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Abstract—This paper presents a cost-sensitive semi-supervised
discriminant analysis method for face recognition. While a number
of semi-supervised dimensionality reduction algorithms have been
proposed in the literature and successfully applied to face recog-
nition in recent years, most of them aim to seek low-dimensional
feature representations to achieve low classification errors and as-
sume the same loss from all misclassifications in the feature rep-
resentation/extraction phase. In many real-world face recognition
applications, however, this assumption may not hold as different
misclassifications could lead to different losses. For example, it may
cause inconvenience to a gallery person who is misrecognized as
an impostor and not allowed to enter the room by a face recog-
nition-based door locker, but it could result in a serious loss or
damage if an impostor is misrecognized as a gallery person and
allowed to enter the room. Motivated by this concern, we propose
in this paper a new method to learn a discriminative feature sub-
space by making use of both labeled and unlabeled samples and
exploring different cost information of all the training samples si-
multaneously. Experimental results are presented to demonstrate
the efficacy of the proposed method.

Index Terms—Cost sensitive, discriminant analysis, face recog-
nition, semi-supervised.

I. INTRODUCTION

N face recognition applications, one is often confronted

with high-dimensional data, and it is necessary to trans-
form these high-dimensional face data into a low-dimensional
feature space because high-dimensional data usually deteriorate
the performances of classifiers and lead to high computational
complexity. Over the past two decades, a large number of di-
mensionality reduction algorithms have been proposed and suc-
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cessfully applied to face recognition [1], [2], [6], [9]-[11], [16],
[18], [27], [29], [35].

Linear discriminant analysis (LDA) [1] is a popular discrim-
inative dimensionality reduction method and has been widely
used in face recognition [1], [16]. The aim of LDA is to seek
a set of discriminative projections to maximize the ratio of
between-class variance to within-class variance. In many real
world applications, it is usually difficult, expensive and time
consuming to collect sufficient labeled data because laborious
human labeling effort is required, which makes the estimated
projection vectors of LDA inaccurate and correspondingly
degrades the final recognition performance. To address this
problem, some semi-supervised learning algorithms which
utilize both labeled and unlabeled data to improve the face
recognition performance have been proposed in recent years
[4], [40], among which the graph-based approach is one of
the most active and effective areas [40]. The basic idea of
graph-based semi-supervised learning is to model the whole
data (both labeled and unlabeled) as a graph and then propagate
label information from the labeled data to the unlabeled data
through the graph constructed by both labeled and unlabeled
samples.

More recently, semi-supervised learning techniques have also
been incorporated into dimensionality reduction, and many such
algorithms have been proposed [3], [21], [25], [26], [30], [34],
[36], [37]. For example, Cai et al. [3] proposed a semi-super-
vised discriminant analysis (SDA) method to extract discrim-
inative features and preserve geometrical information of both
the labeled and unlabeled samples for dimensionality reduc-
tion; Zhang and Yeung [37] applied a robust path-based simi-
larity measure to better exploit the graph of SDA, Xu and Yan
[34] presented an adaptive regularization method to better char-
acterize the interplay between the labeled and unlabeled data
in SDA, and Wang et al. [30] introduced a semi-parametric
approach to better estimate the projection directions of SDA,
to improve the discriminative power for semi-supervised di-
mensionality reduction methods. Moreover, Nie ef al. [21] im-
posed an orthogonal constrain and formulated a semi-super-
vised orthogonal discriminant analysis (SODA) method for di-
mensionality reduction, Song et al. [25] proposed a semi-super-
vised submanifold discriminant analysis algorithm to discover
the nonlinear relationships of samples in semi-supervised di-
mensionality reduction, and Wang ef al. [32] presented a semi-
supervised dimensionality reduction with pairwise constraints
(SDAPC) method which utilizes pairwise constraints of sam-
ples to perform semi-supervised dimensionality reduction. De-
spite different assumptions of these methods, most of them can
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be unified into a general semi-supervised dimensionality reduc-
tion framework with different constraints [26].

All existing semi-supervised dimensionality reduction
methods only seek low recognition errors and implicitly as-
sume that the losses of all misclassifications are the same
in the feature extraction phase for a practical recognition
system. However, this assumption may not be suitable for
many real-world face recognition tasks because different mis-
classifications could lead to different losses. For example, in
a face recognition-based door locker system, it may cause
inconvenience to a gallery person who is misrecognized as an
impostor and not allowed to enter the room, but may result in
a serious loss or damage if an impostor is misrecognized as a
gallery person and allowed to enter the room. Another example
is the face sketch recognition-based criminal search system. It
could cause some trouble to an innocent citizen who is misrec-
ognized as a criminal suspect by the criminal search system,
but may result in a large insecurity if an criminal suspect is
misrecognized as innocent citizen and allowed to go free. From
these two examples, we conclude that face recognition is a
cost-sensitive pattern classification problem.

Cost-sensitive learning is one important topic in the data
mining and machine learning community [13], [20], [22],
[28], [38]. In such settings, cost information is introduced
to measure the importance of different samples in different
classes, and different costs reflect different amounts of losses.
The aim of cost-sensitive learning is to minimize the total cost
rather than the total error. Generally, there are two kinds of
misclassification cost. The first is class-dependent, where the
costs of misclassifying any example in class A to class B are
the same. The second is example-dependent, where the costs of
classifying examples in class A to class B are different. In this
paper, we focus on the former one because face recognition is
generally a class-dependent cost-sensitive problem.

There have been several cost-sensitive learning algorithms
proposed in the literature, such as cost-sensitive boosting [20],
[28], cost-sensitive support vector machine [13], [38], cost-sen-
sitive semi-supervised learning [13], and cost-sensitive neural
networks [22]. While these cost-sensitive learning methods can
attain better performance than conventional cost-blind methods,
most of them are designed for classification [13], [20], [22],
[28], [38] rather than dimensionality reduction. While improved
recognition performance (smaller recognition loss) has been ob-
tained, these methods only use cost-sensitive techniques in the
classification phase and not in the feature extraction (dimension-
ality reduction) phase. In other words, the samples with different
costs have not been utilized in the feature extraction phase, and
hence some useful cost-sensitive information could be lost in
this phase.

In this paper, we propose a cost-sensitive semi-supervised
discriminant analysis (CS*DA) method to learn a discrimina-
tive feature space by making use of both labeled and unlabeled
samples in a cost-sensitive setting. Specifically, we first recon-
struct each unlabeled sample from the labeled data and use the
reconstruction coefficients to infer a soft label for each unla-
beled sample. Then, we learn a low-dimensional feature sub-
space by utilizing both label and unlabeled data, such that the
low overall loss is achieved when recognition is performed in

TABLE I
COST MATRIX OF GENERIC PATTERN CLASSIFICATION SYSTEM. HERE
C';; DENOTES COST OF MISCLASSIFYING SAMPLES OF #th CLASS AS
THE jth CLASS. DIAGONAL ELEMENTS IN COST MATRIX ARE ZERO
BECAUSE THERE IS NO LOSS FOR CORRECT CLASSIFICATION

L1 [ ] Lk
A 0 [ Cu | - | Cic
li Ci o Cij Ci1
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the feature space derived. Experimental results on cost-sensi-
tive face recognition are presented to demonstrate the efficacy
of the proposed method.

The remainder of the paper is organized as follows. Section I1
details our proposed cost-sensitive semi-supervised discrim-
inant analysis method. The experimental results and discus-
sions are presented in Section III. We conclude the paper in
Section IV.

II. COST-SENSITIVE SEMI-SUPERVISED DISCRIMINANT
ANALYSIS (CS*DA)

Different from existing semi-supervised dimensionality re-
duction methods which implicitly assume that the losses of all
misclassifications are the same in the feature extraction (dimen-
sionality reduction) phase of a recognition system, we explicitly
incorporate the cost-sensitive information of both the labeled
and unlabeled samples for feature extraction.

A. Soft Label Estimation

Let X = [x1,%2,...,ZN:ZN+1,.-.,2Z0s] bE a training
set, where ;| ; and z;|? y , , are the labeled and unlabeled
samples, respectively, the class label of x;|%¥, is known and
assumed to be I; € {1,2,...,c}, where ¢ is the number of
classes. We can construct a cost matrix for the labeled data
X1, = [z1,®9,...,2~] as shown in Table I, where C;; denotes
the cost of misclassifying the sample of the ¢th class as the jth
class. The diagonal elements in the cost matrix are zero because
there is no loss for a correct classification. Generally, it is easy
for users to specify which kind of error leads to a higher cost
and which leads to a lower cost. Therefore, the cost matrix is
assumed to be specified by users in this work and we focus
on how to extract discriminative features that benefits from
the cost information of both labeled and unlabeled samples for
recognition tasks.

In order to perform cost-sensitive discriminant analysis on
the whole data for feature extraction, we need to first infer the
cost information of the unlabeled samples such that both la-
beled and unlabeled data can be used. A natural solution is
to predict the cost information of unlabeled data from labeled
data. While many graph-based semi-supervised learning algo-
rithms have been proposed in recent years, the construction of
the graph is the heart of these methods because most existing
graph construction methods are sensitive to noises. While there
are a number of label reconstruction methods proposed in the lit-
erature [12], [31], graph-based is one of the most effective and
popular methods for label reconstruction, and the construction
of the graph is the heart of these methods because most existing
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graph construction methods such as KNN and ¢-ball are sensi-
tive to noises. To address this issue, we propose exploiting the
sparse property of samples for label reconstruction.

Inspired by recent sparse coding methods [5], [33] which rep-
resent each point as a linear combination of a dictionary and
such representations are usually sparse and robust to noises, we
here apply all the labeled data X7 = [z1,22,...,2x] to con-
struct a dictionary and each unlabeled data can be linearly re-
constructed by this dictionary Xy,. Given one unlabeled sample
xz; (i = N+ 1,..., M), we reconstruct it by solving the fol-
lowing optimization problem:

w; = arg min ||w;||1

subjectto || Xpw; — 24|[2 < ¢ (D
where ¢ is the reconstruction error bound which is set to 0.01
in our experiments, w; € RY is the representation coefficient
vector for the sample ;.

Let w; = ['wil, Wi, . .. ,w,;N], where Wij is the rep-
resentation coefficient of x; from the labeled sample u;,
uij = [Jwiz||/32; [lwi;l], 1 < § < N.Itis easy to see that each
unlabeled sample z; is decomposed into a linear combination of
all labeled data x; associated with a reconstruction coefficient
u;;. Obviously, the larger u;; is, the greater the contribution of
the sample x; to the reconstruction of z;; especially, if u;; = 1,
it means that x; is completely reconstructed by x;, which
indicates that x; is the same as z;. Therefore, we can now
predict the label information of x; fromz;, N +1 <+ < M.

Since z; is linearly reconstructed from x; with a weight u;;,
the label information /,;, of z; can also be linearly propagated
to z; with the same reconstruction coefficients. However, we
cannot assign a fixed label value to [, because the k nearest
labeled neighbors of x; are usually from different classes as
they are heavily dependent on the value of k. Alternatively, we
apply a soft label f,. = [fi1. fiz,.- ., fic] to characterize the
class information of z;, where f;; measures the probability of
x; belonging to the ¢th class and can be calculated as follows:

N
fig = Y wigo(l; = q) )
j=1

where §(n) is a discrete unit impulse function, and defined as
n =70

: 1,
b(n) = { 0, n#£0.

There are several advantages of such operation including ro-
bustness to the data noise and an adaptive neighborhood size.
Most existing label propagation methods construct the graph
by the k-nearest-neighbor (KNN) method based on the pairwise
Euclidean distance, which is very sensitive to data noise and the
graph structure is easy to change when unfavorable noises come
in, such as someone wearing sunglasses that heavily changes the
local structure of face samples. Moreover, there is one impor-
tant parameter & to be tuned in KNN and it is very challenging
to select an optimal value of k. These shortcomings can be over-
come in our adopted label estimation method, such that better
cost information of the unlabeled samples can be exploited for
cost-sensitive semi-supervised dimensionality reduction.

)

B. Objective Function

After the label prediction, we obtain the label information
for each unlabeled data and represent it as a label vector. For
the labeled data, the label information is fixed and is a number
from 1 to ¢. Therefore, we also represent each labeled data x;
as a label vector f; = [f;1. fj2,---. [jc], where fj, = Lif z;
belongs to the gth class and zero otherwise. Now, we can obtain
a label matrix £ for the whole data as follows:

F=1[f1:for- 1 faa] 4)

where the rth row of F' is a label vector f. for .., where 1 <
r S M.

Different from LDA and SDA, we apply the following tow
criteria to calculate the cost-sensitive within-class and between-
class variances of CS®*DA for discriminative feature extraction.

1) The larger the cost of the gth class, the more importance
the class is, and a larger weight should be assigned to this
class to calculate the within-class variance of CS®DA.

2) The larger the cost of misclassifying the samples from the
gth class as the pth class, ¢ # p, the larger weight should be
applied to calculate the between-class variance of COS3DA.

To characterize the cost of each class, we first define an im-
portance function h(q) to depict the importance of the samples
in the gth class, where 1 < ¢ < ¢. Obviously, there is a number
of potential strategies to define /() and it is generally believed
that ~(g) should be a monotone function of cost C, ,,. In this
paper, we use a power function to achieve this goal as follows:

hg) =Y Cs, (5)
g=1

where a is a tuning parameter to balance the contribution of
different classes to computing the cost of the ¢th class, and
a > 1.

To characterize the different costs of misclassifying the sam-
ples from the gth class as the pth class, we define another penalty
function g(g¢, p) to calculate these costs. Obviously, g4, can be
ecasily found from Table I if the cost matrix C' is prespecified,
calculated as

(6)

Now, we calculate the cost-sensitive within-class and be-
tween-class scatter matrices of CS*DA as follows:

S5 = Z Zg(q,p)(ﬁzq — 71 ) (g — 1) T

g(‘]vp) = Cq,p-

(7
g=1p=1
¢ M

S = Z Z (@) Fjq (g — 0g) (x5 — 1ig)" ®)
g=1j=1

where 71, and rn, are the estimated means of the gth and pth
classes, respectively, which can be calculated as follows:

1 M 1 M
LS SV N Sl PR
Nq i=1 AP j=1

where N, = Z{Li1 Fijq and N, = Z;‘i1 Fip.

7
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Having obtained S;° and S;;’, we can obtain the objective
function of our cost-sensitive semi-supervised discriminant

analysis

wTS,f’Sw
arg max ———.
& w UJTSZ? w

(10)

The projection vector w that maximizes the objective function
can be easily obtained by selecting the maximal eigenvalue so-
lution to the following generalized eigenvalue equation:

Syfw = AS, w. (11)

When the number of data points is smaller than the dimen-
sionality of each sample, S57 in (11) may be singular and hence
the eigen-decomposition problem will be unstable. To avoid this
problem, we apply the idea of Tikhonov regularization as in reg-
ularized discriminant analysis [8]. Therefore, the generalized
eigenvalue problem in (11) becomes

Sgtw = M8 + pl)w (12)

where ¢+ > 0 and 7 is an identity matrix.

C. Algorithm

The CS®*DA algorithm can be summarized as follows:

1) Reconstruction Weight Calculation: Compute the recon-
struction weight for each unlabeled sample by using (1).

2) Label Prediction: Obtain a soft label vector for each un-
labeled sample by using (2).

3) Label Matrix Construction: Construct a label matrix F'
for the whole data including both labeled and unlabeled
samples by using (4).

4) Cost-Sensitive Scatter Calculation: Calculate the cost-
sensitive within-class and between-class scatter matrices
of CS®*DA by using (5)—(9).

5) Eigen-Problem: Solve the generalized eigenvalue equa-
tion in (12).

6) CS°DA Embedding: Let {w;,ws,...,w;} be the
eigenvectors corresponding to the k& largest eigen-
values ordered such that Ay > Xy > ... > Ag, and
W = [wi,ws,...,w;] € R¥™¥ is the projection matrix
of CS*DA. The samples can be embedded into a k dimen-
sional subspace by

r—y=WTg.

(13)

D. Theoretic Analysis

We now briefly analyze how our proposed cost-sensitive
scatter matrices affect the classification error. Since it is gener-
ally too complex to use the Bayes error directly as a criterion
to derive the feature subspace for classification, one resorts
to the Fisher criteria that is suboptimal but that is easier to
optimize. However, as proved by [15], such criteria aims to
seek the linear transformation that maximizes the mean-squared
distance between the classes in the lower-dimensional space,
which is clearly different from minimizing the classification
error. To address this shortcoming, Loog ef al. [15] introduced
a weighted pairwise Fisher criteria to seek a feature subspace

which is more closely related to the classification error, de-
scribed as follows:

~ < tr(w? S;;w)
max .J(w) = Z Z pipjf(Aij)m

i=1 j=i+1

(14)

where p; and p; are priori probabilities of the th and 7th classes,
A\;; is the Mahanalobis distance between the ith and jth classes,
calculated as

By = flmi - m) S m - my) (15)

Sw 1s the within-class scatter, .S;; is the between-class scatter
between the ¢th and jth classes, S, is the within-class scatter,
f(-) is a weighting function which depends on the Mahanalobis
distance A;; between the ith and jth classes, defined as

Sij = (m; — mj)T(m,; —my).

(16)

Having compared (7)—(14), we can observe the objective of
our proposed CS?DA is consistent with that of the weighted
pairwise Fisher criteria in terms of the classification error, and
the functions of the penalty functions g(g, p) and h(q) are sim-
ilar to that of the weighting function f(-) in the weighted pair-
wise Fisher criteria. Moreover, according to the definitions of
cost-sensitive within-class and between-class scatter matrices of
CS?DA [(7) and (8)], we can see that the samples in the classes
which have a larger importance play a more important role in
seeking the feature subspace because these classes contributes
more to calculate the between-class Mahanalobis distance. In
other words, the classes are more difficult to be misclassified
and hence a smaller total cost can be obtained.

E. Discussion

In this section, we discuss the relationship between our pro-
posed CS*DA method and some related works: the existing
discriminant analysis algorithms [1], [3], [11], [21], [27], [30],
[34], [35], [37], cost-sensitive learning techniques [13], [20],
[22], [28], [38], and propagation/label estimation methods.

1) Relationship With Existing Discriminant Analysis Algo-
rithms: Most existing discriminant analysis algorithms, super-
vised [1], [11], [27], [35] or semi-supervised [3], [21], [30],
[34], [37], aim to seek a low recognition error rate and im-
plicitly assume that the losses of all misclassifications are the
same. Hence, they can be considered as cost-blind discriminant
analysis methods. More recently, Lu and Tan [17] proposed a
cost-sensitive linear discriminant analysis (CSLDA) method for
face recognition. However, their method is supervised and the
label information of all training samples needs to be known in
advance. As we discussed in Section I, it is usually difficult, ex-
pensive and time-consuming to collect sufficient labeled data
because laborious human labeling effort is required, which will
limit the convenience of supervised methods in practical ap-
plications. Moreover, when there is only one labeled sample
per class, these supervised methods will fail to work as the in-
traclass variance cannot be estimated. However, our proposed
CS?DA method performs feature extraction and recognition to
attain low losses rather than low recognition errors and extracts
cost-sensitive discriminant features from both labeled and unla-
beled data simultaneously.
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2) Relationship With Existing Cost-Sensitive Learning
Techniques: Cost-sensitive learning is one important and hot
research topic in the pattern recognition and machine learning
community, and several cost-sensitive learning methods have
been proposed in the literature [13], [20], [22], [28], [38],
such as cost-sensitive boosting [20], [28], cost-sensitive sup-
port vector machine [13], cost-sensitive k-nearest neighbor
classifier [38], and cost-sensitive neural networks [22]. While
improved recognition performance (smaller recognition loss)
can be obtained, these methods apply the cost-sensitive
learning techniques only in the classification phase and not in
the feature extraction phase since they make use of the conven-
tional cost-blind features for recognition. Different from these
methods, we focus on extracting cost-sensitive discriminative
features in this work from both labeled and unlabeled samples
for recognition tasks.

3) Relationship With Existing Label Propagation/Estimation
Methods: Label propagation/estimation has been widely used
in semi-supervised learning [21], [31], [40], multiclass learning
[7], and multilabel learning [12], [14]. As we mentioned in
Section I, the graph-based method is one of the most active
and effective approaches for label propagation. Different from
most previous label propagation methods which reconstruct
each data linearly from its neighborhood, we apply the sparse
coding technique to estimate the labels of the unlabeled
training samples from the labeled training samples. There are
several advantages of such an operation including robustness
to the data noise and an adaptive neighborhood size. Most
existing label propagation methods construct the graph by
the k-nearest-neighbor (KNN) method based on the pairwise
Euclidean distance, which is very sensitive to data noise and
the graph structure is easy to change when unfavorable noises
come in, such as someone wearing sunglasses that heavily
change the local structure of face samples. Moreover, there is
one important parameter % to be tuned in KNN and it is very
challenging to select an optimal value. These shortcomings
can be overcome in our adopted label estimation method, such
that better cost information of the unlabeled samples can be
exploited for cost-sensitive semi-supervised dimensionality
reduction.

III. EXPERIMENTS

In this section, we report experimental results on four widely
used face databases to evaluate the performance of our proposed
CS3DA for face recognition.

A. Data Sets

We made use of the AR [19], CMU PIE [24], ORL [23] and
Yale [1] face databases in our experiments.

The AR database contains over 4000 face images of 126 sub-
jects (70 men and 56 women), including frontal facial images
with different facial expressions, lighting conditions and occlu-
sions. There are 26 images for each person taken in two sessions,
each having 13 images.

The PIE database comprises 68 subjects with 41 368 face im-
ages of different poses, illuminations and expressions. In our
experiments, we selected the frontal pose with varying expres-
sions and illuminations to construct a subset of the PIE data-

i wlw wtly olw

ey
V -

e

i~ gl
“ ..

@

Fig. 1. Sample images for one subject in the (a) AR, (b) PIE, (¢) ORL, and
(d) Yale databases, respectively.

base. It contains 3060 frontal face images of different expres-
sions and illuminations from 68 subjects with 45 images from
each subject.

The ORL face database, contains a total of 400 images of 40
subjects with 10 grayscale face images for each. The images
show all frontal and slight tilt/rotation of the face up to 20. For
some subjects, the images were taken at different times, varying
lighting, facial expressions (open or closed eyes, smiling or not
smiling), and facial details (glasses or no glasses).

The Yale face database is constructed at the Yale center for
computational vision and control. It contains 165 grayscale im-
ages of 15 individuals. The images demonstrate variations in
lighting condition (left-light, center-light, right-light), facial ex-
pression (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses.

In our experiments, the images from all of the four datasets
were manually aligned, cropped, and resized to 32 x 32 pixels
according to the eyes’ positions. Fig. 1 shows some sample im-
ages of one subject from each dataset.

B. Experimental Settings

While there are a number of application scenarios for face
recognition, in this study, we only take face recognition-based
access control as an example to illustrate the effectiveness of
our proposed method. It is noted that our method can be easily
extended to other face recognition applications by designing a
different cost matrix according to different application require-
ments and preferences.
For a face recognition-based access control system, there are
usually three types of misclassifications on recognizing a test
face sample:
1) False rejection: misrecognizing a gallery person as an
impostor;

2) False acceptance: misrecognizing an impostor as a gallery
person;

3) False identification: misrecognizing a gallery person as an-
other gallery person.

While all possible forms of loss are allowed in a face recog-
nition-based access control system, for convenience of our
discussion, we assume that accepting any impostor will cause
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TABLE II
COST MATRIX OF FACE RECOGNITION-BASED ACCESS
CONTROL SYSTEM

Gy Ge I
G1 0 -+ | Cgg | Car
Ge | Cgg | - 0 Car
I | Cig | .-+ | Cig 0

the same loss, and misrecognizing a gallery person as another
gallery person or an impostor will cause different amounts
of loss. Without any a priori information or preference, this
assumption is reasonable for most practical face recogni-
tion-based access control systems. Let Cy, Cr¢ and Cge be
the costs incurred by a false rejection, false acceptance and
false identification, respectively, then the cost matrix for this
face recognition system will be simplified into Table II, where
C;; denotes the cost of misrecognizing a face image of the ith
class as the jth class. Without loss of generality, we assume
that Cqr = CGI/CGG, Crc = CIG/CGG and Cge = 1 as
this will not change the final results.

For each database, we randomly selected M subjects as the
gallery persons and the remaining subjects as the imposters. In
the training phase, we randomly selected N&' images for each
gallery person, where GG, samples are labeled and the other Gy,
samples are unlabeled. For the impostors in the training set, we
randomly selected N}” images, where N, samples are labeled
and the other Ny; are unlabeled. In the testing phase, there are
Nk images for each gallery person, as well as N ¢ imposter im-
ages. We repeated this selection ten times for each database and
computed the average recognition accuracy as the final recog-
nition result. The parameters M, N, G, Gy, NI", I, Iy,
Nk, Nk, Crg and Cgr and Cg are specified in Table 111

C. Results and Analysis

1) Comparisons of Different Discriminant Analysis Methods:
We compared the proposed CS*DA with the following five
other discriminant analysis methods.

1) LDA [1]: Since LDA is a supervised method, only la-
beled samples in the training set can be used for feature
extraction. We applied a Tikhonov regularization term j.J
rather than performing PCA to avoid the well-known small
sample size (SSS) problem in LDA.

2) PLDA [39]: We followed the parameter setting in [39] to
make use of perturbation covariance matrices to calculate
the between-class and within-class scatters for discrimi-
nant analysis.

3) SDA [3]: There is a parameter « to be tuned in SDA
and it was empirically set to one in our experiments. The
Tikhonov regularization was also adopted to avoid the
SSS problem.

4) SDAPC [32]: SDAPC uses the pairwise constraints for
semi-supervised dimensionality reduction. We obtain
the pairwise constraints from the labeled samples in the
training set. If two samples are from the same class,
there is a must-link constraint and otherwise there is a
cannot-link constraint.

5) CSLDA [17]: Different from the above four discriminant
analysis algorithms, CSLDA is a cost-sensitive dimension-
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Fig. 2. Total cost versus different feature dimensions. Results on the (a) un-
labeled data of the AR database and (b) testing data of the AR database,
respectively.

ality reduction method. Since it is supervised, only the la-
beled samples in the training set are employed for feature
extraction. The Tikhonov regularization was also used to
avoid the SSS problem.

For each database, the recognition performance of different
methods were evaluated on the unlabeled data and the testing
data separately. We applied the conventional nearest neighbor
(NN) rule in the Euclidean space to perform recognition. We
compared the total cost (cost), total error rate (err), error rate
of false rejection (crrgyr), and error rate of false acceptance
(errzg) of the methods. Tables IV-VII report the results ob-
tained on the AR, CMU PIE, ORL and Yale databases, respec-
tively. Fig. 2 shows the total cost of different methods versus
different feature dimensions on the AR database. We can see our
proposed method consistently achieves smaller total cost than
other compared methods versus different feature dimensions.

2) Comparisons of Different Cost-Sensitive Learning
Methods: We compared our cost-sensitive semi-supervised
dimensionality reduction method with the state-of-the-art
cost-sensitive learning method: cost-sensitive semi-supervised
support vector machine (CS*VM) [13] for cost-sensitive face
recognition experiments. We conducted three sets of face
recognition experiments according to the following settings.

1) US*DA + NN: We performed feature extraction using
our proposed CS*DA method and performed recognition
using the conventional nearest neighborhood classifier
with the Euclidean metric.

2) SDA+CS*VM: We performed feature extraction using the
SDA method and performed recognition using the state-of-
the-art CS*VM cost-sensitive classifier.

3) CS*DA + CS*VM: Both the feature extraction and recog-
nition phases use the cost-sensitive techniques for face
recognition.

Fig. 3 shows the total costs of these experiments on different
databases. We can see from this figure that our cost-sensitive
approach is comparable to existing cost-sensitive classifier, and
the total cost can be further reduced when both our cost-sen-
sitive feature extraction method and the existing cost-sensitive
classifier was applied simultaneously.

3) Comparisons of Different Label Estimation Methods: We
compared our label estimation method with the linear neigh-
borhood propagation (LNP) [31] which estimates the labels of
the unlabeled samples by linearly reconstructing it from its
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TABLE III
EXPERIMENTAL SETTINGS FOR FACE RECOGNITION EXPERIMENTS

Database | M l Ng | Gr, I Gy | N;T I Np, I Ny I Néve I N;e | Cra : Cqr : Caa

AR 50 13 2 11 130 20 110 650 130 20:2:1

PIE 60 30 2 28 240 16 224 900 120 20:2:1

ORL 30 7 4 3 70 30 40 90 30 20:2:1

Yale 12 8 3 5 24 9 15 36 9 20:2:1
TABLE IV

COMPARISON OF TOTAL COST (COST), TOTAL ERROR RATE (ERR), ERROR RATE OF FALSE REJECTION (err; ), AND ERROR
RATE OF FALSE ACCEPTANCE (crt ¢ ) OF DIFFERENT DISCRIMINANT ANALYSIS METHODS ON AR DATABASE

Method Unlabeled data Testing data
cost | err (%) | errgr (%) | errrg (%) cost | err (%) | errgr (%) | errrg (%)
LDA 1440 57.42 60.00 44.55 1692 75.38 84.46 30.00
PLDA 1320 55.32 60.00 42.55 1634 72.32 81.46 28.62
SDA 1670 81.82 89.82 41.82 1784 85.26 96.92 26.92
SDAPC | 1620 80.54 86.52 36.82 1624 82.12 94.92 23.92
CSLDA | 1327 54.79 56.00 42.73 1657 74.23 83.08 30.00
CS®DA 914 70.91 85.09 0.00 1285 81.41 97.54 0.77
TABLE V

COMPARISON OF TOTAL COST (COST), TOTAL ERROR RATE (ERR), ERROR RATE OF FALSE REJECTION (err¢; ), AND ERROR
RATE OF FALSE ACCEPTANCE (e117¢) OF DIFFERENT DISCRIMINANT ANALYSIS METHODS ON CMU PIE DATABASE

Method Unlabeled data Testing data
cost | err (%) | errgr (%) | errrg (%) cost [ err (%) | errgr (%) | errrg (%)
LDA 4286 68.96 70.06 60.71 2766 63.92 61.33 90.83
PLDA 3896 63.24 66.84 56.42 2654 62.32 58.96 84.66
SDA 3646 78.10 85.48 22.77 1952 70.00 74.67 35.00
SDAPC | 3543 77.54 83.82 21.82 1878 68.22 95.22 34.23
CSLDA | 3795 62.34 63.69 52.23 2518 51.47 46.89 85.83
CS3DA | 2648 69.59 78.39 3.57 1647 69.31 60.33 30.83
TABLE VI

COMPARISON OF TOTAL COST (COST), TOTAL ERROR RATE (ERR), ERROR RATE OF FALSE REJECTION (crrer), AND ERROR
RATE OF FALSE ACCEPTANCE (err ;) OF DIFFERENT DISCRIMINANT ANALYSIS METHODS ON ORL DATABASE

Method Unlabeled data Testing data
cost | err (%) | errgr (%) | errrg (%) | cost | err (%) | errgr (%) | errrg (%)
LDA 983 36.67 22.78 78.33 976 35.54 20.42 25.55
PLDA 974 35.45 21.34 76.86 952 34.42 20.12 24.86
SDA 954 34.32 20.12 74.32 934 32.22 19.86 23.46
SDAPC | 932 33.32 19.32 73.36 930 32.22 19.82 22.42
CSLDA | 912 33.15 19.86 72.32 924 32.12 19.68 22.22
CS3DA | 864 32.15 32.34 50.20 846 32.01 32.44 12.22
TABLE VII

COMPARISON OF TOTAL COST (COST), TOTAL ERROR RATE (ERR), ERROR RATE OF FALSE REJECTION (err¢; ), AND ERROR
RATE OF FALSE ACCEPTANCE (€11 7¢;) OF DIFFERENT DISCRIMINANT ANALYSIS METHODS ON YALE DATABASE

Method Unlabeled data Testing data
cost | err (%) [ errgr (%) | errrg (%) | cost | err (%) | errgr (%) | errra (%)

LDA 683 25.67 20.12 75.33 732 28.44 22.42 26.86
PLDA 654 25.33 19.88 75.13 714 26.33 21.36 25.68
SDA 662 24.33 19.96 74.86 708 24.56 20.23 24.96
SDAPC | 624 23.87 19.82 74.55 694 22.68 20.12 23.46
CSLDA | 618 23.50 19.64 74.33 682 22.54 19.32 22.26
CS3DA | 594 23.33 32.45 32.33 654 22.32 32.34 10.22

t-nearest neighbors. In our experiments, ¢ was empirically set to
be five for all datasets. We performed recognition experiments
with the NN classifier. Fig. 4 shows the total cost of our method
when using different label estimation methods. We can observe
from this figure that our soft label estimation method can attain
smaller cost than the existing linear neighborhood label propa-
gation method. The reason is our label estimation method ap-
plies the sparse coding technique, which is naturally discrimi-
native in label propagation.

4) Parameter Analysis: Lastly, we investigated the effect of
parameter k on the performance of CS*DA.. The total cost, total

error rate, error rate of false rejection, and error rate of false
acceptance versus different values of parameters on the AR and
ORL databases are recorded in Tables VIII and IX. We can see
our proposed method is insensitive to the parameter £ on both
the AR and ORL datasets.

D. Discussion

We can make the following four observations from the results

listed in Tables IV-IX and Figs. 2—4.
1) CSLDA consistently outperforms LDA in terms of total
cost on all experiments, which further implies that explic-
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cost

cost

TABLE VIII
TOTAL COST (COST), TOTAL ERROR RATE (ERR), ERROR RATE OF FALSE REJECTION (crr¢:r), AND ERROR
RATE OF FALSE ACCEPTANCE (eIt ;) OF OUR METHOD VERSUS DIFFERENT VALUES OF k& ON AR DATABASE

I Unlabeled data Testing data
cost | err (%) | errgr (%) | errrg (%) cost | err (%) | errgr (%) | errrg (%)

1 1136 78.32 86.32 0.00 1424 82.66 97.86 0.77

2 1085 75.98 86.24 0.00 1398 82.32 97.82 0.77

3 986 73.12 86.12 0.00 1342 82.02 97.74 0.77

4 936 71.43 85.96 0.00 1296 81.86 97.64 0.77

5 914 70.91 85.09 0.00 1285 81.41 97.54 0.77

6 933 73.32 85.56 0.00 1298 81.12 97.58 0.77

7 933 74.36 85.88 0.00 1324 82.23 97.64 0.77

8 941 76.56 86.24 0.00 1346 82.65 97.76 0.77

9 950 77.42 86.46 0.00 1368 82.97 97.82 0.77

10 | 968 78.68 86.86 0.00 1388 83.32 97.86 0.77
1500 3000
1400 | [WENCSTDANN 2800 W CSDANN 2) SDA outperforms CSLDA on the CMU PIE database,
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Fig. 3. Total cost on different databases for different cost-sensitive dimension-
ality reduction methods when the uniform-cost and cost-sensitive classifiers are
applied. Results on (a) AR, (b) CMU PIE, (c) ORL, and (d) Yale database, re-

spectively.
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Fig. 4. Total cost on different databases when different label estimation
methods are applied. Results on the (a) AR, (b) CMU PIE, (c) ORL and
(d) Yale database, respectively.

itly extracting cost-sensitive discriminant features can help
improve the recognition performance of the existing uni-
form-cost discriminant analysis methods.

database which resulting in large intraclass variance such
that nearby points may belong to different classes. Under
this scenario, the assumption of SDA may not hold and
semi-supervised discriminant information preserved in
SDA may not be benefit to recognition.

3) CS*DA consistently outperforms the other discriminant
analysis methods in all experiments, which implies ex-
tracting a discriminative feature space by making use of
both labeled and unlabeled data and explicitly considering
the cost of each data simultaneous can achieve the best
recognition performance for discriminant analysis.

4) Our proposed cost-sensitive feature extraction method
can achieve comparable performance with the existing
cost-sensitive classifier when only the cost-blind NN clas-
sifier is used. Moreover, the performance can be further
improved when both the cost-sensitive feature extraction
and classification methods were used simultaneously. The
reason is that there are usually two phases for a practical
face recognition system: feature extraction (dimension-
ality reduction) and classification, and we can improve the
recognition performance of the face recognition system
at either the feature extraction or the classification phase.
Hence, if we exploit the cost information at these two
phases simultaneously, better recognition performance (in
terms of the cost) can be obtained. Therefore, cost-sen-
sitive classifiers can further improve the performance of
cost-sensitive dimensionality reduction methods for face
recognition.

IV. CONCLUSION AND FUTURE WORK

We have proposed in this paper a new dimensionality reduc-
tion algorithm called cost-sensitive semi-supervised discrimi-
nant analysis (CS? DA). It can make use of both labeled and un-
labeled data to learn a low-dimensional feature space to achieve
dimensionality reduction in a cost-sensitive setting. Each un-
labeled sample was firstly linearly reconstructed from labeled
data and the reconstruction coefficients were used to estimate
a soft label for the unlabeled data. Then, both these label and
unlabeled data were used to learn a low-dimensional feature
subspace aiming at seeking low overall loss when recognition
is performed in the feature space derived. Experimental results
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TABLE IX
TOTAL COST (COST), TOTAL ERROR RATE (ERR), ERROR RATE OF FALSE REJECTION (crrer), AND ERROR RATE
OF FALSE ACCEPTANCE (err; ) OF OUR METHOD VERSUS DIFFERENT VALUES OF & ON ORL DATABASE

k Unlabeled data Testing data
cost | err (%) | errgr (%) | errrg (%) | cost | err (%) | errgr (%) | errrg (%)

1 1104 35.24 34.84 52.23 932 33.23 34.86 13.86
2 1042 34.32 33.66 51.86 912 33.12 34.32 13.64
3 986 33.55 32.12 51.32 876 32.98 33.94 12.86
4 884 32.65 32.54 50.64 856 32.51 32.84 12.64
5 864 32.15 32.34 50.20 846 32.01 32.44 12.22
6 876 32.66 32.62 50.86 854 32.86 33.24 12.56
7 886 33.12 32.96 51.32 862 33.02 33.86 12.78
8 912 33.26 33.36 51.98 876 33.32 34.32 12.96
9 932 33.88 33.88 52.32 888 33.46 34.32 13.02
10 | 944 34.24 34.12 52.86 896 33.88 34.32 13.12

on face recognition have demonstrated the efficacy of the pro-
posed method. How to learn an appropriate cost matrix for a
specific cost-sensitive pattern recognition application automat-
ically seems another interesting direction of our future work.
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