
ADAPTIVE INCREMENTAL VIDEO SUPER-RESOLUTION WITH TEMPORAL
CONSISTENCY

Heng Su1, Ying Wu2, Jie Zhou3

1,3Dept. of Automation, Tsinghua Univ., China; 2Dept. of EECS, Northwestern Univ., US

ABSTRACT

Video super-resolution can be generally divided into two categories:
incremental video super-resolution and simultaneous video super-
resolution. Incremental video super-resolution algorithms are usual-
ly faster, but their results cannot be guaranteed to be visually con-
sistent to the human vision system. An adaptive incremental video
super-resolution framework with the temporal consistency constraint
is proposed in this paper. The temporal consistency among the video
frames is enforced by imposing the similarity between the adjacent
reconstructed HR frames. The variances of the potential functions,
which affect the weights of the different terms in the utility function,
are adaptively determined so that the algorithm is robust to various
motion and image content situations. Some considerations, such as
the incremental motion estimation, are also incorporated to improve
the efficiency of the algorithm, which makes the proposed algorithm
near-realtime. The experimental results show that the proposed al-
gorithm can generate HR video with high quality while saving the
computational time as well.

Index Terms— Video super-resolution, temporal consistency,
human vision system, adaptive framework

1. INTRODUCTION

Given a set of successive low-resolution(LR) frames, the purpose
of reconstruction-based super-resolution(SR) technique is to recov-
er the high-resolution(HR) version of a specific frame or the entire
HR video. The super-resolution technique is first introduced in [1],
which is essentially a highly ill-posed signal reconstruction prob-
lem. When the output is restricted to HR videos, the problem can
be addressed as video super-resolution[2][3][4][5][6], while in this
paper we call it image super-resolution when only one HR frame is
required (e.g. [7][8]). The application of video SR includes video
enhancement, video compression, visual surveillance, etc.

Intuitively, video SR can be performed by super-resolving the
video frames one-by-one using image SR methods, which is the idea
of most incremental video SR methods (e.g. [4][5]) (see Fig.1(a)).
In this way video SR is merely a batch process of image SR algo-
rithms. The question is, what are the differences between image SR
and video SR? What can we benefit from extending from image SR
to video SR? The answer could be in the following two aspects:

1. Video SR could be performed faster than applying image SR
to each input frame, by saving the redundant computation;
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Fig. 1. The paradigms of conventional video SR algorithms. Yt and
Xt represent the input LR image and the unknown HR image at time
t, respectively.

2. Video SR could produce HR videos with better quality, by
adopting the information in the video frames more effectively.

One crucial knowledge about video SR is that, even if we as-
sume image SR generates the optimum HR image for each frame, the
video composed by these images is not guaranteed to be the best HR
video for the human vision system (HVS), since the video quality as-
sessment criterion is different from image quality assessment. This
makes the second aspect above reasonable. For example, people
tend to appreciate videos with temporal consistency between frames,
even when some frames in the video are not clear enough. Simulta-
neous video SR methods (e.g. [2][3]) (see Fig.1(b)) generate the
entire HR video simultaneously within a comprehensive framework,
which imposes the temporal consistency between frames. However,
simultaneous video SR algorithms are usually very computationally
demanding. Moreover, all LR input frames are required to perform
simultaneous video SR algorithms, which limits their application in
online/realtime processing.

On the other hand, various types of image contents and mo-
tion styles are likely to occur in the same video, so robustness and
adaptiveness[8] are significant to a practical video SR algorithm.
For example, it would handle the situation of motion registration
errors[5], or complicated video contents to maintain a persistent high
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quality performance.
Based on the considerations above, we propose an adaptive and

practical incremental video SR framework, which both reduces the
computational time and improves the visual quality of the output
video. The generation of a certain HR frame not only depends on
the input LR frames within the corresponding temporal window, but
is also related to the reconstructed previous HR frame to enforce the
temporal consistency. The variances of the joint Gaussian distribu-
tions (which affect the weights of the different terms in the utility
function) are adaptively determined. The proposed algorithm pro-
vides a practical realtime or near-realtime solution for video super-
resolution, which can be utilized in video display devices or online
video play applications.

The main contribution of this paper is in three folds: First, the
temporal accordance is ensured by adopting the temporal consisten-
cy term in the incremental video SR framework. Second, we intro-
duce several adaptive processes to increase the robustness of the pro-
posed algorithm, such as adaptively adjusting the potential function-
s and removing the motion registration errors without introducing
much computational burden. Third, incremental motion estimation
is proposed to reduce the computational cost.

The rest of this paper is organized as follows. The model adopt-
ed in the proposed algorithm is introduced in Section 2, and the al-
gorithm details are described in Section 3. In Section 4 we show the
experimental results and finally conclusions are made in Section 5.

2. THE MODEL
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Fig. 2. The proposed framework. Note the differences from the
paradigms in Fig.1. The posterior distribution of the HR image Xt

depends on both the input LR images and the previous reconstructed
HR image X̃t−1.

The graph model used in the proposed framework is depicted
in Fig.2. Note the differences between the paradigms in Fig.2 and
Fig.1. In the figures, Xt and Yt respectively represent the required
HR image and the input LR image at time t, and X̃t−1 is the esti-
mated HR image of the previous frame at time t− 1. The flow chart
in Fig.2 shows that the posterior distribution of the HR image Xt in
the proposed algorithm depends on both the input LR images and the
previous reconstructed HR image X̃t−1. This enforces the resulting
HR video to be temporally consistent. The posterior probability can
be written as:

p(Xt|·) ∝
t+b∏

i=t−r

Ψ(Xt, Yi) · Φ(Xt, X̃t−1)L(Xt), (1)

where r and b specify the number of the corresponding LR images
within the temporal window around t, and Ψ(·, ·) and Φ(·, ·) are
the potential functions. Because of the ill-posed-ness of the prob-
lem, a regularization term L(·) is incorporated to impose the spatial

smoothness of the result HR image. Accordingly, the three func-
tions Ψ(·, ·), Φ(·, ·) and L(·) are referred to as the fidelity term, the
consistency term and the regularization term, respectively. Thus the
maximum a posteriori (MAP) estimate of the HR frame Xt can be
obtained via:

X̃t = argmax p(Xt|·). (2)

3. THE ADAPTIVE VIDEO SR ALGORITHM

3.1. The fidelity term Ψ

The fidelity term Ψ(Xt, Yi) measures the similarity between the HR
frame Xt and the input LR image Yi, which is defined as:

Ψ(Xt, Yi) , exp(− 1

2σ2
i

∥DBM i
tXt − Yi∥2), (3)

where M i
t represents the motion compensation matrix from the HR

frame t to the HR frame i, B and D respectively denote the blur-
ring matrix and the downsample matrix, and σ2

i is the variance of
the joint distribution, which controls the confidence level of the cor-
responding component.

In order to remove the influence of the motion registration out-
liers, we adopt the intuitive idea of applying the confidence map W i

t

to the matrix M i
t , which is defined as a diagonal binary matrix whose

diagonal entries wi
t are:

wi
t(x⃗) =

{
1, |B(M̃ i

t X̄t − X̄i)|
∣∣∣
x⃗
< ηmap,

0, otherwise,
(4)

where M̃ i
t is the original motion compensation matrix, and ηmap is

a pre-defined threshold. Note that we don’t know the real HR image
Xt, so an estimate X̄t is used instead. In the experiments, X̄t is
directly interpolated from the input Yt. Thus the new motion matrix
Mk filtered by Wk is formulated as:

M i
t = W i

t M̃
i
t . (5)

The variance σ2
i can be measured by the variance of the corre-

sponding motion registration error within the confidence map: Larg-
er motion registration error indicates less reliable σi. Thus we de-
fine:

σ2
i = σσ̃2

i = σ · var
(
B(M̃ i

t X̄t − X̄i)
∣∣∣wi

t = 1
)
, (6)

where σ is a constant.
According to (3), we need to estimate motion fields M̃ i

t

from frame t to all the frames i within the temporal window in
order to calculate the potential functions for Xt, which mean-
s the motion estimation process has to run r + b − 1 times to
compute Xt. This could be simplified by adopting incremen-
tal motion estimation, i.e., the motion matrix M̃ i

t is obtained
by M̃ i

t = M̃ i
i−1M̃

i−1
i−2 . . . M̃ t+2

t+1 M̃
t+1
t when i > t, or M̃ i

t =

M̃ i
i+1M̃

i+1
i+2 . . . M̃ t−2

t−1 M̃
t−1
t when i < t. Therefore for a new frame

t, we only estimate the motion between frame t + b − 1 and frame
t+ b: M̃ t+b−1

t+b and M̃ t+b
t+b−1. Note this not only saves the computa-

tional burden, but also increases the motion estimation accuracy, as
the composite motion field is usually more reliable with the help of
the intermediate frames.
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3.2. The consistency term Φ

The consistency term Φ(Xt, X̃t−1) controls the temporal accor-
dance of the output HR video, which is defined as:

Φ(Xt, X̃t−1) , exp(− 1

2ρ20
∥M t−1

t Xt − X̃t−1∥2), (7)

where:

ρ20 = ρ · var
(
B(M̃ t−1

t X̄t − X̃t−1)
∣∣∣wt−1

t = 1
)
, (8)

and ρ is a scalar. The HR frame X̃t−1 is the previous estimated HR
frame at time t− 1.

Note that the consistency term is also adaptive. The weight ρ0
depends on the motion registration error and the quality of the pre-
vious reconstructed HR image X̃t−1. Smaller ρ0 indicates that the
consistency term is less reliable.

3.3. The regularization term L

The regularization term L(Xt) is defined as the exponential of the
bilateral total variation (TV) prior[7]:

L(Xt) , exp(−γ(Xt)) (9)

= exp(−
P∑

l=−P

P∑
j=0︸ ︷︷ ︸

l+j≥0

α|l|+|j|∥Xt − Sl
xS

j
yXt∥2)

where Sl
x and Sj

y are operators that shift the image Xt by l and j
pixels in the horizontal and the vertical direction, respectively, and
P is the local window size. The bilateral TV prior tends to preserve
edges in the resulting images when P > 1. In the experiments we
use P = 2.

3.4. The optimization process

To summarize, the maximization (2) is equivalent to minimizing the
minus log-likelihood in (10):

X̃t = argmin
(
γ(Xt) +

t+b∑
i=t−r

1

2σ2
i

∥DBM i
tXt − Yi∥2 +

1

2ρ20
∥M t−1

t Xt − X̃t−1∥2
)
. (10)

The Equation (10) is a standard least squares problem with respect
to Xt. The conjugate gradient (CG) method is applied to solve (10)
for fast convergence.

4. EXPERIMENTAL RESULTS

We prepare two videos in the experiments. Each video contains 150
frames, with the frame rate 25 fps. The LR video resolution is 320×
240. As we perform a 2 × 2 video super-resolution, the destination
spatial resolution is 640×480. The original HR videos are captured
by a handheld Fujifilm F601 Zoom digital camera. The LR videos
are generated by blurring (with a 3×3 Gaussian blur kernel with the
deviation 1-pixel wide) and downsampling the original videos, and
additive Gaussian white noise is added to simulate the imaging noise.
The videos contain both large-scale local motion and relatively small
background global motion. The average motion registration errors
within the temporal window of each frame are shown in Fig.3.

There are mainly 3 parameters σ, ρ and ηmap in the proposed
algorithm. As a rule of thumb, the two scalars σ and ρ are set as
0.01/σ̃2

t and 0.05/σ̃2
t , respectively, which makes σ2

t = 0.01. The
threshold ηmap = 10. The other settings of the algorithm are as
follows: r = b = 3 which means 7 adjacent frames are used for
the reconstruction of each frame, and B is set as a spatially invariant
3 × 3 Gaussian blur kernel with the deviation of 1-pixel wide. The
number of CG iterations is set as 3.
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Fig. 3. The average motion registration errors (in PSNR, dB) within
the temporal window of each frame in the two experimental videos
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Fig. 4. The PSNR results (in dB) of the two experiments. The
“Adaptive” algorithm in the figures is the same as the proposed ex-
cept that “Adaptive” is without the consistency term (Φ). Note the
curves of the “Adaptive” algorithm and the proposed are very simi-
lar to each other under the PSNR criteria, but the proposed generates
HR videos with more visual consistency (see Table 1).

The PSNR results of the two experimental videos are shown in
Fig.4. Note that the first and last 3 frames are directly interpolated
from the corresponding input LR frames, so only the results of the
middle frames are illustrated. The algorithm “MAP”[7] is similar as
the proposed algorithm, but without the consistency term Φ and the
adaptive weight (6)(8). We use σ2

i = 0.01 and ρ20 = 0.05, and adopt

2011 18th IEEE International Conference on Image Processing

1151



��� ��� ���

�D�

�E�

Fig. 5. Sample reconstructed image results. Row (a) shows the 75th frame in the first experimental video, while Row (b) is the 45th frame in
the second video. Columns: (1) The results of SKR[5]; (2) MAP[7]; (3) The proposed.

Table 1. The MOVIE[9] scores1 of the SR results

Exp.# 1 2
MAP[7] 2.42× 10−3 1.60× 10−3

Adaptive2 5.38× 10−4 5.17× 10−4

Proposed 5.10× 10−4 4.94× 10−4

1Smaller score indicates better video quality.
2The “Adaptive” algorithm is the same as the proposed except that “Adap-
tive” is without the consistency term (Φ).
∗Note we don’t show the MOVIE result of “SKR”[5] because the entire video
is needed to calculate MOVIE.

the l2-norm in “MAP” for a fair comparison. The algorithm “Adap-
tive” is the same as the proposed except that “Adaptive” is without
the consistency term Φ. We can see the “Adaptive” method and the
propose algorithm produce similar results under the single image P-
SNR criteria. However, adopting the consistency term improves the
visual consistency in the video. This can be seen in Table 1 by com-
paring their MOVIE[9] scores. The MOVIE[9] is a video quality
assessment criteria, which examines both the spatial and temporal
consistency. Smaller score indicates better video quality.

With our computer with a 2.93GHz dual kernel CPU and a 3GB
RAM, it takes around 2 second to process one frame in the proposed
algorithm, while it takes around 10 hours using “SKR”[9] (The soft-
ware is provided by the authors). Thus in Fig.4, we only show the
results of 5 frames by the method “SKR”, and we don’t calculate the
MOVIE score for “SKR”, as the entire video is needed.

The sample reconstructed image results are shown in Fig.5, from
which we can see the proposed algorithm sharpens the image edges
and removes artifacts brought by motion registration outlier effec-
tively. This is mainly because of the introduction of the adaptive
weights σi and ρ0.

5. CONCLUSION

In this paper, an adaptive incremental video SR algorithm is pro-
posed. We enforce both the temporal and the spatial consistency in
the framework, which generates better quality HR video results. The
adaptive weights of the terms in the utility functions enable the ro-
bustness of the proposed algorithm. Some considerations to save the
computational cost are also incorporated, which makes the frame-

work near-realtime, which could be easily adopted in video display
devices and video play softwares in the future.
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