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Abstract 

Although minutia set based fingerprint matching algo­

rithms have achieved good matching accuracy, developing 

a fingerprint recognition system that satisfies accuracy, ef­

ficiency and privacy requirements simultaneously remains 

a challenging problem. Fixed-length binary vector like 

IrisCode is considered to be an ideal representation to meet 

these requirements. However, existing fixed-length vector 

representations of fingerprints suffered from either low dis­

tinctiveness or misalignment problem. In this paper, we 

propose a discriminative fixed-length binary representation 

of fingerprints based on an extension of Minutia Cylinder 

Code. A machine learning based algorithm is proposed 

to mine reliable reference points to overcome the misalign­

ment problem. Experimental results on public domain plain 

and rolled fingerprint databases demonstrate the effective­

ness of the proposed approach. 

1. Introduction 

Fingerprint is one of the most widely used biometric 
traits because of its high matching accuracy and low cost 
and compact size of fingerprint sensors. Much researches 
have been done to improve both matching accuracy and 
speed of fingerprint recognition systems in the last four 
decades [ 14]. To achieve high accuracy, most state-of-the­
art fingerprint matching algorithms are based on minutia set 
(i.e. ridge endings and bifurcations) [18] [7]. Because of 
the unordered and variable size nature, the correspondence 
between two minutia sets is built using local attributes and 
global geometry relations as the first step of these algo­
rithms before a global matching score can be calculated. 
Such minutiae matching algorithms are difficult to adapt to 
retrieve fingerprints in large databases. 

Minutia set representation not only makes fast matching 
complicated, but also makes template protection challeng­
ing. With the diffusion of biometric application, the privacy 
problem arises in recent years. The most dangerous attack 
on a biometric system is against the template stored in the 

database because the stolen template can be used to attack 
all biometric systems where the same biometric is enrolled 
[ 10]. A popular biometric template protection scheme is 
biometric cryptosystem, including fixed-length binary vec­
tor based scheme, like fuzzy commitment [12] and the point 
set based scheme, such as fuzzy vault [16]. Although minu­
tia set is a more natural and popular representation of finger­
print, fuzzy vault scheme has high time and space complex­
ity. Therefore fixed-length representation of a fingerprint 
gains increasing interests in the fingerprint community be­
cause it is suitable for fast matching and template protection 
at the same time [8], [5], [6], [2 1], [20], [ 19], [ 15]. 

There have been many researches on fixed-length fea­
ture vector representation of fingerprint. Jain et al. pro­
posed FingerCode that uses filterbank response to describe 
the ridge features of fingerprint [ 11]. Cappelli created a 1 10 
dimensional feature vector using ridge orientation and fre­
quency [6]. Without using any minutiae information, the 
distinctiveness of these representations is limited. Fixed­
length feature vectors extracted from minutia sets are also 
studied. Farooq et al. suggested the histogram of minutiae 
triplets [8]. Bringer et al. proposed a pure local descriptor 
based on minutiae vicinities and converted it to fixed-length 
form by measuring descriptor's similarity with representa­
tive descriptors [5]. Unfortunately, the accuracy of these 
methods is still unsatisfactory. Spectral minutiae represen­
tation method proposed in [21] and its improved and bi­
narized version [20][ 19] use Fourier transform under polar 
coordinates to convert a minutia set to a spectral represen­
tation which is invariant to translation. Nandakumar used 
phase spectrum instead of amplitude [ 15]. To sum up, cur­
rent fixed-length representations of fingerprint can be classi­
fied into two types: alignment based and alignment free and 
Table 1 lists them for comparison. Alignment free meth­
ods tend to be less accuracy since they discard important 
geometric information. In alignment based methods, algo­
rithms using ridge orientation and frequency features do not 
have enough discriminative ability and the ones using minu­
tiae information suffer from misalignment. 

In this paper, we propose a new fixed-length feature vec-



Algorithm Feature Alignment Method Experiment 

J ai n et al. [ 1 1] Filterbank response Loop Verification 

Cappelli [6] Ridge orientation and frequency Singular point, focal point Retrieval 

Xu et al. [21][20][19] Amplitude spectrum of minutiae Singular point Verification 

N andakumar [ 15] Phase spectrum of minutiae Focal point from High Curvature Points Verification 

Farooq et al. [8] Histogram of minutiae triplets Alignment Free Verification 

Bringer et al. [5] Bag of words Alignment Free Verification 

Table I. Representative fixed-length fingerprint representations proposed in the literature 

tor representation for fingerprint. To overcome the prob­
lems above, a state-of-the-art minutiae descriptor, Minutia 
Cylinder Code (MCC) [7], is extended to capture discrimi­
native information in fingerprints; misalignment is handled 
by the fusion of traditional reference points and a new type 
of reference points mined by a learning algorithm. 

The rest of this paper is organized as follows: Section 2 
reviews the main idea of MCC and introduces its global ver­
sion. Section 3 introduces traditional reference points (RPs) 
we adopt and proposes our algorithm to mine additional re­
liable RPs. In Section 4, experiments are done both in ver­
ification and retrieval to demonstrate our algorithm's effec­
tiveness. Finally, Section 5 concludes our work and puts 
foreword some future work that can be done. 

2. Global Minutia Cylinder Code (GMCC) 

Minutia Cylinder Code [7] is a well-known local descrip­
tor that has shown state-of-the-art performance [9]. Here 
we show it can also be used as a global descriptor of fin­
gerprints if combined with reliable reference points. Sec­
tion 2. 1 reviews the basic idea of MCC for completeness. 
Section 2.2 presents the detail of the proposed GMCC. The 
algorithm that uses multiple RPs for better performance is 
discussed in Section 2.3. 

2.1. Minutia Cylinder Code (MCC) 

The Minutia Cylinder Code (MCC) of a minutiae (re­
ferred to as central minutia) records spatial and directional 
relationships between the central minutia and its neighbors 
in the form of a cylinder, whose base and height are re­
lated to spatial and directional information. The cylinder is 
divided into sections along height and sections are further 
split in to cells. Each valid cell is assigned a value which 
reflects the density of minutiae at that location and direc­
tion. Please refer to [7] for more details. 

The floating point MCC representation can be easily 
converted to a fixed-length binary vector consists of a mask 
of valid cells and the binarized cell values by comparing to 
a threshold. 

Parameter(s) Rolled Plain 

R 200 140 

(ls 12 � 
Ns 16 16 

Nd 6 6 

n 50 50 

minvc 0.25 0.25 

mini\1 2 2 

minME 0.2 0.2 

!Lp 0.007 0.007 

Tp 500 500 

Table 2. Parameter values for GMCC (numbers in bold indicate 

parameters different from original MCC). See [7] for the meaning 

of each parameter. 

2.2. Global Minutia Cylinder Code (GMCC) 

The fixed length of MCC makes computing similarity 
between two minutiae very efficient. However, a fingerprint 
is represented as an unordered set of MCCs [11]. Comput­
ing the similarity between two fingerprints represented as 
sets of MCCs is still complicated. In this paper, we fur­
ther exploit its global ability. Given a location with direc­
tion in fingerprint image as RP Gust like the central minu­
tia), a GMCC that covers much larger region than the orig­
inal one can be used to encode the entire minutia set (see 
Fig.l). Similarity of two fingerprints can be computed ex­
actly as the original MCC [7] without any additional global 
consolidation step. Some parameters are optimized because 
GMCC should tolerate larger distortion than MCC. New pa­
rameter values are reported in Table 2 and the changed ones 
are highlighted in bold. To make this strategy feasible, a 
reference point (RP) represented as {x, y, e, type} that can 
be stably detected in fingerprints should be defined, where 
x, y, e denote the location and direction of the RP and type 
is defined for situation where multiple types of reference 
points are used. Next, we will introduce the matching strat­
egy under multiple RPs condition in Section 2.3.The RP de­
tection algorithm will be described in Section 3. 



Figure 1. (a) A fingerprint from NIST4. The green circle indicates one of its reference points and the red circle indicates the region of 

interest. (b) The corresponding floating-point GMCC (first row) and binary GMCC (second row). 

2.3. Matching with GMCC 

Suppose we have two fingerprints Sand F to be 
matched. Two sets of reference points RS = {Rr, R�, . . .  } 
and RF = {Rf, Rf, . . .  } have been detected in the two 
fingerprints. For each Rf, nine locations around it are sam­
pled for robustness and then GC Sf that contains 9 GMCCs 
are extracted (interval is set to 16 pixels along each direc­
tion in experiments); for each Rf one GMCC is extracted 

as the only element of GC sf. The difference between the 
number of descriptors in search and file side is for low mem­
ory cost in searching large databases. Denote the maximum 
matching score between GC Sf and GC Sf as o5ij, which 

represents the similarity of two GMCCs based on Rf and 
Rf, the final score between two fingerprints is calculated 
as: 

8 = max o5ij. 
Matchable R:; ,R'; 

The attribute type (delta, loop, focal point, or specific type 
of template point, see Section 3) of a RP is used here to 
decide whether Rf and Rf can be matched. Two RPs are 
said to be matchable if and only if they have the same type 
and the rotation between them is below 60 degrees. 

3. Reference Point 

Reference point detection is a critical step in alignment 
based fingerprint matching algorithm and any error in this 
step can cause matching failure. Therefore, to improve 
matching performance, three kinds of reference points are 
used in this paper. We first review two kinds of traditional 
reference points in section 3.1 and propose a new reference 
point called template point mining and detection algorithm 
in section 3.2. Section 3.3 describes how to estimate the 
direction of focal point. 

3.1. Singular Point and Focal Point 

Singular point (SP) and focal point (FP) [ 17] are two 
kinds of stable RPs and achieve good performance in 
the fingerprint retrieval algorithm described in [6]. The 
Poincare index based approach is used to detect loop and 
delta type singular points [ 13] and the approach in [17] is 

Figure 2. A pair of corresponding fingerprints for which neither 

singular points nor focal point can be used as good RP. No singular 

points are present and global skin distortion makes the detected 

focal points (marked as circle) very inconsistent. 

used to detect the focal point of a fingerprint. The singu­
lar point can be accurately localized in good quality fin­
gerprints if present, but cannot be detected in fingerprints 
of plain arch type, and cannot be reliably detected in poor 
quality fingerprints. The focal point is relatively robust to 
noise but sensitive to skin distortion (see Fig. 2). To over­
come these issues, we propose a learning based algorithm to 
mine additional good orientation templates for fingerprint 
registration (Section 3.2). The direction of a singular point 
is estimated using the approach in [4] and the direction of a 
focal point is estimated using orientation templates learned 
by the proposed algorithm (Section 3.3). 

3.2. Template Point 

Template matching is a classical technique for object de­
tection in images. Given a template T and a detection image 
D, it locates the center and direction under which T and D 
are most similar. For detecting reliable reference points in 
fingerprints, ridge orientation field (in the range of [0, 7f)) 
is a better feature representation than the original grayscale 
image because of its tolerance to low image quality and fin­
gerprint distortion. Thus the following discussion is based 
on the orientation field. Given two orientation patches A 
and B, each consisting of h x h orientation elements, equa-



tion (1) gives the definition of similarity between them: 

1 
OrientSimi(A, B) = 

h2 L cos(2A(i) - 2B(i)). (1) 

Double angle are adopted because e and e + 7r have ex­
actly the same meaning in orientation representation. When 
detecting RP using template matching technique, we first 
compute the similarity of T and D on each possible loca­
tion and direction and the detection result is: 

{x*, y*, e*} = arg max OrientSimi(Te, Dx,y), 
x,y,8 

where Te means the rotation version of T, and Dx,y means 
local orientation patch centralized at location (x, y). In this 
paper, we use a 15 by 15 orientation field template with 
a sample interval of 8 pixels. Fig. 3 depicts the detection 
procedure. 

Instead of empirically specifying orientation templates, 
we choose to mine good templates using training finger­
prints. A proper template should have the following two 
characteristics: 

(I) It should be stable across difference images from the 
same finger. 

(2) It should be complementary to singular point and focal 
point. 

Following these intuitions, we formulate a supervised 
learning procedure. Given a set of search fingerprints 
S = {51, 52, '" , 5m}, a set of file fingerprints F = 

{ Fl, F2, . .. , F n} and their correspondence information 1, 

the template set T S satisfying our requirements is then gen­
erated automatically. 

Because spatial transformation parameters between 
matching fingerprints are not available, the first objective 
cannot be measured by evaluating the displacement of ref­
erence points in matching fingerprints. Instead, we use fin­
gerprint retrieval performance as the indirect objective func­
tion. Given a candidate template P and the Training Set 
{S, F}, the score of P is defined as the number of finger­
prints from S that can be solved by using it. A search fin­
gerprint is called solved if its corresponding file fingerprint 
can be retrieved at high rank (within top 1 % of the whole 
file fingerprint set). The best template is the one that has the 
highest score over all candidate templates P, which con­
sists of sampled ridge orientation patches extracted from all 
the fingerprints in S. To accelerate the training process, 
the patches that have a coherence higher than a predefined 

I We assume (1) no any two search fingerprints are from the same fin­
ger; (2) each search fingerprint has one and only one corresponding file 
fingerprint; (3) the file fingerprint set F may contain background finger­
prints which have no corresponding search fingerprints (namely, n > m). 
This is the case of NTST4 and NTSTI4 databases. 

threshold (0.9 in all experiments) are ignored because of 
their obviously low locating ability. The coherence of an 
orientation patch p is defined as [4]: 

I (Li cos(2p(i)), Li sin(2p( i))) I 
co h eren ce (p) = .c..:.:;:=':'--,-;---'--::-":--'+-:-c=''-'---;-:-,'--:''c-'+-:-':'--'­

Li l(cos(2p(i)), sin(2p(i))) I 

where p( i) denotes the ith orientation element of patch p. 
The patches that have a high similarity above 0.9 measured 
by equation (1) with any existing candidate are also skipped. 
To learn multiple templates, we remove the solved finger­
prints from S and select the next one until no more finger­
print can be solved or all fingerprints have been solved. The 
complete procedure Template Mining is outlined in Algo­
rithm 1. 

Algorithm 1 Template Mining 

Input: 

Search Fingerprint Set S = {51, 52, '" , 5m} 
File Fingerprint Set F = {Fl, F2, . . .  , Fn} 

Output: Selected Template Set T S 
1: Generate candidate templates P = {Pl, P2, '" } 
2: TS +- 0 
3: repeat 

4: for i = 0 to #P do 

5: Detect RPs in Sand F 
6: Generate GMCCs for Sand Fusing RPs 
7: Retrieve using RPs and GMCCs 
8: score(Pi) +- # solved fingerprints from S 
9: Ei +- solved fingerprints from S 

10: end for 

II: i* = arg maxi score(pi) 
12: TS +- TS U Pi* 
13: P +- P\Pi* 
14: S +- S\Ei* 
15: until no more fingerprint can be solved 

The second objective is needed for the system's overall 
performance and can be achieved by elaborately selecting 
of the training set, which will be discussed in detail in Sec­
tion 4. 1. 

3.3. Refine Focal Point's Direction 

The direction of focal point is estimated by comparing 
with a handcrafted orientation template in [3]. In this paper, 
we adopt the strategy described in Section 3.2 for mining 
such templates. The procedure is almost the same as Algo­
rithm 1 except that: 

( 1) Instead of generating candidates from all positions in 
fingerprints, we use patches that are centralized at de­
tected focal point using the method in [17]. 



• 

Fingerprint Image Orientation Field Detected Template Point 

Templates 

Responses 

Figure 3. Procedure of estimating the location and direction of template point by template matching. A fingerprint is firstly converted 

to orientation representation. Then the response images of the orientation field for multiple rotated versions of orientation template are 

calculated in a sliding window manner. The forth column shows the responses of each template on orientation field (dark red indicates high 

response). The red circle with direction in the resulting image shows the location and direction under which the response is maximum. 

(2) Reference point detection results using different candi­
date templates share the same position but have differ­
ent directions. 

4. Experiments 

To demonstrate the effectiveness of our algorithm, we do 
both verification experiment on FVC2002 and retrieval ex­
periments on NIST4 and NIST14. Compared with state-of­
the-art fixed-length representation methods for verification 
and retrieval, our algorithm achieves better results. 

4.1. Implementation Details 

We use the first 1000 pairs of fingerprints from NIST14 
as training set. Since template point is designed to be com­
plementary with singular point and focal point, we set S as 
the fingerprints that no singular point is detected on either 
search fingerprint or corresponding file fingerprint. All the 
1000 file fingerprints compose set F. For mining templates 
for estimating direction of focal point, all the 1000 pairs of 
fingerprints are used as Sand F respectively. The candidate 
template set P has a size of about 1500 and 1000 when min­
ing the templates for the template point and for focal point 
respectively. The first two best templates for template point 
and focal point are shown in Fig. 4. 

Considering the time consumption in detection phase 
and generalization performance, not all the mined templates 
are used. We reserve only the first two templates because 
they have solved most fingerprints with reasonable quality. 
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Figure 4. Learned orientation templates for (a) Template point de­

tection and (b) Focal point direction estimation. 

4.2. Verification 

The proposed algorithm has been evaluated on FVC2002 
DB2a fingerprint database. Minutiae are extracted using 
VeriFinger SDK 6.2 [2] and delta point is not used because 
it is usually not available in plain fingerprints. The state­
of-the-art performance of fixed-length binary feature vector 
representation on this database is reported in [ 19]. To make 
a fair comparison with the method proposed in [ 19], four 
samples (samples 1, 2, 7, 8) of each finger are used in this 
experiment. We follow the evaluation protocol of FVC to 
generate all 600 genuine scores and 4950 imposter scores 
and the performance is shown in Fig. 5. We can observe that 
the performance of the proposed algorithm is better than bi­
nary spectral minutiae scheme [ 19]. Note that the ditler-



0.09,:1:-,-----:11�======='1l 
0.08 
0.07 

ill 0.06 
1ii a: � 0.05 ." 
� 0.04 
� 0.03 

0.02 
0.01 

False Accept Rate 

Figure 5. Verification performances of the proposed algorithm and 

the state of the art algorithm [19] on FYC2002 DB2a. 

ence in matching accuracy cannot be solely attributed to the 
matching algorithm, since feature extraction algorithms for 
minutiae and singular points may also have a large impact 
on the matching performance. 

4.3. Retrieval 

Major advantage of fixed-length binary representation of 
a fingerprint is it's convenient to be scaled to large dataset. 
Fingerprint retrieval experiments are done on the last 2,700 
pairs (to be consistent with previous research [6]) of finger­
prints from NIST 14 and all 2,000 pairs of fingerprints from 
NIST4. Fig. 6 and Fig. 7 show the tradeoff between penetra­
tion and error rate on the two datasets. The state-of-the-art 
performance of fixed-length feature vector based fingerprint 
retrieval algorithm [6] is cited for comparison. We can ob­
serve that the error rate of the proposed algorithm is 50% 
lower than that of the algorithm in [6] on both datasets. The 
superiority of the proposed algorithm can be attributed to 
more distinctive representation (we use minutiae informa­
tion while [6] used ridge orientation and frequency infor­
mation) and more robust reference point detection. 

Fig. 8 shows the detection results of different kinds of 
RPs and Table 3 gives the error rates of different com­
binations of RPs under 1 % penetration rate. Using only 
one kind of RPs, singular points achieve the lowest error 
rate on NIST 14 and are less accurate than template points 
on NIST4, which contains uniform numbers of fingerprints 
of four fingerprint pattern types. Combination of singular 
points and template points outperforms other combinations 
that consist of two kinds of RPs. Attribute to the comple­
mentarity of different RPs, combining them together fur­
ther improves performance on both datasets. Image qual­
ity has large impact on the performance. The error rate of 
the 1929 out of 2700 pairs of fingerprints from NIST 14 and 
of the 1634 out of 2000 pairs of fingerprints from NIST4 
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Figure 6. Retrieval performances of the proposed algorithm and 

the state of the art algorithm [6] on NIST4. 
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Figure 7. Retrieval performances of the proposed algorithm and 

the state of the art algorithm [6] on NISTl4. 

with quality given by NBIS4.I.O [I] better than 4 is also 
shown in Table 3. Fig. 9 shows the statistics of the dis­
tribution of the number percentages of different kinds of 
RPs based on which GMCC pair has the maximum score, it 
reveals that template points present better performance on 
plain arch and tented arch type fingerprints. An example 
where the template point provides more accurate registra­
tion between corresponding fingerprints than singular point 
does is shown in Fig. 10. 

4.4. Computational Cost 

The speed of the proposed matching algorithm is mea­
sured on NIST4. Implemented in C++, our matching algo­
rithm can do about 100,000 matches per second on a stan­
dard PC (2.5 GHz CPU, single core), which is much faster 
than typical fingerprint matching algorithms. The speed of 
feature extraction is not measured because it is implemented 
as several different modules and in different languages. 



Figure 8. Examples of detected reference points. Circle indicates singular point, diamond indicates focal point and rectangle indicates 

template point. The reference point pairs with highest matching scores are shown. 

_ Loop _ Delta _ Focal Point _ Template Point 

All Types Plain Arch Tented Arch 

Right Loop Whorl 

Figure 9. Distribution of the number percentages of four types of 

RPs based on which GMCC pair has maximum similarity. Statis­

tics are obtained based on all 2,000 genuine pairs in NIST4 and 

six pie charts show the statistics over entire dataset and five types 

of fingerprints respectively. 

5. Conclusions 

Fixed-length binary vector representation for finger­
prints is desired for indexing large databases and imple­
menting template protection. With such representation, 
hamming distance can be used to measure the distance be­
tween fingerprints and biometric cryptosystem can be im­
plemented conveniently. In this paper, we extend Minu­
tia Cylinder Code, which was designed for describing local 
fingerprint region, to encode the whole minutia set of a fin­
gerprint as a single binary vector. To address the challeng­
ing registration problem, we proposed a learning algorithm 
to mine good reference points, which are complementary 
with singular point and focal point for fingerprint registra­
tion purpose. Verification and retrieval experiments on pub­
lic domain databases demonstrated the effectiveness of our 
algorithm. Noticing the large performance margin between 
fixed-length and general methods, how to combine image 

Reference Points 
Error Rate Error Rate 

on NIST4 on NIST14 

SP 0.372 0. 125 

FP 0.224 0.544 

TP 0. 143 0.227 

SP+FP 0. 132 0.094 

SP+TP 0.075 0.077 

FP+TP 0.081 0. 176 

SP+FP+TP 0.063 0.072 

(SP+FP+ TP)* 0.026 0.046 

Table 3. Retrieval performance of ditlerent combinations of RPs 

(SP: singular point, FP: focal point, TP: template point). The sec­

ond and third columns show the error rates at 1 % penetration rate. 

The last row indicates the error rate of the pairs of fingerprints 

whose quality given by NBIS4.1.0 [1] are both better than 4. 

quality information with our framework to further improve 
the accuracy will be researched in the future. 
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