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ABSTRACT

Maximum Margin Criterion is a well-known method for fea-

ture extraction and dimensionality reduction. In this paper,

we propose a novel feature extraction method, namely Two

Dimensional Maximum Margin Criterion (2DMMC), specif-

ically for matrix representation data, e.g. images. 2DMMC

aims to find two orthogonal projection matrices to project the

original matrices to a low dimensional matrix subspace, in

which a sample is close to those in the same class but far from

those in different classes. Both theoretical analysis and exper-

iments on benchmark face recognition data sets illustrate that

the proposed method is very effective and efficient.

Index Terms— Maximum Margin Criterion, Two Di-

mensional, Feature Extraction

1. INTRODUCTION

Feature extraction is an important topic in machine learning.

The most popular unsupervised feature extraction method is

principal component analysis (PCA). It aims to find a sub-

space in which the variance of the projected data is maximum.

Since PCA does not take into account the class information,

the features extracted are not very suitable for classification.

Linear discriminant analysis (LDA) [1] is a supervised

method which has been shown to be more effective than PCA

[2]. It is based on Fisher Criterion, which aims to maximize

the between class distance and minimize the within class dis-

tance, i.e.

max tr((WT SwW)−1(WT SbW)), (1)

where Sb =
∑c

i=1 ni(mi−m)(mi−m)T is called between-

class scatter matrix, mi and ni are mean vector and size of

class i respectively, m = 1
n

∑c
i=1 nimi is the overall mean

vector, Sw =
∑c

i=1 Si is the within-class scatter matrix, Si is

the covariance matrix of class i. However, LDA suffers sev-

eral drawbacks: (1) small sample size (SSS) problem: when
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the size of the dataset is small, the within-class scatter ma-

trix Sw will be singular which makes the generalized eigen-

problem cannot be solved; (2) it can only extract at most c−1
features where c is the number of classes.

The essence of these drawbacks of LDA mentioned above

owes to Fisher Criterion in Eq.(1), a promising alternative is

Maximum Margin Criterion [3], i.e.

max tr(WT (Sb − λSw)W), (2)

where tr(·) denotes the matrix trace and WT W = I, λ is a

weighted parameter. MMC aims to find a subspace in which a

sample is close to those in the same class but far from those in

different classes. It should be noted that in the original MMC

[3], λ is set to 1. MMC does not have the problem which LDA

has. So MMC is usually a more efficient and robust feature

extraction method.

The methods discussed above are all based on vector data.

However, many real world data, e.g. image, is usually repre-

sented by matrix. When the image matrix is transformed into

a vector, the image is usually represented in a very high di-

mensional feature space, which results in the curse of dimen-
sionality. Furthermore, when we transform the image into

a vector, the intrinsic spatial structure is lost. To overcome

these problems, [4] proposed a generalized low-rank approx-

imation of matrices (GLRAM) which can be seen as two di-

mensional PCA (2DPCA). And [5] proposed a two dimen-

sional LDA (2DLDA), which can implicitly resolve the SSS

problem suffered by LDA. These 2D methods are more com-

putationally efficient than their 1D counterparts respectively.

Furthermore, due to preserving the intrinsic spatial informa-

tion of data matrix, both GLRAM and 2DLDA are evaluated

empirically to be more effective than PCA and LDA respec-

tively [4] [5].

In this paper, we propose Two Dimensional Maximum

Margin Criterion (2DMMC), specifically for matrix represen-

tation data, e.g. image. 2DMMC aims to find two orthogonal

projection matrices to project the original matrices to a low

dimensional matrix subspace, in which a sample is close to

those in the same class but far from those in different classes.

In contrast to 2DLDA, the main advantage of 2DMMC is that
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its convergence is rigorously guaranteed, and empirical study

shows that it converges very fast, which makes the algorithm

very stable and efficient. In addition, 2DMMC owns all the

good properties that MMC has. As a result, 2DMMC usu-

ally outperforms 2DLDA. Both theoretical analysis and ex-

periments on benchmark face recognition data sets illustrate

that the proposed method is very effective and efficient.

The remainder of this paper is organized as follows. In

Section 2 we will propose two dimensional Maximum Mar-

gin Criterion. The experiments on standard face recognition

data sets are demonstrated in Section 3. Finally, we draw a

conclusion in Section 4.

2. THE PROPOSED METHOD

2.1. 2D Maximum Margin Criterion

In 2DMMC, we consider data with matrix representation. Let

Xi ∈ R
r×c, i = 1, 2, . . . , n, be the n images in the dataset

belonging to {Cj}c
j=1. 2DMMC aims to find two orthogonal

transformation matrices U ∈ R
r×l1 and V ∈ R

c×l2 , that map

each Xi to Yi ∈ R
l1×l2 , such that Yi = UT XiV,UT U =

I,VT V = I.

A natural similarity metric between matrices is the Frobe-

nius norm. Under this metric, the within class and between

class scatter matrices in vector space can be generalized to

matrix space

Sw =
c∑

i=1

∑

X∈Ci

||X − Mi||2F ,

Sb =
c∑

i=1

ni||Mi − M||2F , (3)

where Mi =
∑

X∈Ci
X and ni are the mean matrix and size

of class i respectively, and M = 1
n

∑c
i=1 niMi is the overall

mean matrix.

By ||A||2F = tr(AAT ), we can rewrite Eq.(3) as

Sw = tr(
c∑

i=1

∑

X∈Ci

(X − Mi)(X − Mi)T )

Sb = tr(
c∑

i=1

ni(Mi − M)(Mi − M)T )

(4)

In the low dimensional space resulting from the linear

transformation U and V, the within class and between class

scatter matrices are

S̃w = tr(
c∑

i=1

∑

X∈Ci

UT (X − Mi)VVT (X − Mi)T U)

S̃b = tr(
c∑

i=1

niUT (Mi − M)VVT (Mi − M)T U)

(5)

By Maximum Margin Criterion, the optimal transforma-

tion is obtained by maximizing

S̃b − λS̃w. (6)

where λ is a weighted parameter.

As we see, the optimization is with respect to U and V.

And we cannot give a closed form solution. In the follow-

ing, we will present an alternating scheme to optimize the

objective. In other word, we will optimize the objective with

respect to U (or V) when fixing V (or U). This procedure re-

peats until convergence (in our experiment, we prescribe the

maximum number of iterations).

2.2. Computation of U

In order to compute U, we first fix V, Eq.(6) can be written

as

S̃b − λS̃w

= UT (SV
b − λSV

w )U, (7)

where SV
b =

∑c
i=1

∑
X∈Ci

(X − Mi)VVT (X − Mi)T and

SV
w =

∑c
i=1 ni(Mi − M)VVT (Mi − M)T .

For fixed V, the optimal U can be computed by solving a

eigen-decomposition on SV
b − λSV

w , i.e. is composed of the

l1 eigenvectors corresponding to the largest l1 eigenvalues of

SV
b − λSV

w .

2.3. Computation of V

In order to compute V, similar with the computation of U,

we first fix U. By the property tr(AAT ) = tr(AT A), then

Eq.(6) can also be written as

S̃b − λS̃w

= VT (SU
b − λSU

w )V, (8)

where SU
b =

∑c
i=1

∑
X∈Ci

(X − Mi)UUT (X − Mi)T and

SU
w =

∑c
i=1 ni(Mi − M)UUT (Mi − M)T .

For fixed U, the optimal V can be computed by solving a

eigen-decomposition on SU
b − λSU

w , i.e. is composed of the

l2 eigenvectors corresponding to the largest l2 eigenvalues of

SU
b − λSU

w .

We summarize the 2DMMC as in Algorithm 1

2.4. Convergence Analysis

We propose a theorem, which governs the convergence of

2DMMC.

Theorem 1 Algorithm 1 monotonically increases the

value of objective in Eq.(6), hence it converges.

proof: define f(U,V) = S̃b − λS̃w,

since f(U,V(t)) ≤ f(U(t+1),V(t)),∀U ∈ R
r×l1 ,

then

f(U(t),V(t)) ≤ f(U(t+1),V(t)) (9)
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Algorithm 1 Two Dimensional Maximum Margin Criterion

Input:Training set {Xi}n
i=1, desired dimensionality l1, l2,

maximum number of iterations T ;

Output:U ∈ R
r×l1 ,V ∈ R

r×l2 ;

1.Initialize t = 0 and V(0) with any orthogonal matrix;

2.While not convergent and t ≤ T
3.Compute SV

b =
∑c

i=1

∑
X∈Ci

(X − Mi)V(t)V(t)T (X −
Mi)T , SV

w =
∑c

i=1 ni(Mi − M)V(t)V(t)T (Mi − M)T ;

4.Compute the l1 eigenvectors corresponding to the largest l1
eigenvalues of SV

b − λSV
w to form U(t);

5.Compute SU
b =

∑c
i=1

∑
X∈Ci

(X − Mi)U(t)U(t)T (X −
Mi)T , SU

w =
∑c

i=1 ni(Mi − M)U(t)U(t)T (Mi − M)T ;

6.Compute the l2 eigenvectors corresponding to the largest l2
eigenvalues of SU

b − λSU
w to form V(t+1);

7.t = t + 1;

8.EndWhile

On the other hand,

since f(U(t+1),V) ≤ f(U(t+1),V(t+1)),∀V ∈ R
r×l2 ,

then

f(U(t+1),V(t)) ≤ f(U(t+1),V(t+1)) (10)

Hence by Eq.(9) and Eq.(10), we have

f(U(t),V(t)) ≤ f(U(t+1),V(t+1)) (11)

Therefore, the value of objective in Eq.(6) will monotonically

increase until convergence. This completes the proof.

However, the convergence of 2DLDA is not theoretically

guaranteed.

2.5. Computational Complexity Analysis

The computation of 2DMMC is very efficient. It can be ob-

tained by solving two eigen-decomposition in each iteration.

The matrices in the eigen-decomposition are of size l1 × l1
or l2 × l2 in 2DMMC, so the overall computation complexity

of 2DMMC is O(t(l31 + l32)) where t is the number of itera-

tions. On the other hand, the matrix eigen-decomposition is

of size rc × rc in PCA, LDA and MMC, so the overall com-

putation complexity of PCA, LDA and MMC is O((rc)3)).
Since the convergence of Algorithm 1 is usually very fast,

e.g. about t = 4 iterations in our experiment, we can see that

O(t(l31 + l32)) is much smaller than O((rc)3)).

3. EXPERIMENTS

In this section, we investigate the performance of the pro-

posed algorithm for face recognition. We compare our

method with PCA, LDA, MMC [3], GLRAM [4], and

2DLDA [5].

3.1. Data Sets

In our experiment, we use two standard face recognition

databases which are widely used as bench mark data sets in

feature extraction literature.

The ORL face database1. There are ten images for each

of the 40 human subjects, which were taken at different times,

varying the lighting, facial expressions and facial details. The

original images (with 256 gray levels) have size 92 × 112,

which are resized to 32 × 32 for efficiency;

The Yale face database2. It contains 11 gray scale images

for each of the 15 individuals. The images demonstrate varia-

tions in lighting condition, facial expression and with/without

glasses. In our experiment, the images were also resized to

32 × 32;

3.2. Parameter Settings

For each individual, p = 2, 3, 4 images were randomly se-

lected as training samples, and the rest were used for testing.

The training set was used to learn a subspace, and the recog-

nition was performed in the subspace by Nearest Neighbor

Classifier. Since the training set was randomly chosen, we re-

peated each experiment 20 times and calculated the average

recognition accuracy. In general, the recognition rate varies

with the dimensionality of the subspace. The best perfor-

mance obtained as well as the corresponding dimensionality

is reported.

For LDA, as in [2], we first use PCA to reduce the di-

mensionality to n − c and then perform LDA. For MMC and

2DMMC, the parameter λ in Eq.(6) is set as trSb

trSw
according

to [6]. For GLRAM, 2DLDA, 2DMMC, we set l1 = l2 and

search the grid {1, 2, . . . , 20}, and prescribe the maximum

number of iterations as 20. The best performance is reported.

3.3. Comparative Study on Classification Accuracy

Table 1 and Table 2 show the experimental results of all the

methods on the two databases respectively, where the value

in each entry represents the average recognition accuracy of

20 independent trials, and the number in brackets is the cor-

responding projection dimensionality.

It is clear that our method outperforms the other feature

extraction methods significantly on both of the two data sets.

3.4. Comparative Study on Convergence

In this subsection, we investigate the convergence of 2DMMC

in comparison with GLRAM and 2DLDA. Take Yale data set

where p = 2 for example. The result are shown in Fig.1,

where the horizontal axis denotes the number of iterations,

and the vertical axis denotes the classification accuracy. Since

the convergence of 2DMMC is rigorously guaranteed, we can

1http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Table 1. Face Recognition accuracy of different algorithms

on the ORL database. The number in brackets is the corre-

sponding projection dimensionality.

Method 2 Train 3 Train 4 Train

PCA 70.67(79) 78.88(118) 84.21(152)

LDA 72.80(25) 83.79(39) 90.13(39)

MMC 77.97(39) 86.32(39) 91.63(39)

GLRAM 71.30(17×17) 79.84(11×11) 84.73(16×16)

2DLDA 78.13(11×11) 86.79(16×16) 92.08(15×15)

2DMMC 78.75(12×12) 87.50(10×10) 92.92(8×8)

Table 2. Face Recognition accuracy of different algorithms

on the Yale database. The number in brackets is the corre-

sponding projection dimensionality.

Method 2 Train 3 Train 4 Train

PCA 46.04(29) 49.96(44) 55.67(58)

LDA 42.81(11) 60.33(14) 68.10(13)

MMC 52.37(14) 61.83(14) 67.95(15)

GLRAM 49.33(6×6) 54.17(6×6) 57.76(5×5)

2DLDA 44.37(7×7) 59.71(5×5) 68.71(5×5)

2DMMC 54.37(6×6) 63.50(9×9) 68.86(15×15)

see that the classification accuracy gets stable very fast. In

contrast, since the convergence of 2DLDA is not guaranteed,

the classification accuracy is fluctuated and not stable. As a

result, 2DMMC usually needs only several iterations, which

makes it very efficient (See Section 3.5). It should be noted

that GLRAM is also guaranteed to converge [4], so its classi-

fication accuracy also gets stable after only several iterations.

Fig. 1. Face Recognition accuracy with respect to the number

of iterations on the Yale database with p=2 training samples.

3.5. Comparative Study on Efficiency

In this subsection, we investigate the computational efficiency

of all the methods. We take ORL and Yale data sets where p =
2 for example. The result are shown in Fig.2. We can see that

MMC outperforms PCA and LDA in classification accuracy

(see Section 3.3) at the expense of high computational cost,

while 2DMMC not only outperforms all the other methods,

but also is very computational efficient. In addition, 2DMMC

and GLRAM are more efficient than 2DLDA due to their fast

convergence (see Section 3.4) while 2DLDA usually will not

get stable until the maximum number of iterations.

Fig. 2. Training time of all the methods on ORL and Yale data

sets with p=2 training samples.

4. CONCLUSIONS

In this paper, we propose a novel Maximum Margin Criterion

method, namely Two Dimensional Maximum Margin Crite-

rion (2DMMC), specifically for matrix representation data,

e.g. images. Both theoretical analysis and experiments on

benchmark face recognition data sets illustrate that the pro-

posed method is very effective and efficient.
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