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Abstract

Nonnegative Matrix Factorization (NMF) has been
widely used in machine learning and data mining.
It aims to find two nonnegative matrices whose
product can well approximate the nonnegative data
matrix, which naturally lead to parts-based repre-
sentation. In this paper, we present a local learning
regularized nonnegative matrix factorization (LL-
NMF) for clustering. It imposes an additional con-
straint on NMF that the cluster label of each point
can be predicted by the points in its neighbor-
hood. This constraint encodes both the discrimi-
native information and the geometric structure, and
is good at clustering data on manifold. An itera-
tive multiplicative updating algorithm is proposed
to optimize the objective, and its convergence is
guaranteed theoretically. Experiments on many
benchmark data sets demonstrate that the proposed
method outperforms NMF as well as many state of
the art clustering methods.

1 Introduction

Nonnegative Matrix Factorization (NMF) [Lee and Seung,
2000] has been widely used in machine learning and data
mining. It aims to find two nonnegative matrices whose prod-
uct can well approximate the nonnegative data matrix, which
naturally lead to parts-based representation. Recent years,
many variants of NMF have been proposed. [Li et al., 2001]
proposed a local NMF (LNMF) which imposes a spatially
localized constraint on the bases. [Hoyer, 2004] proposed
a NMF with sparseness constraint. [Ding et al., 2008] pro-
posed a semi-NMF approach which relaxes the nonnegative
constraint on the base matrix. [Ding et al., 2006] proposed a
nonnegative matrix tri-factorization for co-clustering. All the
methods mentioned above are unsupervised, while [Wang et
al., 2004] and [Zafeiriou et al., 2006] proposed independently
a discriminative NMF (DNMF), which adds an additional
constraint seeking to maximize the between-class scatter and
minimize the within-class scatter in the subspace spanned by
the bases.

Recent studies show that many real world data are actually
sampled from a nonlinear low dimensional manifold which
is embedded in the high dimensional ambient space [Roweis

and Saul, 2000] [Niyogi, 2003]. Yet NMF does not exploit
the geometric structure of the data. In other word, it assumes
that the data points are sampled from a Euclidean space. This
greatly limits the application of NMF for the data lying on
manifold. To address this problem, [Cai et al., 2008] pro-
posed a graph regularized NMF (GNMF), which assumes that
the nearby data points are likely to be in the same cluster, i.e.
cluster assumption [Chapelle et al., 2006].

In this paper, we present a novel nonnegative matrix fac-
torization method. It is based on the assumption that the clus-
ter label of each point can be predicted by the data points in
its neighborhood, i.e. local learning assumption, which is
the philosophy of local learning algorithm [Bottou and Vap-
nik, 1992]. This assumption is embodied by a local learning
regularization, which exploits both the discriminative infor-
mation and the geometric structure. We constrain the NMF
with local learning regularization, resulting in a local learn-
ing regularized NMF (LLNMF). LLNMF not only inherits
the advantages of NMF, e.g. nonnegativity, but also over-
comes the shortcomings of NMF, i.e. Euclidean assumption
based and does not take into account discriminative informa-
tion. We will show that it can be optimized via an iterative
multiplicative updating algorithm and its convergence is the-
oretically guaranteed. Experiments on many benchmark data
sets demonstrate that the proposed method outperforms NMF
and its variants as well as many other state of the art cluster-
ing algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2 we will briefly review NMF. In Section 3, we present
LLNMF, followed with its optimization algorithm along with
the proof of the convergence of the proposed algorithm. Ex-
periments on many benchmark data sets are demonstrated in
Section 4. Finally, we draw a conclusion in Section 5.

2 A Review of NMF

In this section, we will briefly review NMF [Lee and Seung,
2000]. Given a nonnegative data matrix X = [x1, . . . ,xn] ∈
R

d×n
+ , each column of X is a data point. NMF aims to find

two nonnegative matrices U ∈ R
d×m
+ and V ∈ R

m×n
+ which

minimize the following objective

JNMF = ||X−UV||F ,

s.t. U ≥ 0,V ≥ 0, (1)
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where || · ||F is Frobenius norm. To optimize the objective,
[Lee and Seung, 2000] presented an iterative multiplicative
updating algorithm as follows

Uij ← Uij
(XVT )ij

(UVVT )ij

Vij ← Vij
(UT X)ij

(UT UV)ij
(2)

In the clustering setting of NMF [Xu et al., 2003], V ∈
R

m×n
+ is the cluster assignment matrix where m is the pre-

scribed number of clusters. And the cluster label yi of data
point xi can be calculated as

yi = arg1≤j≤m maxVij (3)

In the rest of this paper, we denote V = [v1, . . . ,vm]T where
vl = [vl

1, . . . , v
l
n]T ∈ R

n
+, 1 ≤ l ≤ m is the row vector of V,

and vl
i is the l-th cluster assignment of xi.

3 The Proposed Method

In this section, we first introduce local learning regulariza-
tion. Then we will present Local learning Regularized Non-
negative Matrix Factorization, followed with its optimization
algorithm. The convergence of the proposed algorithm is also
proved.

3.1 Local Learning Regularization

According to [Bottou and Vapnik, 1992], selecting a good
predictor f in a global way might not be a good strategy
because the function set f(x) may not contain a good pre-
dictor for the entire input space. However, it is much easier
for the set to contain some functions that are capable of pro-
ducing good predictions on some specified regions of the in-
put space. Therefore, if we split the whole input space into
many local regions, then it is usually more effective to mini-
mize predicting cost for each region. This inspires the work
[Wu and Schölkopf, 2006], which adopted supervised learn-
ing idea for unsupervised learning problem. In the following,
we will introduce how to construct the local predictors, and
derive a local learning regularization.

For each data point xi, we use N (xi) to denote its neigh-
borhood. We further construct predicting function f l

i (x), 1 ≤
l ≤ m inN (xi), to predict the cluster label of {xj}xj∈N (xi).
Note that for f l

i (x), the superscript l indicates that it is for
the l-th cluster, while the subscript i means that it is trained
within the neighborhood of xi.

To fit the predictor f l
i (x), we use regularized ridge regres-

sion [Hastie et al., 2001], which minimize the following loss
function

J l
i =

1
ni

∑
xj∈N (xi)

(f l
i (xj)− vl

j)
2 + λi||f l

i ||2I . (4)

where ni is the cardinality of N (xi), vl
j is the l-th cluster

assignment of xj , ||f l
i ||I measures the smoothness of f l

i with
respect to the intrinsic data manifold, λi > 0 is the regulariza-
tion parameter. In this paper, we assume λ1 = . . . = λn = λ
and n1 = n2 = . . . = nn = k, for simplicity.

According to Representor Theorem [Schölkopf and Smola,
2002], we have

f l
i (xi) =

ni∑
j=1

βl
ijK(xi,xj), (5)

where K : X ×X → R is a positive definite kernel function,
and βl

ij are the expansion coefficients. Therefore we have

f l
i = Kiβ

l
i, (6)

where f l
i ∈ R

ni denotes the vector [f l
i (xj)]T ,xj ∈ N (xi),

Ki ∈ R
ni×ni is the kernel matrix defined on the neighbor-

hood of xi, i.e. N (xi), and βl
i = [βi1, . . . , βini ]

T ∈ R
ni×1

is the expansion coefficient vector. Bringing Eq.(5) back into
Eq.(4), we can derive the following loss function

J l
i =

1
ni
||Kiβ

l
i − vl

i||2 + λ(βl
i)

T Kiβ
l
i, (7)

where vl
i ∈ R

ni denotes the vector [vl
j ]

T ,xj ∈ N (xi). By

setting ∂Jl
i

∂βl
i

= 0, we can get that

βl
i = (Ki + niλI)−1vl

i. (8)

where I ∈ R
ni×ni is the identity matrix. Substituting Eq.(8)

into Eq.(5), we have

f l
i (xi) = kT

i (Ki + niλI)−1vl
i = αT

i vl
i, (9)

where ki ∈ R
ni denotes the vector [k(xi,xj)]T ,xj ∈

N (xi), and αi = [αi1, . . . , αini
]T ∈ R

ni×1.
After the local predictors are constructed, we will combine

them together by minimizing the sum of their prediction er-
rors

J =
m∑

l=1

n∑
i=1

||f l
i (xi)− vl

i||2 (10)

Substitute Eq.(9) into Eq.(10), we obtain

J =
m∑

l=1

n∑
i=1

||kT
i (Ki + niλI)−1vl

i − vl
i||2

=
m∑

l=1

||Gvl − vl||2

= tr(V(G− I)(G− I)VT )

= tr(VLVT ) (11)

where vl = [vl
1, . . . , v

l
n]T ∈ R

n is the l-th row of V, I ∈
R

n×n is identity matrix, L = (G−I)(G−I) and G ∈ R
n×n

is defined as follows

Gij =
{

αij , if xj ∈ N (xi)
0, otherwise. (12)

Eq.(11) is called as Local Learning Regularization. The bet-
ter the cluster label of each point is predicted by the data
points in its neighborhood, the smaller the local learning reg-
ularizer will be.

1047

https://www.researchgate.net/publication/239727257_The_Elements_of_Statistical_Learning_Theory?el=1_x_8&enrichId=rgreq-6715f27d39908fb5e4881df285f7558f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgxMzcxNDtBUzoyNTU5MTUyODI2NjEzNzdAMTQzODAyNjM2NjE4NQ==
https://www.researchgate.net/publication/221996831_Learning_With_Kernels?el=1_x_8&enrichId=rgreq-6715f27d39908fb5e4881df285f7558f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgxMzcxNDtBUzoyNTU5MTUyODI2NjEzNzdAMTQzODAyNjM2NjE4NQ==
https://www.researchgate.net/publication/221996831_Learning_With_Kernels?el=1_x_8&enrichId=rgreq-6715f27d39908fb5e4881df285f7558f-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgxMzcxNDtBUzoyNTU5MTUyODI2NjEzNzdAMTQzODAyNjM2NjE4NQ==


3.2 Local Learning Regularized NMF

Our assumption is that the cluster label of each point can be
predicted by the data points in its neighborhood. To apply
this idea for NMF, we constrain NMF in Eq.(1) with local
learning regularization in Eq.(11) as follows

JLLNMF = ||X−UV||2F + μtr(VLVT ),
s.t. U ≥ 0,V ≥ 0, (13)

where μ is a positive regularization parameter controlling the
contribution of the additional constraint. We call Eq.(13)
as Local Learning Regularized Nonnegative Matrix Factor-
ization (LLNMF). Letting μ = 0, Eq.(13) degenerates to
the original NMF. To make the objective in Eq.(13) lower
bounded, we use L2 normalization on rows of V in the opti-
mization, and compensate the norms of V to U.

In the following, we will give the solution to Eq.(13).
Since U ≥ 0, V ≥ 0, we introduce the Lagrangian multi-

plier γ ∈ R
d×m and η ∈ R

m×n, thus, the Lagrangian func-
tion is

L(U,V) = ||X−UV||2F + μtr(VLVT )

− tr(γUT )− tr(ηVT ) (14)

Setting ∂L(U,V)
∂U = 0 and ∂L(U,V)

∂V = 0, we obtain

γ = −2XVT + 2UVVT

η = −2UT X + 2UT UV + 2μVL (15)

Using the Karush-Kuhn-Tucker condition [Boyd and Vanden-
berghe, 2004] γijUij = 0 and ηijVij = 0, we get

(−XVT + UVVT )ijUij = 0

(−UT X + UT UV + μVL)ijVij = 0 (16)

Introduce
L = L+ − L− (17)

where L+
ij = (|Lij |+ Lij)/2 and L−

ij = (|Lij | − Lij)/2.
Substitute Eq.(17) into Eq.(16), we obtain

(−XVT + UVVT )ijUij = 0

(−UT X + UT UV + μVL+ − μVL−)ijVij = 0
(18)

Eq.(18) leads to the following updating formula

Uij ← Uij

√
(XVT )ij

(UVVT )ij

Vij ← Vij

√
(UT X + μVL−)ij

(UT UV + μVL+)ij
(19)

3.3 Convergence Analysis

In this section, we will investigate the convergence of the up-
dating formula in Eq.(19). We use the auxiliary function ap-
proach [Lee and Seung, 2000] to prove the convergence. Here
we first introduce the definition of auxiliary function [Lee and
Seung, 2000].

Definition 3.1. [Lee and Seung, 2000] Z(h, h′) is an auxil-
iary function for F (h) if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h),

are satisfied.
Lemma 3.2. [Lee and Seung, 2000] If Z is an auxiliary func-
tion for F , then F is non-increasing under the update

h(t+1) = arg min
h

Z(h, h(t))

Proof. F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) =
F (h(t))

Lemma 3.3. [Ding et al., 2008] For any nonnegative matri-
ces A ∈ R

n×n, B ∈ R
k×k, S ∈ R

n×k,S′ ∈ R
n×k, and A,

B are symmetric, then the following inequality holds
n∑

i=1

k∑
p=1

(AS′B)ipS2
ip

S′
ip

≥ tr(ST ASB)

Theorem 3.4. Let

J(U) = tr(−2XT UV + VT UT UV) (20)

Then the following function

Z(U,U′) = −2
∑
ij

(XVT )ijU′
ij(1 + log

Uij

U′
ij

)

+
∑
ij

(U′VVT )ijU2
ij

U′
ij

is an auxiliary function for J(U). Furthermore, it is a convex
function in U and its global minimum is

Uij = Uij

√
(XVT )ij

(UVVT )ij
(21)

Proof. See Appendix A

Theorem 3.5. Updating U using Eq.(19) will monotonically
decrease the value of the objective in Eq.(13), hence it con-
verges.

Proof. By Lemma 3.2 and Theorem 3.4, we can get that
J(U0) = Z(U0,U0) ≥ Z(U1,U0) ≥ J(U1) ≥ . . . So
J(U) is monotonically decreasing. Since J(U) is obviously
bounded below, we prove this theorem.

Theorem 3.6. Let

J(V) = tr(−2XT UV + VT UT UV − μVLVT ) (22)

Then the following function

Z(V,V′) =
∑
ij

(UT UV′)ijV2
ij

V′
ij

+ μ
∑
ij

(V′L−)ijV2
ij

V′
ij

−
∑
ij

(UT X)ijV′
ij(1 + log

Vij

V′
ij

)

− μ
∑
ijk

L+
jkV

′
ijV

′
ik(1 + log

VijVik

V′
ijV

′
ik

)
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is an auxiliary function for J(V). Furthermore, it is a convex
function in V and its global minimum is

Vij = Vij

√
(UT X + μVL+)ij

(UT UV + μVL−)ij
(23)

Proof. See Appendix B

Theorem 3.7. Updating V using Eq.(19) will monotonically
decrease the value of the objective in Eq.(13), hence it con-
verges.

Proof. By Lemma 3.2 and Theorem 3.6, we can get that
J(V0) = Z(V0,V0) ≥ Z(V1,V0) ≥ J(V1) ≥ . . . So
J(V) is monotonically decreasing. Since J(V) is obviously
bounded below, we prove this theorem.

4 Experiments

In this section, we evaluate the performance of the proposed
method. We compare our method with Kmeans, Normalized
Cut (NC) [Shi and Malik, 2000], Local Learning Cluster-
ing (LLC) [Wu and Schölkopf, 2006], NMF [Lee and Seung,
2000], Semi-NMF [Ding et al., 2008], Orthogonal Nonneg-
ative Matrix Tri-Factorization (ONMTF) [Ding et al., 2006]
and GNMF [Cai et al., 2008].

4.1 Evaluation Metrics

To evaluate the clustering results, we adopt the performance
measures used in [Cai et al., 2008]. These performance mea-
sures are the standard measures widely used for clustering.

Clustering Accuracy Clustering Accuracy discovers the
one-to-one relationship between clusters and classes and
measures the extent to which each cluster contained data
points from the corresponding class. Clustering Accuracy is
defined as follows:

Acc =
∑n

i=1 δ(map(ri), li)
n

, (24)

where ri denotes the cluster label of xi, and li denotes the
true class label, n is the total number of documents, δ(x, y)
is the delta function that equals one if x = y and equals zero
otherwise, and map(ri) is the permutation mapping function
that maps each cluster label ri to the equivalent label from the
data set.

Normalized Mutual Information The second measure is
the Normalized Mutual Information (NMI), which is used for
determining the quality of clusters. Given a clustering result,
the NMI is estimated by

NMI =

∑C
k=1

∑C
m=1 nk,m log nnk,m

nkn̂m√
(
∑C

k=1 nk log nk

n )(
∑C

m=1 n̂m log n̂m

n )
, (25)

where nk denotes the number of data contained in the cluster
Dk(1 ≤ k ≤ C), n̂m is the number of data belonging to the
Lm(1 ≤ m ≤ C), and nk,m denotes the number of data that
are in the intersection between the cluster Dk and the class
Lm. The larger the NMI is, the better the clustering result
will be.

4.2 Data Sets

In our experiment, we use 6 data sets which are widely used
as benchmark data sets in clustering literature [Cai et al.,
2008] [Ding et al., 2006].

Coil201 This data set contains 32×32 gray scale images of
20 3D objects viewed from varying angles. For each object
there are 72 images.

PIE The CMU PIE face database [Sim et al., 2003] con-
tains 68 individuals with 41368 face images as a whole. The
face images were captured by 13 synchronized cameras and
21 flashes, under varying pose, illumination and expression.
All the images were also resized to 32× 32.

CSTR This is the data set of the abstracts of technical re-
ports published in the Department of Computer Science at a
university. The data set contained 476 abstracts, which were
divided into four research areas: Natural Language Process-
ing (NLP), Robotics/Vision, Systems and Theory.

Newsgroup4 The Newsgroup4 data set used in our exper-
iments is selected from the famous 20-newsgroups data set2.
The topic rec containing autos, motorcycles, baseball and
hockey was selected from the version 20news-18828. The
Newsgroup4 data set contains 3970 documents.

WebKB4 The WebKB dataset contains webpages gath-
ered from university computer science departments. There
are about 8280 documents and they are divided into 7 cate-
gories: student, faculty, staff, course, project, department and
other, among which student, faculty, course and project are
four most populous entity-representing categories.

WebACE The data set contains 2340 documents consist-
ing of news articles from Reuters new service via the Web in
October 1997. These documents are divided into 20 classes.

Table.1 summarizes the characteristics of the real world
data sets used in this experiment.

Table 1: Description of the real world datasets
Data Sets #samples #features #classes

Coil20 1440 1024 20
PIE 1428 1024 68

CSTR 476 1000 4
Newsgroup4 3970 1000 4

WebKB4 4199 1000 4
WebACE 2340 1000 20

4.3 Parameter Settings

Since many clustering algorithms have one or more parame-
ters to be tuned, under each parameter setting, we repeat clus-
tering 20 times, and the mean result is computed. We report
the best mean result for each method to compare with each
other. We set the number of clusters equal to the true number
of classes for all the data sets and clustering algorithms.

For NC [Shi and Malik, 2000], the scale parameter of
Gaussian kernel for constructing adjacency matrix is set by
the grid {10−3, 10−2, 10−1, 1, 10, 102, 103}.

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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For LLC, the neighborhood size for computing the
local learning regularization is determined by the grid
{5, 10, 20, 30, 40, 50, 80} according to [Wu and Schölkopf,
2006]. For the image datasets (e.g. Coil20, PIE), Gaussian
kernel is used with the scale parameter tuned the same as in
NC, while for the text datasets (e.g. CSTR, Newsgroup4, We-
bKB4, WebACE), the cosine kernel is adopted.

For ONMTF, the number of word clusters is set to be the
same as the number of document clusters, i.e. the true number
of classes in our experiment, according to [Ding et al., 2006].

For GNMF, the neighborhood size to construct the graph
is set by search the grid {1, 2, 3, . . . , 10} according to [Cai et
al., 2008], and the regularization parameter is set by the grid
{0.1, 1, 10, 100, 500, 1000}.

For the proposed algorithm, the neighborhood size k
for computing the local learning regularization is de-
termined by the grid {5, 10, 20, 30, 40, 50, 80}, and the
regularization parameter μ is set by search the grid
{0.1, 1, 10, 100, 500, 1000}. Kernel selection is the same as
that in LLC.

Note that no parameter selection is needed for Kmeans,
NMF and Semi-NMF, given the number of clusters.

4.4 Clustering Results

The clustering results are shown in Table 2 and Table 3. Ta-
ble 2 shows the clustering accuracy of all the algorithms on
all the data sets, while Table 3 shows the normalized mutual
information.

We can see that our method outperforms the other clus-
tering methods on all the data sets. The superiority of our
method may arise in the following two aspects: (1) the local
learning assumption, which is usually more powerful than
cluster assumption [Chapelle et al., 2006] [Cai et al., 2008]
for clustering data on manifold. (2) the nonnegativity, inher-
iting from NMF, which is suitable for nonnegative data, e.g.
image data and text data.

5 Conclusion

In this paper, we present a local learning regularized non-
negative matrix factorization (LLNMF) for clustering, which
considers both the discriminative information and the geo-
metric structure. The convergence of the proposed algorithm
is proved theoretically. Experiments on many benchmark
data sets demonstrate that the proposed method outperforms
NMF as well as many state of the art clustering methods.
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A Proof of Theorem 3.4

Proof. We rewrite Eq.(20) as

L(U) = tr(−2VXT U + UVVT UT ) (26)

By applying Lemma 3.3, we have

tr(UVVT UT ) ≤
∑
ij

(U′VVT )ijU2
ij

U′
ij

To obtain the lower bound for the remaining terms, we use
the inequality that

z ≥ 1 + log z,∀z > 0 (27)

Then

tr(VXT U) ≥
∑
ij

(XVT )ijU′
ij(1 + log

Uij

U′
ij

)

By summing over all the bounds, we can get Z(U,U′),
which obviously satisfies (1) Z(U,U′) ≥ JLLNMF (U);
(2)Z(U,U) = JLLNMF (U)

To find the minimum of Z(U,U′), we take the Hessian
matrix of Z(U,U′)

∂2Z(U,U′)
∂Uij∂Ukl

= δikδjl(
2(U′VVT )ij

U′
ij

+ 2(XVT )ij

U′
ij

U2
ij

)

which is a diagonal matrix with positive diagonal elements.
So Z(U,U′) is a convex function of U, and we can obtain
the global minimum of Z(U,U′) by setting ∂Z(U,U′)

∂Uij
= 0

and solving for U, from which we can get Eq.(21).

B Proof of Theorem 3.6

Proof. We rewrite Eq.(22) as

L(V) = tr(−2XT UV + VT UT UV − μVL+VT

+ μVL−VT ) (28)

By applying Lemma 3.3, we have

tr(VT UT UV) ≤
∑
ij

(UT UV′)ijV2
ij

V′
ij

tr(VL−VT ) ≤
∑
ij

(V′L−)ijV2
ij

V′
ij

By the inequality in Eq.(27), we have

tr(XT UV) ≥
∑
ij

(UT X)ijV′
ij(1 + log

Vij

V′
ij

)

tr(VL+VT ) ≥
∑
ijk

L+
jkV

′
ijV

′
ik(1 + log

VijVik

V′
ijV

′
ik

)

By summing over all the bounds, we can get Z(V,V′),
which obviously satisfies (1) Z(V,V′) ≥ JLLNMF (V);
(2)Z(V,V) = JLLNMF (V)

To find the minimum of Z(V,V′), we take the Hessian
matrix of Z(V,V′)

∂2Z(V,V′)
∂Vij∂Vkl

= δikδjl(
2(UT X + 2μL+)ijV′

ij

V2
ij

+
2(UT UV′ + μV′L−)ij

V′
ij

)
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Table 2: Clustering Accuracy of the 8 algorithms on the 6 data sets.
Data Sets Kmeans NC LLC NMF SNMF ONMTF GNMF LLNMF

Coil20 0.5864 0.6056 0.7174 0.4517 0.3678 0.5527 0.6665 0.7311

PIE 0.3018 0.3880 0.7290 0.3952 0.2975 0.3351 0.7583 0.7647

CSTR 0.7634 0.6597 0.7483 0.7597 0.6976 0.7700 0.7437 0.7768

Newsgroup4 0.8158 0.6056 0.7275 0.8805 0.8214 0.8399 0.8877 0.9000

WebKB4 0.6973 0.6716 0.7008 0.6659 0.6214 0.6885 0.7264 0.7567

WebACE 0.5142 0.4679 0.4397 0.4936 0.4007 0.5415 0.5047 0.5791

Table 3: Normalized Mutual Information of the 8 algorithms on the 6 data sets.
Data Sets Kmeans NC LLC NMF SNMF ONMTF GNMF LLNMF

Coil20 0.7588 0.7407 0.8011 0.5954 0.4585 0.7110 0.8136 0.8532

PIE 0.6276 0.6843 0.9343 0.6743 0.5430 0.6787 0.9368 0.9423

CSTR 0.6531 0.5761 0.5787 0.6645 0.5941 0.6716 0.6302 0.6887

Newsgroup4 0.7129 0.7212 0.6100 0.7294 0.6432 0.7053 0.7106 0.7334

WebKB4 0.4665 0.4437 0.4476 0.4255 0.3643 0.4552 0.4571 0.4755

WebACE 0.6157 0.5959 0.4996 0.5850 0.4649 0.6012 0.6007 0.6373

which is a diagonal matrix with positive diagonal elements.
So Z(V,V′) is a convex function of V, and we can obtain
the global minimum of Z(V,V′) by setting ∂Z(V,V′)

∂Vij
= 0

and solving for V, from which we can get Eq.(23).
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