Available online at www.sciencedirect.com

ScienceDirect PHYS":A i

ELSEVIER Physica A 380 (2007) 629638

www.elsevier.com/locate/physa

Chinese character structure analysis based on complex networks

Jianyu Li, Jie Zhou
Department of Automation, Tsinghua University, Beijing 100084, China

Received 6 December 2006; received in revised form 10 February 2007
Available online 4 March 2007

Abstract

In this paper, Chinese character networks are modelled using complex networks theory. We analyze statistical properties
of the networks and find that character networks also display two important features as other real networks, i.e., small-
world feature and the non-Poisson distribution. These results indicate that the discovered features of Chinese character
structure reflect the combinatorial nature of Chinese characters. We also simulate the formation of Chinese phono-semantic
characters using bipartite graph theory. The bipartite graph model generates non-Poisson distributions and disassortative
mixing as the empirical networks, which effectively explain the origin and formation of phono-semantic characters.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Chinese is one of the most widely used languages in the world. Chinese characters play an important role in
its well-known civilization. One reason is that they bear some unique and elegant structures. Most Western
language characters are phonetic-based, while Chinese characters are mostly picture-based. Chinese characters
are ideograms and hieroglyph. The language allows the construction of a virtually infinite range of
combinations naturally from a limited set of basic units: semantic and phonetic radicals. Chinese character
structure analysis based on radicals is a challenging, interesting, and very important problem. It will help to
study fundamental unsolved puzzles in cognitive science, in particular, the origins, the evolution of language
and the universal rule of Chinese character combination principles.

Recently, many important results on complex networks have been reported since the appearance of seminal
papers by Watts and Strogatz [1,2] on the small-world characteristic and by Barabasi and Albert [3-5] on
scale-free features. Small-world network is often characterized according to two graph measurements of the
network: clustering coefficient C and characteristic shortest-path length L [1]. If the clustering coefficient is
significantly higher than a value expected for a random network, and the characteristic shortest-path length is
lower than a value expected for a regular network, then the network is a small world. Scale-free networks
are those networks whose connectivity distributions are in a power-law form (P(k)~k~") that is independent of
the network scale [3-5]. Different from an exponential network, a scale-free network is inhomogeneous in
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nature: most of the nodes have very few link connections and yet a few nodes have extremely high number
of connections.

Research results show that complex networks are pervasive in our real world, and many real complex
networks share the above stated underlying organizing properties and universal patterns [2,5-8]. For example,
brain structures [9], protein—protein interaction networks [10], social interactions [11-14], the Internet and
WWW [15-17], and language networks [18-24,30].

Languages are clearly complex adaptive systems. They can be modelled by complex networks at all levels:
phonetic, lexical, syntactic, and semantic. Work based on complex networks has aroused more attention in the
field of language modelling. Language networks mainly include five networks: thesaurus networks
[5,8,20,21,25,26], WordNet [20], word association networks [20,27], word co-occurrence networks [18,28,29]
and syntactic dependency networks [31,32]. Sole [24] reviewed some early efforts to build up language
networks about western languages, to characterize their properties, and to show in which direction models are
being developed to explain them. Changizi and Shimojo [33] studied character complexity of non-logographic
writing systems from five major taxa: Ancient Near-Eastern, European, Middle Eastern, South Asian,
Southeast Asian and they found that some commonalities of character length and redundancy might help to
explain how subcharacter-level parts combine to form characters. Logographic-based Chinese characters have
its combination principles different from the non-logographic writing systems. Li [34] studied the properties of
Chinese phrases using small-world networks theory. But in the area of Chinese character networks no results
are yet reported. Chinese characters can also be regarded as a network in the following sense: (1) the radicals
correspond to nodes of the network; and (2) a link exists between two radicals if they can form a character or a
part of it; (3) components (radicals) build up new characters, which in turn act as components in more
complex characters. Therefore the complex networks of Chinese radicals come into existence and the features
of Chinese characters are explored based on the networks. Just like the word co-occurrence networks, our
Chinese character networks are radical co-occurrence, i.e., two radicals are linked if they appear together
within at least one character. In this paper, we study the network structure of Chinese characters. We
construct a radical network with the commonly used and simplified characters of Modern Chinese. We argue
that this network exhibits the small-world property and special property different from scale-free networks.
We believe and shall argue that these findings are important not only for linguistics, but also for cognitive
science because of the semantic and phonetic structure.

The paper is organized as follows. Section 2 focuses on finding simplified Chinese character construction
principles. In Section 3, results of empirical measurements are presented. Section 4 introduces a new model to
simulate Chinese characters’ formation. In Section 5, the new model is compared to the empirical networks.
Finally, Section 6 ends the paper with discussion and conclusions.

2. Chinese character construction principles

Chinese has many hundreds of thousands of words, most of which are created by combining just a few
thousand characters or radicals. In the terms of their composition, there are six types of characters:
pictographic, indicatives, ideographs, phonetic compounds, mutual explanatory, and phonetic loans. Strictly
speaking, only the first four refer to the ways of composing Chinese characters, the last two are concerned with
the ways to use them. The first two types are single-body, meaning that the character was created
independently from other Chinese characters. More productive for the Chinese script were the next two types,
i.e., the character was created from assembling different characters. The final two types are rarer.

Although more than 85,000 Chinese characters have been created in history, the characters in common use
are about 5000. The Chinese characters studied in this paper are from a dictionary (the 10th edition of
xinhuacidian) which contains 7000 characters, among which 6652 characters can be decomposed by our rules.

According to the characters structure, there are about 214 traditional radicals, which are mainly used to
index and look up characters in the dictionary. In many cases, the decomposed radicals do not exist in the
traditional radicals. It will be incomplete and unreasonable to study the characters structure without such
radicals (characters), so the radicals must be expanded and other new radicals should be added. For instance,
the phono-semantic characters “i5”", “#t”’, and “W)” should be decomposed into “+-”” and “WJ”, “2” and “jf”
and “7” and ‘%]’ according to their phono-semantic structures and cannot be decomposed further. In fact,
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the characters “B”, “gt”” and “‘#]” are not traditional radicals, but in fact they have been treated as radicals in
this work, because of their phono-semantic structure.

Many Chinese characters display hierarchical structure. They look like branching trees of characters based
on their structure. Components (radicals) build up new characters, which in turn act as components in more
complex characters. For example, the character “4%’” should be divided into two parts: ““F”” and “22”. But for
the character %7, it can be divided further into “~” and “#%” (see Table 1 and Fig. 1). According to the tree
structure, the character like “4%” should be decomposed into “4”” and ““%”, but not “4”, “~”’, and “#%”.

Many radicals are distorted or change in form in order to fit into a block with other components. In some
cases, these written forms may have several variants. Some of the most important variant written forms
are as follows: J)— (knife), A »{ (man), .,L.»—p4 (heart), and & »i (dog), etc. Although the
radicals and their variants have the same meanings, they are treated as different radicals due to their different
shapes.

As described above, the character networks are constructed in the following ways: (1) radicals are served as
nodes of the networks; (2) connections exist between two radicals if they can form a character. Let us consider
the networks of Chinese radicals, G, = (W, E;), where W ={w;}, (i=1,...,N) is the set of N, nodes
(radicals) and E; = {w;,w;} is the set of edges or connections (formed characters) between radicals. Here,
&;j = {wi, w;} indicates that there is an edge between radicals w; and w;. Two connected radicals are adjacent
and the degree of a given radical is the number of edges that connect the given radical with other radicals.
Fig. 2 shows what the network looks like.

3. Empirical results

In this section, we will investigate properties of the resulting networks. We quantify the structural properties
of these networks by their characteristic path length L, clustering coefficient C, and degree distribution P(k).
The characteristic path length, L, is the path length averaged over all pairs of nodes. The path length d(i,j) is
the number of edges in the shortest path between nodes i and j. The clustering coefficient is a measure of the
cliqueness of the local neighborhoods. For a node i with &; neighbors, then at most k;(k; — 1)/2 edges can exist
among them. The clustering coefficient C; of the node i is defined as 2e¢;/k;(k; — 1), where ¢; is number of
existing links between the k; neighbors. The clustering coefficient, C, is the average of C; over all the nodes in
the graph. The degree of a vertex in a network is the number of edges incident on (connected to) that vertex.
We define P(k) to be the fraction of vertices in the network that have degree k.

Table 1
The Chinese characters ;}g{- (press) and ,’f(’— (safe), and their corresponding decompositions into radicals

Radical Chinese pronunciation English meaning
~ mian Roof
’gt no Woman
"E‘ an Safe
;Il- shou Hand
;}#’ an Press
B B \

Fig. 1. The illustration of Chinese character decomposition and organizing rule.
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Fig. 2. The illustration of a Chinese character network.

The Chinese character networks we study here contain 1624 nodes (radicals) and 6652 edges (characters).
Our analysis of the networks focuses on five properties [20]: sparsity, short path-lengths, high neighborhood
clustering, degree distributions, and disassortative mixing.

Sparsity: The networks have 1624 nodes, and the average degree or average number of connections (k) is
about 8.19. Given the size of the networks and the number of connections, it can be observed that the
networks are sparse: on average, a node is connected to only a very small percentage of other nodes. The total
edges of the networks, i.e., Chinese characters are 6652. The total edges of the complete graph with 1624 nodes
are C3,, = (1624 x 1623)/(1 x 2). The ratio between them is 0.5%. From the ratio 0.5% and the average
degree (k) = 8.19, we can say that the combination of Chinese characters is sparse.

Short path-lengths: The networks display very short average path-length, i.e., 3.1651 and diameter = 8
relative to the sizes of the networks. For instance, the average path length (L) is about 3 while the maximum
path length (D) is only 8. That is, at most eight associative steps (independent of direction) separate any two
radicals in the 6652 characters. These short path-lengths and small diameters are well-described by random
graphs of equivalent size and density, consistent with Watts and Strogatz’s findings for their small-world
networks [1].

Neighborhood clustering: In addition to a short average path length, the networks have a relatively high
clustering coefficient. Compared with the clustering coefficient C,nq = (k)/N = 0.0050 of a corresponding
random graph, the clustering coefficient C = 0.5311 of the network is about 106 times higher than that of
the random graph. For further comparison, we use the estimate C' = (1/(k)N)(<<k—,:>) — 1)* = 0.4557 (see [14,
Eq. (3)]) for the upper bound of the average clustering coefficient of a network with the same degree
distribution as the original data set, but randomly assigned links. As the values C and C’ show, our network
exhibits a higher average clustering coefficient than the network with links distributed randomly according to
the same degree distribution.

Degree distribution: A vast majority Chinese characters are phono-semantic compounds and the characters
are composed of a meaningful radical (semantic) and a radical used to indicate its pronunciation (phonetic).
Both of them play a different role in the characters’ construction. Generally speaking, the semantic radicals
have high degree and the phonetic radicals have low degree. Moreover, some radicals can serve as semantic
and phonetic radicals in different words. These are the factors which lead to unexpected degree distributions
features and complexity of the net.

Fig. 3 plots the degree distributions for the nodes of the network in three coordinates. The plots show that
the degree distribution for the networks is unlike Poisson, exponential and power-law distributions. Fig. 3(c)
displays that there exist more high degree radicals at the tail than that of the power-law distribution. These
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Fig. 3. The illustration of k — p(k), k — logp(k) and log — log degree distributions.

radicals can be thought of as the hubs of the network. These hubs typically correspond to important radicals,
such as “4” (people), “v” (water), “&” (wood), “k” (fire), “+” (soil), and “4” (metal).

Disassortative mixing: A network is said to show assortative mixing if the nodes in the network that have
many connections tend to be connected to other nodes with many connections, otherwise it is called
disassortative mixing. Social networks display specific features that put them apart from biological and
technological ones. One of these features is assortative mixing [12,35-38] if the networks’ assortative
coefficient r>=0. r (see [35, Eq. (4)]) is defined as

L MYk — MY G+ k)T
S MU+ KD — MU G+ k)P

(1)

where j;, k; are the degrees of the vertices at the ends of the ith edge, withi = 1,..., M, and M is number of the
networks’ edges.

In the Chinese character networks, we calculate the assortative coefficient r = —0.4097. Based on this value,
we can say that unlike other social networks, the Chinese character networks display disassortative feature. In
Section 5, we will explain why it is disassortative mixing (r<0) and how it is advantageous for remembering.

We develop a model that reproduces this feature based on bipartite theory in Sections 4 and 5. The
statistical properties arising from the simulations are in good agreement with those of the empirical Chinese
character networks. The model also gives us an insight into the formation and evolution of Chinese characters.
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4. Simulation of the formation of Chinese characters

More than 90% of Chinese characters takes a compound form, often one is semantic and one phonetic. In
this section, 4952 phono-semantic characters are studied and their formation is simulated. The experiment
results are compared with the empirical phono-semantic results.

The origin of phono-semantic characters can be explained in the following aspects: Firstly, people know the
things from different aspects and at different levels. There may exist close relations among different things. In
Chinese, the things with similar properties are represented by the same semantic radicals. The combinations of
Chinese characters help to remember the characters and corresponding things easily. For example, “l;”
represents mountain, many characters in relation to mountain are created by “i;””: “i%” (top of a mountain),
“F” (mountain), and ‘14 (hill). Water is another example, which is represented by radical “y”. Many
characters related to water are created by ““ 7, such as “3” (river), <y (juice), “7F (sweat), and ‘5" (tear).

Secondly, the generation of Chinese characters has close relations to our everyday life. The more frequently
the things appear in everyday life, the greater possibility the corresponding radicals used to construct new
characters have. For example, everyday we contact people, water, wood, fire, soil, and metal, therefore the
corresponding radicals ““{” (people), 77 (water), “A” (wood), ““k” (fire), ““+ (soil), and ‘%4 (metal) are used
more frequently to construct characters than many other radicals because of their intimate relations to our life.

Thirdly, the generation of Chinese characters also depends on our culture, religious belief, and cognition.
For example, the radical ““%” is related to religious belief. Many characters are constructed by it such as ““u”’
(God), “#” (God of land), “#” (temple), “#¢” (pray), and “#7” (pray).

As most Chinese characters are phono-semantic, they are usually constructed with a phonetic and a
semantic radical (character). It is natural to decompose the phono-semantic characters into two radicals
(parts). Motivated by the empirical observations of the Chinese characters’ formation and their phono-
semantic structure, the following model of a bipartite network is proposed to study the assembly of Chinese
characters. Some nodes in the model represent semantic radicals and the other nodes represent phonetic
radicals. Two different type nodes are linked if they form a character.

A bipartite graph is a triple G = (S, P, E), where S and P are two disjoint sets of vertices, and £ C S x P is
the set of edges between them. The networks can be viewed this way with S being the set of semantic radicals
and P the set of phonetic radicals, each semantic radical being linked to the phonetic radical if they can form a
character or part of it (see Fig. 4). Here 4952 phono-semantic characters are studied. S and P consist of 217
semantic radicals and 1293 phonetic radicals, respectively.

From the empirical networks we can obtain the distribution functions of the semantic and phonetic radicals,
respectively. Here we denote them as p(x;) and ¢(y;). The semantic and phonetic radical sets are represented by
S={x,x2....,xp}, n=217and P = {y},ys,..., Y}, m = 1293. Their corresponding degrees are denoted as
{k1,ks,...,k,} and {v1,vs,...,0,}. The distribution functions are p(x;) = k,-/z;’zlkj and ¢(y;) = vi/z;7’=lvj.

Semantic radicals

7 Ak Kkt

T A B &

Phonetic radicals

Fig. 4. Defining a bipartite graph of phono-semantic association. A set of semantic radicals S is linked to a set of phonetic radicals P. The
Constructed Chal‘aCtel‘S COl’lSiSt Of “4_]_”’ “éF”, LE\}#\??, “;T”, “}&J”’ “‘}ias’ “#Z:,,, u*i”’ “;,,\n’ “IT”, LLJ;:I-H’ “j:X:u and “i&”.
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The procedure of the presented algorithm based on bipartite graph is as follows:

1. Select the iteration step N, where N is the number of the studied Chinese phono-semantic characters
(N = 4952).
2. Randomly select a semantic radical from S, according to the following probability:
ki
X)) == >
p(xi) S %
The selected semantic radical is denoted as x;.
3. Randomly select a phonetic radical from P, according to the following probability:

q() =

i=1,...,n 2

Uj .
> Jj=1,....,m 3)
D eiVe
The selected phonetic radical is denoted as y;.
4. Connect x; and Vjs if there exists a link between them, return to step 3.

5. Numerical results

We have carried out a thorough comparison with the empirical networks and the results are given as below.
Because the models are stochastic, results vary from simulation to simulation. The described assortative
coefficient r,,.,, of the simulating networks is averaged over 50 simulations.

Fig. 5 shows the degree distributions of our model and the empirical character networks. Both of the
networks display a unique degree distribution unlike Poisson, exponential and power-law distributions. The
degree distribution of the simulating networks mimics empirically measured distributions reasonably well.
Although our model based on bipartite graph is different from Barabasi’s preferential attachment model [5], it
still shows preferential attachment feature, i.e., high degree semantic (phonetic) radicals have high probability
to be connected to phonetic (semantic) radicals.

The assortative coefficient from empirical data is r = —0.4024, while the coefficient of simulation result
1S Fean = —0.4291 and its standard deviation is std, = 0.012. These values show that r,,,, does not vary
too much, and it is similar to the empirical assortative coefficient. Unlike many social networks, the networks
display disassortative mixing feature. Since the semantic radicals related to meaning have higher degree
and the phonetic radicals have lower degree, the combination of a semantic radical and a phonetic radical

0 T T T T .

= B - real degree distribution
-0.5 & —©— simulating degree distribution

logp(k)

logk

Fig. 5. The comparison of degree distributions of simulating networks and empirical networks in log-log coordinates.
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shows disassortive feature naturally and reasonably. In addition, the degree distributions of the semantic
and phonetic radicals also influence the disassortative mixing feature. This feature of Chinese characters’
combination agrees with human’s cognitive principle: the semantic radicals related to its meaning are
easy to remember and the phonetic radicals with low degree reduce the burden and complexity of using
them.

By the analysis, we have been able to provide a reasonable explanation for Chinese character structure, i.c.,
they have a non-Poisson distribution and disassortative mixing feature. In addition, the proposed model
explains the origin and formation of Chinese phono-semantic characters. As described above, the high degree
semantic radicals are closely related to our lives and they have high probability to be firstly combined into new
characters. For instance, ““ 7 represents water or behavior and feature related to water; “}” represents foot
or behavior and feature related to foot; “A” represents wood or behavior and feature related to wood; “4”
represents hand or behavior and feature related to hand. The phono-semantic characters like “Ji[”” (river), “¥”°
(sweat), “jf1” (run), ‘4 (column or pole) and 47 (hit) which are related to their relevant high degree radicals
will be likely to be first created. Hence, it implies that the first created characters are more necessary and more
useful for people’s life than later created characters. These characters help people to express their thought and
to communicate easily. Therefore the proposed model can provide a possible way to explain the origin and
formation of the phono-semantic characters.

In this paper, we use the bipartite graph to model the structures of phono-semantic characters. In fact, any
complex network can be viewed as a bipartite graph with some specific characteristics, and its main properties
can be viewed as consequences of this underlying structure, therefore, using bipartite graph to study the
structure properties of all Chinese characters will be our future work.

6. Conclusion and research in the future

Like other complex networks from nature and society, Chinese characters’ networks also show a very short
average distance between nodes, high local clustering, and a non-Poisson distribution. From the networks
analysis, there are a few facts to be pointed out.

(1) Chinese characters have its special organizing principles. First, the radicals based on semantics show that
they have intimate relations to nature, Chinese culture and our life. For example, the radical *“y”” means water
which is absolutely necessary in our life and many things are related to water, therefore the semantic-based
radicals have high degree. Second, the combination of Chinese radicals has hierarchical structure: simple
characters are created with strokes and radicals while complex characters are created with simple characters
and simple radicals. Most of the generated radicals are phonetic-based and their degree is not high. Third, the
empirical networks show small-world characteristics and a property of being different from scale free. These
features ensure the language to be remembered and used efficiently. Fourth, the networks also show
disassortative mixing feature: the high degree radicals (semantic) trend to connect themselves to the low degree
radicals (phonetic).

(2) The construction of Chinese characters has its advantages. First, although there are about 1600 radicals
in the networks, the basic radicals are less than 200 and most other radicals are created by combining them.
That means the construction of a virtually infinite range of character combinations naturally from a limited set
of basic units: semantic and phonetic radicals; Second, the character networks are sparse, and the averaged
degree is small. That means it is not a heavy burden at all for our memory and our brain structure. Third,
statistical properties including short path-length and big clustering coefficient also show that the construction
and the organization of Chinese characters are coherent and integrative. Fourth, most semantic radicals have
higher degree than the phonetic radicals. Because the characters, which they construct, represent related
meanings to them, they are easy to remember semantically. Comparing with the semantic radicals, the
phonetic radicals which have low degree facilitate to remember the same pronunciations of so many characters
constructed by them.

The above features agree with the principle of least effort [39]. Frequent and close interactions between
human and nature strengthen human memory, reduce the burden of storage in the brain, and thus make
characters to be remembered reasonably and efficiently. In some sense, the principle of least effort might shape
the combination and evolution direction of Chinese characters.
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Although the resulting character networks display statistical features very different from random networks,
it does not mean to rule out the random factors. As a complex adaptive system, there do exist random factors
for combination of Chinese characters. Even in scale-free networks, random attachment still plays an
important role as well as preferential attachment. The problem will be considered in the future.

Due to their special features, the formation and evolution of Chinese characters will be very helpful to study
human’s cognitive structure and mechanism. In the future we will focus on the research in that aspect.
In addition, more complex and more realistic model should be considered.
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