median value of all rij for i 6¼ j.

Thus, the votes are aggregated as follows:

Oi ¼
X
j6¼i

expð�r2
ij=�

2
dÞ � r̂rij � r̂rTij: ð5Þ

Then, we decompose matrix Oi into its corresponding
eigensystems, i.e.,

Oi ¼ V1 V2 � � �V2F½ �diag �1; �2; � � � ; �2Fð Þ V1 V2 � � �V2F½ �T ;
ð6Þ

where �1 � �2 � � � � � �2F represent the sorted eigenvalues

of Oi, V1, V1; . . . ;V2F are the corresponding eigenvectors

and the symbol T denotes the transpose. These eigenvectors

represent the 2F principal axes of the hyperellipsoid while

the eigenvalues describe the strength and agreement

measures on the corresponding axis. Then, each data

point i will be associated with a two-tuple (ri, OFi). ri is

the position of that point in the 2F -dimensional space and

OFið¼ fOFi1;OFi2;OFi3g) consists of the three dominant

eigenvectors of Oi, which is called Oriented-Frame in this

paper, representing the preferred 3D motion subspace

configuration.

3.2 Evolution of Oriented-Frames

Having associated each data point with an OF characterizing
the point’s own preferred subspace structure, OFs of the
points in the same motion subspace are expected to have
similar configurations. However, the initial OFs may not be
accurate enough due to the ambiguities caused by noise and
outliers. Based on the similarity of OFs, a novel mechanism
for subspace rotation is proposed to eliminate the intraclass
variabilities to provide a desirable property (a low inter-
cluster similarity and a uniformly distributed, high intraclus-
ter similarity) for this clustering problem. In the following
discussion, uppercase calligraphic letters represent sub-
spaces, e.g.,A, and an uppercase boldface letter will represent
a matrix, e.g., A.

3.2.1 Similarity Measurement for Subspace Comparison

This subspace similarity measurement is derived from
principal angles and principal vectors [7].

Definition 1. Let A and B be two p-dimensional subspaces in

an l-dimensional space. A and B are l� p matrices

consisting of the orthonormal bases of A and B. The

principal angles, 0 	 �1 	 � � � 	 �p 	 �=2, and the principal
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vectors, fu1; . . . ;upg, fv1; . . . ;vpg, are defined as follows:
Computing the SVD of ATB:

YT ðATBÞZ ¼ diagð�1; . . . ; �pÞ;

where YTY ¼ ZTZ ¼ I (the p� p identity matrix). Then,
we have

½u1; . . . ;up� ¼ AY;
½v1; . . . ;vp� ¼ BZ;

cosð�kÞ ¼ �k; k ¼ 1; . . . ; p:

8<
: ð7Þ

The equation,

½u1; . . . ;up�T ½v1; . . . ;vp� ¼
YT ðATBÞZ ¼ diagðcosð�1Þ; . . . ; cosð�pÞÞ;

indicates that the angle between the ith pair of principal vectors
ðui;viÞ is the ith principal angle of the subspace pair. Although
the orthonormal bases in matrices A and B can be arbitrary, they
are aligned by the SVD to discover the essential relationship
between these two subspaces. In this sense, a similarity
measurement between the subspaces,A andB, can be defined as,

�ðA;BÞ ¼
Yp
k¼1

cosð�kÞ: ð8Þ

It is obvious that identical subspaces have the maximum
similarity measure of value 1. However, since this similarity
can only deal with a subspace pair of equal dimension, our
method cannot handle motion subspaces of different dimen-
sion. For similarity, or distance, between subspaces, the
Martin distance considering subspace angles is known to be
an initial work, which measures the distance between ARMA
models [15]. In [1], the subspace angles are used to recognize
gait patterns described by a dynamic system. Recently, a
formulation of kernelized subspace angle for nonlinear and
complex data pattern analysis is proposed by Wolf and
Shashua [28].

Observation 1. The p subspaces spanned by fui;vigði ¼
1; . . . ; pÞ are mutually orthogonal.

The computation of the principal angles, ½u1; . . . ;up�T
½v1; . . . ;vp� ¼ diagðcosð�1Þ; . . . ; cosð�pÞÞ, indicates that vector
ui is orthogonal to vector vj (j 6¼ i). Since

½u1; . . . ;up�T ½u1; . . . ;up� ¼ YT ðATAÞY ¼ I;

ui is also orthogonal to ujðj 6¼ i). Analogously, vi is
orthogonal to both uj and vj for j 6¼ i. Therefore, the subspace
spanned by fui;vig is orthogonal to the subspace spanned by
fuj;vj; j 6¼ ig, which further implies that the p subspaces
spanned by fui;vigði ¼ 1; . . . ; pÞ are mutually orthogonal.

3.2.2 Mechanism of Rotating Subspaces

Now comes the main topic of this section, mechanism of
subspace rotation. As for the feature points, whose OFs have
similar preferences of subspace configurations as defined in
(8), this mechanism is used to rotate their OFs to strengthen
their agreement on the underlying subspace structure, and
equivalently to eliminate the intraclass variabilities. We begin
with a simple example in the 3D space for ease of visualization
and then extend it to the N-dimensional space. Consider two
nonparallel planesA andB (see Fig. 2), which intersect at line
f . How to rotate planeA toB, until these two planes overlap?

Suppose that fa1; a2g and fb1;b2g are principal vectors of
this subspace pair. The principal angles between these two
subspaces are 0 and cos�1ðkaT2 b2k). Then, rotating plane A to
B is now equivalent to rotating vector a2 toward b2 until the
angle between them is zero. We can apply a torque � ¼
a2 � b2 on a2, which induces a clockwise rotation on a2 and
makes the instantaneous change of a2 along the direction
_aa2 ¼ � � a2. This rotation can increase the similarity of these
two planes according to (8).

Observation 2. LetSð2Þab denote the subspace spanned by a2 and b2,

and Sð2Þ
?

ab denote the orthogonal complement of Sð2Þab . In order to

rotate a2 toward b2, the direction of instantaneous displacement

of a2, i.e., _aa2, resides in the subspace Sð2Þab and is perpendicular to

both Sð2Þ
?

ab and a2.

It is worthy to note that the concept of cross product plays

an essential role in the 3D case. The cross product of two

3D vectors can also be viewed as calculating the orthogonal

complement of the subspace spanned by the concerned two

vectors. Referring to this idea, rotating a2 toward b2 can be

realized in two steps as follows: First, Sð2Þ
?

ab is calculated by

cross product of a2 and b2 as the so-called “torque.” Second,

_aa2 is computed (by cross product) as the orthogonal

complement of subspace spanned by Sð2Þ
?

ab (the torque) and

a2. So, _aa2 is perpendicular to both Sð2Þ
?

ab and a2.
In the N-DðN > 3Þ space, the rotation is more complex

since there is no concept of cross product. Inspired by
Observation 2, the mechanism for rotating an N-dimensional
vector, a, toward anotherN-dimensional vector, b, narrowing
the angle � ¼ cos�1ðkaTbkÞ can be deduced in a similar
manner. Let Sab denote the subspace spanned by a and b.
First, the orthogonal complement of Sab, denoted by S?ab, is
calculated using such as QR decomposition. Compared with
3D case, S?ab can be considered as a “N-dimensional torque.”
Second, the orthogonal complement of subspace spanned by
S?ab and a is computed and denoted by ar, which can be
regarded as the “high-dimensional cross product” of
“N-dimensional torque” and a analogously in the 3D case.
Then, the direction of the instantaneous displacement of a is
obtained as _aa ¼ ar � aTr b kaTr bk

�
. It can be easily verified that

the angle between aþ 	 _aa and b is smaller than that between a
and b, where 	 is a small scalar controlling the magnitude of
rotation (	 ¼ 0:01 in our experiments). Table 1 summarizes
the relationship between 3D and N-dimensional rotation.
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Fig. 2. An illustration of the rotation of plane A to B. fa1; a2g and fb1;b2g
are principal vectors of this subspace pair. The principal angles between
these two subspaces are 0 and cos�1ðkaT2 b2k). Rotating plane A to B is
equivalent to rotating vector a2 toward b2 until the angle between them is
zero. A torque � ¼ a2 � b2 on a2 is applied, which induces a clockwise
rotation on a2 and makes the instantaneous change of a2 along the
direction _aa2 ¼ � � a2. This rotation can increase the similarity of these
two planes according to (8).



Then, let us consider the rotation of a p-dimensional
subspace A toward B in the N-dimensional space. Given the
corresponding principal angles and principal vectors,
fuk;vk; �k; k ¼ 1; . . . ; pg, we can find the instantaneous
change, _uui, for rotating ui toward vi using the above
mechanism.DenoteSðiÞuv ,Sði0Þuv , andA0 as thesubspacesspanned
by fui;vig, fui þ 	 _uui;vig, and fu1; . . . ;ui�1;ui þ 	 _uui;uiþ1;

. . . ;upg, respectively. Since _uui is restricted in SðiÞuv (see
Observation 2), we have SðiÞuv 
 Sði

0Þ
uv . So, after the rotation, the

subspace spanned by fuk;vk; ðk 6¼ iÞg is orthogonally com-
plementary to Sði0Þuv . It is important to note that the structure of
mutually orthogonal subspaces spanned by fui;vigði ¼
1; . . . ; pÞ is actually unaltered. In fact, fui þ 	 _uui;vig is still a
pair of principal vectors ofA0 and B (see Observation 1).

Thus, the process of rotating a p-dimensional subspace to
another can be divided into p steps by rotating u1 to v1, u2

to v2; . . . ; and up to vp, successively. After the ith step
involving ui and vi, only the corresponding ith principal
angle is modified, while no impact is made on other
principal angles. Through this operation, these two sub-
spaces can gradually become identical in the sense of
having the same configuration, with maximum similarity 1.

3.2.3 Evolution of Oriented-Frames

Recall that after the conversion stage as described in
Section 3.1, each data point has been associated with an
oriented-frame possessing the information about the
point’s preferred subspace structure. Now, using the above
mechanism, points with similar OFs can now rotate their
OFs to enhance the saliency of their underlying motion
subspace structure.

We define a similarity measurement matrix of OF for all
data points as

���� ¼ f�ði;jÞ : �ði;jÞ ¼
Y3

k¼1

cosð�kÞ; 8i; j 	 Pg; ð9Þ

where �k (k ¼ 1; 2; 3) are the principal angles of subspace pair
spanned by OFi and OFj. In our experiment, for points, i and
j, (j 6¼ i), if �ði;jÞ > 0:7, we rotate OFi toward OFj for a
appropriate magnitude to obtain a greater �ði;jÞ. Such
rotations are applied for all data points2 and the OFs and ����
are thus updated.

The evolution here has a certain resemblance to the
Tangent Distance method [19]. It is known that one of the
critical factors affecting the performance of pattern classifica-
tion is the pattern variation. Therefore, it is desirable to
develop robust classification algorithms that can tolerate
small variations of the input patterns. The variations can be
learned from a manifold composed of sample points from the
same class [5], [14]. Modeling the variations in such a
manifold actually represents the theme of the Tangent
Distance method, that is, to eliminate variabilities among objects
of the same class, while identifying differences among the
objects of different classes.

3.3 Voting Stage

The configurations of OF s are important in this inference task
since they are the tokens of the data points. The voting stage,
another type of communication between the data points, is
used to extract and accordingly encode the subspace
structural information to construct OF. Previously, the second
order moment of the normalized vector ofrij, i.e., r̂rij, is used to
reveal the dominant distributions of the spatial information.
Besides, the OF itself, which represents the most probable
subspace configuration of each data point, is also a collection
and a compact representation of the spatial information. Since
the up-to-date subspace structural information is contained in
the constructing components of OFs, we also include the
second order moment,

P3
k¼1 OFjk �OFT

jk, into the calculation
of Oi. Recall that the dominant eigenvectors of Oi is used to
construct OFi.

Furthermore, only using the relative distance to weigh
the vote is also inadequate. If �ði;jÞ > �ði;kÞ, similarity of
motion subspace configurations of point i and j is higher
than that of point i and k, and the vote from point j to i
should be more reliable than that from k to i. Therefore, the
current estimated OF similarity measurement matrix ���� can
be used to weigh the vote between point pairs.

Taking these into consideration, the summation of vote
collected at point i in the voting stage will be formulated as

Oi ¼
X
j 6¼i

�ði;jÞ expð�r2
ij=�

2
dÞ � r̂rij � r̂rTij þ

X3

k¼1

OFjk �OFT
jk

 !
:

ð10Þ

The procedures of evolution and voting cooperate to
enforce tight connections among inliers, to suppress noise
distortions, and to make a consistent exploration toward the
inherent subspace patterns for segmentation. In real
situations, most data patterns are undergoing variations
or perturbations more or less, being able to cope with
variations in noise-corrupted data also increases the
robustness of the algorithm.
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2. We first keep the current configurations of all OFs as OFold
i ; i ¼ 1 . . .P .

Then, for each OFi, denote the indices of the OFs that OFi need to be
rotated toward as IndðOFi). We rotate OFi toward OFold

j ; j 2 IndðOFiÞ in
turn. Totally, OFi is rotated roti times, with roti being the number of
elements in IndðOFi). The configuration of OFi changes after each rotation
and ends up with OFnew

i . Similarly with other OF s. When we encounter a
OFj that needs to be rotated toward OFi, the subspace pair will be OFj and
OFold

i , but not OFj and OFnew
i . In brief, the kept version of OFold remain

unchanged in this batch process and serve as the reference for all OFi to be
rotated to OFnew

i .

TABLE 1
Generalization of 3D Rotation to N-Dimensional Space

(Please refer to Section 3.2.2 for details.)



3.4 Outlier Rejection and Multibody Grouping Using
Subspace Inference

Through the evolution (Section 3.2) and voting (Section 3.3)
stages, the information about the underlying subspace
structure can be communicated effectively among the data
points. So, if a point i, its OFi receives little structural
agreement from others, i.e.,

P
j 6¼i �ði;jÞ < �th, point i can be

isolated as an outlier. Due to the discriminative similarity
measurement �ði;jÞ, which evaluates all the cosine values of
the principal angles for subspace comparison, it is difficult
for an outlier to be mixed within the group of inliers because
of its structural incompatibility. Thus, it is allowed to choose
the threshold �th in a relatively wide range. Typically, the
value of �th is set to 20 to 30 percent of the median value of
all
P

j 6¼i �ði;jÞ.
To improve accuracy, we repeatedly run the evolution and

voting stages to filter out outliers and to reduce the intraclass
variations. The set of inliers is progressively refined as more
outliers are rejected in each pass. Usually, only a few iterations
are needed. We use four to five passes in our experiments.

In our experiments, the �ði;jÞ is usually close to 1 for pair of
points i and j in the same subspace. This property consider-
ably facilitates the grouping decision. If �ði;jÞ > 0:95, point i
and j will be put in the same group. Then, we calculate the
second order symmetric tensor of the relative positions of the
inliers for each group. The underlying motion subspace
configuration Mks can be obtained by spanning the three
dominant eigenvectors of these tensors. Consequently, data
points ris can be checked against the inferred multiple motion
subspaces, producing a set of grouped inliers. Thus, the task
of classifying feature points ris to the motion subspaces,Mks,
is accomplished, which is equivalent to the multibody
grouping. Of course, no prior knowledge of the number of
moving objects is assumed here. Furthermore, throughout
the process, no assumption of independence between
subspaces is made. Our method can segment correlated
motions as well as independent motions.

3.5 Summary of the Algorithm

The subspace inference algorithm for multibody motion
segmentation can now be summarized as below, see
also Fig. 3.

In the first stage, the spatial configuration of the data
space is explored, and each data point is associated with an
Oriented Frame. Then, OF evolution and OF voting act, in
turn, to abate the noise disturbance and expose the
underlying multiple subspace structure. Finally, the sub-
space configuration obtained from the filtered data leads to
the multibody motion segmentation.

3.6 Complexity Reduction

For practical purposes, the computational complexity can be
significantly reduced by incorporating range limitation. If
there are a large amount of data points, it is prohibitively
expensive to compute all interpoint communications. There-
fore, a distance threshold is set. If distance between two
concerned points is greater than 2�d, the mutual influence
should be ignored. So, (5) in the conversion stage can be
rewritten as follows:

Oi ¼
X

rij < 2�d;j 6¼ i
expð�r2

ij=�
2
dÞ � r̂rij � r̂rTij; ð11Þ

where �d is the same as the one defined in Section 3.1.
Likewise, (10) in the voting stage will be

Oi ¼
X

rij < 2�d;j 6¼ i
�ði;jÞ expð�r2

ij=�
2
dÞ

� r̂rij � r̂rTij þ
X3

k¼1

OFjk �OFT
jk

 !
:

ð12Þ

4 EXPERIMENTAL RESULTS ON MULTIBODY

GROUPING

In this section, the experimental results on a variety of
synthetic and real image sequences are presented. Both of the
synthetic data and real images contain multiple independent
motions or correlated motions. We compared our method
with some conventional and recent algorithms, such as the
discriminant method [10], which extracts the most represen-
tativevectors inQ for feature grouping, the Zelnik-Manor and
Irani’s method [30], which uses the indicator information of
the first eigenvector of WTW for segmentation, and
Kanatani’s multistage optimization [13],3 which groups
feature points by an iterative multistage optimization.

4.1 Synthetic Data

We use two synthetic data sets consisting of independent
motions and correlated motions, respectively. In both
data sets, a comparison with previous methods [10], [30],
[13] is given.

Independent motion segmentation. Fig. 4a shows a
synthetic scene. Three transparent 3D objects, i.e., a sphere,
a cylinder and a cubic, are generated and 30 points from
each body are randomly chosen. Each object undergoes a
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Fig. 3. The flowchart of the algorithm.
Fig. 4. An example of synthetic independent motions. (a) A view of the
synthetic scene. (b) By using our method, grouped feature points on
three moving objects are shown by “x,” “+,” and “o,” respectively. Some
detected outliers are shown by black “ut” in (a).

3. http://www.suri.it.okayama-u.ac.jp/e-program-separate.html.



sequence of independent motion. Ten image frames with a
resolution of 100� 100 pixels are captured. Gaussian noise
with a standard deviation of 2 pixels is added to the data
matrix W. We fabricate 100 fake trajectories in the image
stream as outliers. Thus, the ratio of outlier to inlier is 1.11.
Our method correctly discards all outliers. The segmenta-
tion result is shown in Fig. 4b and Table 2.

Using this sequence, four algorithms, the simple thresh-
olding using matrix Q, the discriminant method [10],
Kanatani’s multistage optimization [13] and the OF-based
method, are compared. Fifty feature points are selected, 25
from the sphere and 25 from the cylinder. We add Gaussian
noisewithzero-meanandastandarddeviationrangingfrom0
to 4 pixels to the coordinates of the feature points. We also

introduced 0, 10, 20, and 30 fabricated outliers. The results are
showninFig.5.Therearetwosetsofgraphs.Figs.5a,5b,and5c
show the error rate versus the level of noise with the fixed
number of outliers (0 outlier in Fig. 5a, 10 outliers in Fig. 5b,
30 outliers in Fig. 5c). Figs. 5d, 5e, and 5f show the error rate
versus the number of outliers with the fixed standard
deviation of the noise (0 pixel in Fig. 5d, 2 pixels in Fig. 5e,
4 pixels in Fig. 5f). For each level of noise, the error rate is
computed as the average value of 100 independent trials of
each method. Our algorithm performs much better than the
method of simple thresholding and the discriminant method.
Compared with multistage optimization, our algorithm
achieves a much lower misclassification rate when there
exists outliers. In contrast, because multistage optimization
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TABLE 2
A Summary of Segmentation Results for Multibody Grouping on Synthetic Scenes

Fig. 5. Four methods, simple thresholding using matrix Q, discriminant method [10], multistage optimization [13], and Oriented-Frame-based
method, are compared on independent motion segmentation. (a), (b), and (c) Error rate versus the level of noise with the fixed number of outliers.
(d), (e), and (f) Error rate versus the number of outliers with the fixed standard deviation of noise. For each level of noise, the error rate is computed
as the average value of 100 independent trials of each method.



assumes a known and fixed number of the objects, if very few
outliershappentooccupyanobject identity, theywill sticktoit
and make the number of objects carrying other feature points
underestimated. This sensitivity to outliers impairs its
robustness.

We find the advantage of the Kanatani’s method is that it
has a good robustness against noise because of the noise
modeling in its framework. In Fig. 5a, it is seen that when
there is no outlier, multistage optimization achieves a better
performance.

Correlated motion segmentation. We use the example
presented in Section 2.1 to demonstrate the efficacy of our
method to the problem of correlated motion segmentation
(Fig. 6a). Three transparent spheres are generated. Each of
them undergoes random translation and different rotation
around y-axis. Assuming that the camera’s optical axis is
along the z-axis and orthographic projection is employed,
the motion matrices will have the form of (3). Note that their
motions are not independent.4 Fig. 6b shows the “shape
interaction matrix” Q used by previous algorithms, in
which the height represents the entry value. It can be seen
that the matrix Q has no apparent block-diagonal structure
and, therefore, as described in Section 2, the methods in [2],
[6], [3], [10], [29], [12] can hardly find the correct
segmentation. This dependence of motions is intentionally
introduced to show the effectiveness of our method.

In this experiment, 22, 30, and 42 points from each body

are randomly chosen. Seven frames with a resolution of

100� 100 pixels are captured and Gaussian noise with

2 pixels of the standard deviation is added. We also imported

100 random, wrong trajectories as outliers. Thus, the ratio of

outlier to inlier is 1.06. By using our method, all outliers are

correctly discarded (See Fig. 7a and Table 2).
The essential and the most novel feature of our method is

the mechanisms of evolution and voting. To demonstrate
their effectiveness, Figs. 7b, 7c, and 7d show the changes of the
OF similarity measurement matrix, ����, in the segmentation
process, where the three blocks correspond to the three
spheres and the height represents the entry value. It can be
observed that a low intercluster similarity and a uniformly
distributed, high intracluster similarity is obtained, which
considerably facilitates the subsequent grouping decision. In
contrast, in matrix Q (See Fig. 6b), diversities of the intraclass
similarities are present. This nonuniformly distributed in-
traclass similarity is undesirable in the clustering problem.

Besides the intuition that voting plays an important role

here, the following experiment shows that the evolution

and the inclusion of the tensor of the components of OF, i.e.,P3
k¼1 OFjk �OFT

jk, into voting (10) are also necessary for a

better performance. See Fig. 8.
There are three moving objects, each containing 20 points.

Totally 60 outliers are fabricated into the data. For an object,
say the first object, we measure the median value of the
similarities between the OF s of its feature points and its ideal
subspace, as shown in Fig. 8a. We here call our method “Full
OF” for simplicity. The four curves are obtained by “Full OF,”
“Full OF without rotation,” “Full OF without moment
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Fig. 6. An example of synthetic correlated motions. (a) A view of the synthetic scene. “ut” denote some of the added outliers. (b) The “shape
interaction matrix” Q [3], used by previous algorithms. The number of columns and rows in Q is equal to the number of feature points. The height
represent values of entry. The ideal block-diagonal structure of Q is lost, which makes it difficult for previous methods to find the correct
segmentation of correlated motions.

Fig. 7. The segmentation results by applying our method on the synthetic correlated motions depicted in Fig. 6a. (a) By using our method, grouped
feature points on three moving spheres. (b), (c), and (d) The sequential changes of the similarity measurement matrix ����, which illustrate that the

consistency within the same group is effectively enhanced through evolution and voting. The height represent values of entry.

4. Please refer to Section 2.1 for the description of the correlations
between the sphere motions.



calculation in voting,” and “Full OF with neither moment
calculation nor rotation,” respectively.

We also measure the standard deviation of the similarities
between the OFs of its feature points and its ideal subspace,
as shown in Fig. 8b and the standard deviation of the
intraclass similarity �ij, i; j 2 object 1, as shown in Fig. 8c.

Compared with the curves without rotation, without

moment calculation and without both of these two opera-

tions, it is seen that the “Full OF” method has a much faster

approach to the ideal subspace. In addition, the “Full OF”

method also helps a faster elimination of the intraclass

variabilities (an undesirable property in the clustering

problem). The lower the standard deviation of the intraclass

property is, the tighter the intraclass connection is enforced,

and the easier the grouping decision can be implemented.

Seen from the curves, most of these improvements occur

during the first few steps of the “Full OF” method. Though

similar status as the “Full OF” method can be achieved

without rotation or moment calculation, more steps are

needed. The voting (including moment calculation of OF) and

rotation, being necessary components of our algorithm, have

their own contributions to this shortened iteration and the

desirable clustering property. In the experiment, we observed

that, for inference of a subspace structure, a moderate amount

of true inliers belonging to that subspace are need. Normally,

occupying 20-25 percent of the total features can produce a

good segmentation result for one object.

Using the synthetic correlated motion sequence, Fig. 6a,

we compare three algorithms: Zelnik-Manor and Irani’s

method [30], Kanatani’s multistage optimization [13] and

our OF-based method. Besides the 22, 30, and 42 points

chosen from the three spheres, 0, 10, 20, and 30 fabricated

outliers are added in turn. Gaussian noise with zero-mean

and a standard deviation ranging from 0 to 4 pixels is also

added. Following [30], the single, most dominant eigen-

vector of WTW is used to construct Q̂Q for segmentation.5

Similar to Fig. 5, we also draw two sets of graphs in Fig. 9 to

show the results. In most cases, our algorithm performs

much better than multi-stage optimization and Zelnik-

Manor and Irani’s method, except that multistage optimiza-

tion has a better performance when there is no outlier.

To see further into the method of [30], for constant block

diagonal similarity matrix WTW, the first eigenvector, v, has

the property that if point iand jbelong to the same object, then

vðiÞ ¼ vðjÞand, thus,vðiÞ � vðjÞ can characterize the distance

between these two points. The method in [30] has to deal with

the nonconstant block diagonal matrix. Therefore, they use

the exponential function to exaggerate the indicator informa-

tion for segmentation, i.e., expð�ðvðiÞ � vðjÞÞ2Þ is used as the

similarity function. However, in the presence of noise, the

variations in the dot product recorded in WTW may cause

ambiguities in the eigenvectors and the nonuniform intra-

class similarities, which leaves [30] open to the instability.

4.2 Real Images

We now demonstrate the applicability of our method in real

situations and make comparisons with the discriminant

method [10] and Kanatani’s multistage optimization [13]. In

this section, feature points are detected and tracked by

using KLT tracker [18].
Independent motion segmentation. Figs. 10a 10b, and 10c

show the segmentation result in three frames from the flower
garden sequence. One-hundred sixteen features are tracked
through 10 frames and 120 false trajectories are created as
outliers. In the scene, the background and the tree exhibit
distinct motions due to their different distance to the camera.
Black “ut” in Fig. 10a denote some detected outliers.
Compared with the result obtained by the discriminant
method, Fig. 10d, and the result of multistage optimization,
Fig. 10e, our method achieves a superior performance.

Though the discriminant method is able to discard

outliers, the drawback is that once a few outliers happen to

be classified as inliers, they will stick to the “object”

assigned to them, and will continually attract other feature

points, either true inliers or true outliers, into this false
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Fig. 8. For the first object, (a) the median value of the similarities between the OFs of its feature points and its ideal subspace. (b) The standard
deviation of the similarities between the OFs of its feature points and its ideal subspace. (c) The standard deviation of the intraclass similarity �ij,
i; j 2 object 1.

5. Since the first eigenvector is informative for the two-class clustering
problem, recursive Normalized Cuts [17] is applied on Q̂Q in our experiment
for multiclass clustering.
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Fig. 9. Three methods, Zelnik-Manor and Irani’s [30], Kanatani’s multistage optimization [13], and Oriented-Frame-based method, are compared on
correlated motion segmentation. (a), (b), and (c) Error rate versus the level of noise with the fixed number of outliers. (d), (e), and (f) Error rate versus
the number of outliers with the fixed standard deviation of noise. For each level of noise, the error rate is computed as the average value of
100 independent trials of each method.

Fig. 10. Comparative results. The segmentation found by our algorithm on flower garden sequence are shown in (a), (b), and (c). In the scene, the
background and the tree exhibit distinct motions due to their different distance to the camera. The segmentation results on mobile and calendar
sequence are shown in (f), (g), and (h). Black “ut” in (a) and (f) denote some of discarded outliers. For comparison, (d) and (i) are the results of the
discriminant method [10] on these two sequences. (e) and (j) Are the results obtained by multistage optimization [13].



object. The resulting distractions, see Fig. 10d, limits the

applicability of this method.

The multistage optimization works when all the data are

correct. Moreover, since the number of objects is assumed

known and fixed, once a few outliers occupy an object

identity, the true feature points will thus have to be classified

into fewer objects instead. This leads to low percentage of

correct classification. See Fig. 10e.

Figs. 10f, 10g, and 10h show the segmentation result in

three frames from the mobile and calendar sequence. Thirteen

frames are used, which contains 124 corresponding features

and 125 added random, wrong trajectories. For comparison,

the results given by the discriminant method and the multi-

stage optimization are displayed in Fig. 10i and Fig. 10j,

respectively. Their performance degrades due to the

distortions caused by outliers.
Figs. 11a, 11b, and 11c show the segmentation result in

three frames from the bus sequence. There are three distinct
moving objects: a bus, a van which is moving faster than the
bus, and the background. Thirty frames are used, which
contains 115 correct features and 120 introduced random,
wrong trajectories. Black “ut” in Fig. 11a denote some
detected outliers. The results of the discriminant method
and multistage optimization are provided in Fig. 11d and
Fig. 11e. It is observed that the presence of outliers
deteriorates the performance of these two methods.

Figs. 11f, 11g, and 11h show the result of another three
frames. A moving camera is viewing a static scene in which
a bus is going from right to left. Ninety-three features are
tracked through 23 frames. One hundred fake trajectories
are fabricated as outliers. Fig. 11i and Fig. 11j are the results
by applying the discriminant method and the multistage
optimization, respectively.

Correlated motion segmentation. We have hereto per-
formed the experiments on segmentation of multiple inde-
pendent motions and then we come to show the applicability
of our method on multiple correlated motion segmentation.

We choose two articulated motion sequences. One of them

contains a whole moving arm and an attached book in the

hand. So, there are three articulated moving parts to be

segmented: the upper arm, the lower arm, and the book.

Denote M1, M2, and M3 as the motion subspaces of these

three moving parts. By analyzing the “ground truth”

obtained by manually picked true feature trajectories, we

found that the motion subspaces of these linked moving parts

indeed have intersections and therefore, are not independent.

In fact, the trajectory of the joint point connecting the upper

arm and the lower arm resides in both of their motion

subspaces. Specifically, the dimension of the subspaceMi [
Mj (for i 6¼ j and i; j ¼ 1; 2; 3) is higher than the dimension of

Mi (i ¼ 1; 2; 3) but is lower than the sum of them, i.e.,

dimðM1Þ < dimðM1 [M2Þ < dimðM1Þ þ dimðM2Þ. The di-

mension of M1 [M2 [M3 is also lower than the sum of

individual Mi (i ¼ 1; 2; 3). Among the input data of this

sequence, there are 47 tracked features and 50 fabricated

outliers. Eight frames are captured. Figs. 12a, 12b, and 12c

show the segmentation result.
Figs. 12f, 12g, and 12h show another image sequence

containing two articulated moving parts: the lower arm and
the fingers. The examination on dimensions of the motion
subspaces obtained from the “ground truth” indicates that
the motions of these two linked parts are also correlated.
Thirty-six features are selected and tracked throughout the
sequence of eight frames. Extra 50 random, wrong artificial
outliers are added. “x” and “+” represent properly
classified features of the lower arm and the fingers. Squares
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Fig. 11. Comparative results. The result of our algorithm on bus sequence is shown in (a), (b), and (c). There are three distinct moving objects: a bus,

a van which is moving faster than the bus, and the background. Black “ut” in (a) denote some of discarded outliers. (f), (g), and (h) are our result on

another sequence. For comparison, (d) and (i) are the results of the discriminant method, (e) and (j) are the result obtained by multistage

optimization.



in Fig. 12f are some detected outliers, which are discarded

due to the less structural support they collect from other

points or the nonrigid movements of the finger tips.
For these two sequences, Fig. 12d and Fig. 12i are the

results of the discriminant method showing its inefficiency in
correlated motion segmentation. Fig. 12e and Fig. 12j show
the results obtained by multistage optimization, which can
segment correlated motions. However, because this method
defines a fixed number of the moving objects, if a few outliers
wrongly take up an object identity, shown as blue “o” in
Fig. 12e, feature points belonging to the three objects have to
be classified as two objects instead, denoted by red “+” and
yellow “x,” respectively. This sensitivity to outliers impairs
its performance.

The comparison result is summarized in Table 3.6 The

presence of outliers degrade the performance of multistage

optimization [13] and discriminant method [10]. In contrast,

because our algorithm has properly designed schemes to

discard structurally incompatible outliers, although all the

ratios of outlier to inlier in these real image sequences are

higher than 1, we can still achieve a robust performance and a

high percentage of correct classification, especially in outlier

rejection.7 In addition, the two articulated motion sequences

well illustrate the applicability of our method in the problem
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TABLE 3
A Summary of Real Image Sequences Used in the Experiments of Multibody Grouping

Fig. 12. Comparative results on sequences involving correlated motions (articulated motions). (a), (b), and (c) Results given by our algorithm. For
another sequence, (f), (g), and (h) are the results of our algorithm. “ut” in (a) and (f) represent some of the discarded outliers. For comparison, (d) and
(i) are the results of the discriminant method on these two sequences. (e) and (j) Are the results obtained by multi-stage optimization.

6. Multistage optimization works when all the data are correct. This
method alone has no scheme to detect outliers.

7. When the noise level is low, the theoretically sound methods [13], [24]
will yield better results.



of correlated motion segmentation. These are two attractive
advantages our method can offer in the problem of multibody
grouping.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel and effective approach for

inference of subspaces in high-dimensional data space. Based

on the similarity measurement of subspaces, a generalized

mechanism of rotation in high-dimensional space together

with the scheme of voting are devised, which will facilitate

the emergence of the underlying multiple subspace structure.

Inliers and outliers are discriminated effectively due to the

data points’ structural compatibilities. The proposed Or-

iented-Frame (OF)-based subspace inference technique is a

tool for information extraction under subspace constraints

with promising robustness and accuracy.

We mainly investigated the applicability of this method

to the problem of multibody grouping. Compared with the

conventional methods, our approach possesses two attrac-

tive advantages, i.e.,

1. Multiple correlated motion segmentation as well as
independent motion segmentation.

2. Robust performance against heavy noise and outliers.

The focus of our future work will be handling of missing

data, transparent motion segmentation, motion subspaces of

different dimensions, and the exploration of the applicability

of our algorithm in other subspace constraint problems.
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