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Abstract

Kinship verification from facial images is a challenging
problem in computer vision, and there is a very few at-
tempts on tackling this problem in the literature. In this pa-
per, we propose a new neighborhood repulsed metric learn-
ing (NRML) method for kinship verification. Motivated by
the fact that interclass samples (without kinship relation-
s) with higher similarity usually lie in a neighborhood and
are more easily misclassified than those with lower similar-
ity, we aim to learn a distance metric under which the intr-
aclass samples (with kinship relations) are pushed as close
as possible and interclass samples lying in a neighborhood
are repulsed and pulled as far as possible, simultaneously,
such that more discriminative information can be exploited
for verification. Moreover, we propose a multiview NRM-
L (MNRML) method to seek a common distance metric to
make better use of multiple feature descriptors to further
improve the verification performance. Experimental result-
s are presented to demonstrate the efficacy of the proposed
methods.

1. Introduction

Facial images convey many important human character-
istics, such as identity, gender, expression, age, and eth-
nicity. Over the past two decades, a large number of
face analysis problems have been investigated in comput-
er vision. Representative examples including face recogni-
tion [2, 15, 21, 22, 29], facial expression recognition [6],
age estimation [7, 9, 14], gender classification [17] and eth-
nicity recognition [10]. While encouraging results have
been obtained in previous studies, most existing work fo-
cus on face analysis under controlled conditions and suffer
from great variations in many real-world applications where
face images are captured under uncontrolled conditions.

Recently, a new face dataset called the Labeled Faces

Figure 1. Several examples of our kinship database. From topto
bottom are face images with the Father-Son (FS), Father-Daughter
(FD), Mother-Son (MS) and Mother-Daughter (MD) kinship rela-
tions, respectively.

in the Wild (LFW) [11] was created for the face identi-
fication research under uncontrolled conditions. Different
from most previous face datasets such as AR [16], FER-
ET [19] and CMU PIE [20], LFW was specifically designed
for advancing face recognition techniques for practical ap-
plications because facial images in this dataset were col-
lected from the real world environments and many natu-
ral variations rather than artificial controls were included.
Hence, face recognition methods/algorithms developed on
this dateset are much closer to practical applications. How-
ever, due to the inevitable impact factors such as pose, ex-
pression, lighting and aging on faces, human identification
through unconstrained face images remains unsolved.
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In this paper, we investigate the problem of human kin-
ship verification from facial images under uncontrolled con-
ditions. Figure 1 shows some representative examples of
kinship images1. This new research topic has several poten-
tial applications such as family album organization, image
annotation, and missing children searching. However, lit-
tle research has been systematically conducted along this
direction, possibly due to lacking of such publicly avail-
able kinship databases and great challenges of this problem.
To address this, we collect two new kinship face databases
named KinFaceW-I (KFW-I) and KinFaceW-II (KFW-II)2

from Internet search under uncontrolled conditions. Then,
we learn a robust distance metric under which facial images
with kinship relations are projected as close as possible and
those without kinship relations are pulled as far as as pos-
sible. Since interclass samples (without kinship relation)
with higher similarity usually lie in a neighborhood and are
more easily misclassified than those with lower similarity,
we emphasize the interclass samples (without kinship rela-
tion) in a neighborhood more in learning the distance met-
ric and expect those samples lying in a neighborhood are
repulsed and pulled as far as possible, simultaneously, such
that more discriminative information can be exploited for
verification. Inspired by the fact that multiple feature de-
scriptors could provide complementary information in char-
acterizing facial information from different viewpoints,we
propose a multiview neighborhood repulsed metric learn-
ing (MNRML) method to seek a common distance metric
to make better use of multiple feature descriptors to further
improve the verification performance. Experimental result-
s are presented to demonstrate the efficacy of the proposed
methods.

2. Related Work

Kinship Verification: Fanget al. [5] was the first at-
tempt to tackle the challenge of kinship verification from
facial images by using local facial feature extraction and
selection. They first localized some key parts of facial fea-
tures such as kin color, gray value, histogram of gradient,
and facial structure information were employed to describe
facial images. Then, thek-nearest-neighbor (KNN) with
Euclidean metric was applied to classify face images. More
recently, Xiaet al. [25] proposed a new transfer subspace
learning method for kinship verification. Their key idea is
to utilize an intermediate young parent facial image set to
reduce the divergence between the children and old parent
images based on the assumption that the children and y-

1All the face images shown in this paper were collected from Internet
search, which are only used for academic research (noncommercial).

2The difference of KFW-I and KFW-II is that each pair of kinship facial
images in KFW-I was collected from different photos and thatin KFW-II
was collected from the same photo. More examples will be provided in
Section 4.

Fig. 2. Intuitive illustration of the proposed NRML method.(a)
The original kinship face images in the high-dimensional feature
space. (b) The expected distributions of kinship images in the
learned metric space.

oung parents possess more facial resemblance in facial ap-
pearances. While encouraging results were obtained, there
are still two shortcomings among their work: 1) they used
the conventional Euclidean metric for kinship verification
and such metric is not appropriate to measure the similarity
of facial images because the intrinsic space that face usu-
ally lies in is a low-dimensional manifold rather than the
Euclidean space; 2) their method was evaluated on com-
paratively small datasets (150 pairs in [5] and 180 pairs in
[25], respectively), which are rather small to demonstrate
the effectiveness of face analysis-based kinship verification.
Hence, more robust and effective metrics and larger kinship
datasets are desirable to demonstrate and improve the per-
formance of existing kinship verification methods.

Metric Learning: Metric learning has received a lot of
attention in recent years, and there have been some such al-
gorithms proposed in the literature. Representative metric
learning algorithms include neighborhood component anal-
ysis (NCA) [8], cosine similarity metric learning (CSM-
L) [18], large margin nearest neighbor (LMNN) [23], and
information theoretic metric learning (ITML) [4]. While
metric learning methods have achieved reasonably good
performance in many visual analysis applications, there are
still two shortcomings among most existing methods: 1)
some training samples are more informative in learning the
distance metric than others, and most existing metric learn-
ing methods consider them equally and ignore such differ-
ent contributions of the samples to learn the distance met-
ric; 2) existing metric learning methods assume that data
are drawn from a vector space and thus cannot handle mul-
tiview data directly. To address this problem, we propose
a new multiview metric learning method to learn a robust
metric by considering different importance of face samples
and making use of multiple feature descriptors, simultane-
ously.

3. Proposed Methods

3.1. Basic Idea

Figure 2 shows the basic idea of our proposed NRML
method. There are three pairs of kinship images in Fig-
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ure 2(a), denoted by circles, squares and triangles, and the
blue and red colors denotes the parent and child facial im-
ages, respectively. In the original image space, there is large
difference between the parent and child images in the circle
class due to some variation factors such as aging, illumi-
nation and expression. Hence, there are some other parent
and child images lying in the neighborhoods of the parent
and child images in the circle class, as shown in Figure 2(a),
which is the main challenge in our task because there is a
high chance to misclassify the images in the neighborhood-
s. To address this challenge, we aim to learn a distance
metric under which facial images with kinship relations are
projected as close as possible and those without kinship re-
lations are pulled as far as as possible, as shown in Fig-
ure 2(b). As a result, the kinship margin in the learned dis-
tance metric space is much larger and more discriminative
information can be exploited for kinship verification.

3.2. NRML

Let S = {(xi, yi)|i = 1, 2, · · · , N} be the training set
of N pairs of kinship images, wherexi ∈ Rm andyi ∈ Rm

are theith parent and child images, respectively. The aim
of NRML is to seek a good metricd such that the distance
betweenxi andyj (i = j) is as small as possible, and that
betweenxi andyj (i 6= j) are as large as possible, simulta-
neously, where

d(xi, yj) =
√

(xi − yj)TA(xi − yj) (1)

A is anm×m square matrix, and1 ≤ i, j ≤ N . Sinced is a
metric,d(xi, yj) should satisfy the symmetry, nonnegativity
and triangle inequality. Hence,A must be symmetric and
positive semidefinite.

As discussed above, we formulate the proposed NRML
as the following optimization problem:

max
A

J(A) = J1(A) + J2(A) − J3(A)

=
1

Nk

N
∑

i=1

k
∑

t1=1

d2(xi, yit1) +
1

Nk

N
∑

i=1

k
∑

t2=1

d2(xit2 , yi)

−
1

N

N
∑

i=1

d2(xi, yi)

=
1

Nk

N
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i=1

k
∑

t1=1

(xi − yit1)
TA(xi − yit1)

+
1

Nk

N
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i=1

k
∑

t2=1

(xit2 − yi)
TA(xit2 − yi)

−
1

Nk

N
∑

i=1

(xi − yi)
TA(xi − yi) (2)

whereyit1 represents thet1th k-nearest neighbors ofyi and
xit2 denotes thet2thk-nearest neighbors ofxi, respectively,

the metricd is defined as Eq. (1). The objective function
of J1 in Eq. (2) is to ensure that ifyit1 andyi are close,
then they should be separated as far as possible withxi in
the learned distance metric space. Similarly, the objective
function ofJ2 in Eq. (2) is to ensure that ifxit2 andxi are
close, they should be separated as far as possible withyi
in the learned distance metric space. On the other hand,
J3 in Eq. (2) ensures thatxi andyi are pushed as close as
possible in the learned distance metric space because they
have kinship relations.

It can be seen that the optimization criterion in Eq. (2)
poses a chicken-and-egg problem because the distance met-
ric d needs to be known for computing thek-nearest neigh-
bors ofxi andyi. To the best of our knowledge, there is no
closed-form solution for this objective function. We solve
this problem in an iterative manner inspired by recent ad-
vances in EM-based algorithms [13, 28]. The basic idea
is to first use the Euclidean metric to search thek-nearest
neighbors ofxi andyi, and solved sequentially.

SinceA is symmetric and positive semidefinite, we can
seek a nonsquare matrixW of sizem × l, wherel ≤ m,
such that

A = WWT (3)

Then, Eq. (1) can be rewritten as

d(xi, yj) =
√

(xi − yj)TA(xi − yj)

=
√

(xi − yj)TWWT (xi − yj)

=
√

(ui − vj)T (ui − vj) (4)

whereui = WTxi andvj = WT yj .
Combining Eqs. (2) and (4), we simplifyJ1(A) to the

following form

J1(A) =
1

Nk

N
∑

i=1

k
∑

t1=1

(xi − yit1)
TWWT (xi − yit1)

= tr(WT 1

Nk

N
∑

i=1

k
∑

t1=1

(xi − yit1)(xi − yit1)
TW )

= tr(WTH1W ) (5)

whereH1 , 1
Nk

∑N
i=1

∑k
t1=1(xi − yit1)(xi − yit1)

T .
Similarly,J2(A) andJ3(A) can be simplified as

J2(A) = tr(WT 1

Nk

N
∑

i=1

k
∑

t2=1

(xit2 − yi)(xit2 − yi)
TW )

= tr(WTH2W ) (6)

J3(A) = tr(WT 1

Nk

N
∑

i=1

(xi − yi)(xi − yi)
TW )

= tr(WTH3W ) (7)
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Algorithm 1: NRML
Input : Training images:

S = {(xi, yi)|i = 1, 2, · · · , N}, parameters:
neighborhood sizek, iteration numberT , and
convergence errorε.

Output : Distance metricW .
Step 1 (Initialization):

Search thek-nearest neighbors for eachxi andyi by
using the conventional Euclidean metric.

Step 2 (Local optimization):
For r = 1, 2, · · · , T , repeat
2.1. ComputeH1, H2 andH3, respectively.
2.2. Solve the eigenvalue problem defined in Eq. (9).
2.3. ObtainW r = [w1, w2, · · · , wl].
2.4. Updatek-nearest neighbors ofxi andyi byW r.
2.5. If r > 2 and|W r −W r−1| < ε, go to Step 3.

Step 3 (Output distance metric):
Output distance metricW = W r.

whereH2 , 1
Nk

∑N
i=1

∑k
t2=1(xit2 − yi)(xit2 − yi)

T and

H3 = 1
Nk

∑N
i=1(xi − yi)(xi − yi)

T .
Now, we can formulate our NRML method as

max
W

J(W ) = tr[WT (H1 +H2 −H3)W ] (8)

subject to WTW = I.

whereWTW = I is a constraint to restrict the scale of
W such that the optimization problem with respect toW is
well-posed. Then,W can be obtained by solving the fol-
lowing eigenvalue problem

(H1 +H2 −H3)w = λw. (9)

Let w1, w2, · · · , wl be the eigenvectors of Eq. (9) corre-
sponding to thel largest eigenvalues ordered according to
λ1 ≥ λ2 ≥ · · · ≥ λl. An m × l transformation matrix
W = [w1, w2, · · · , wl] can be obtained to project the o-
riginal face samplesxi andyi into low-dimensional feature
feature vectorsui andvi, as follows:

ui = WTxi, vi = WT yi, i = 1, 2, · · · , N. (10)

Having obtainedW , we can re-calculate thek-nearest
neighbors ofxi andyi by using Eq. (1), respectively, and
updateW by re-solving the eigenvalue equation in Eq. (9).
The proposed NRML algorithm is summarized inAlgorith-
m 1.

3.3. MNRML

Previous studies have shown that different feature de-
scriptors could provide complementary information in char-
acterizing facial information from different viewpoints [26,

27], and hence it is desirable to utilize multiple feature in-
formation for our kinship verification task. However, mul-
tiple feature descriptors generally have multiple modalities
and existing metric learning cannot deal with such multi-
view data directly. To address this problem, we propose a
new multiview NRML (MNRML) method to learn a com-
mon distance metric for measuring multiple feature repre-
sentations of facial images for kinship verification.

Assume there areK views of feature representations,
andSp = {(xp

i , y
p
i )|i = 1, 2, · · · , N} be the feature rep-

resentation of thepth view set ofN pairs of kinship im-
ages, wherexp

i ∈ Rm and ypi ∈ Rm are theith paren-
t and child images from thepth view, respectively, where
p = 1, 2, · · · ,K. The aim of MNRML is to seek a common
metricd such that the distance betweenxp

i andypj (i = j)
is as small as possible, and that betweenxp

i andypj (i 6= j)
are as large as possible, simultaneously.

In order to well discover the complemental information
of facial images from different views, we impose a nonneg-
ative weighted vectorβ = [β1, β2, · · · , βK ] on the objec-
tive function of NRML of each view. Generally, the larger
βp is, the more contribution of the feature representations
from thepth made to learn the distance metric. Hence, we
formulate MNRML as the following optimization problem

max
W,β

K
∑

p=1

βptr[W
T (Hp

1 +Hp
2 −Hp

3 )W ] (11)

subject to WTW = I,

K
∑

p=1

βp = 1, βp ≥ 0.

The solution to Eq. (11) isβp = 1 corresponding to the
maximaltr[WT (Hp

1 +Hp
2 −Hp

3 )W ] over different views,
andβp = 0 otherwise, which means only the best view is
selected by our method, such that the complementary infor-
mation of facial features from different views has not been
exploited. To address this, we modifyβp to beβq

p, where
q > 1, and the new objective function is defined as

max
W,β

K
∑

p=1

βq
ptr[W

T (Hp
1 +Hp

2 −Hp
3 )W ] (12)

subject to WTW = I,

K
∑

p=1

βp = 1, βp ≥ 0.

To the best of our knowledge, there is no closed-form
solution to Eq. (12) since it is nonlinearly constrained non-
convex optimization problem. Similar to NRML, we also
solve it in an iterative manner.

First, we fixW and updateβ. We construct a Lagrange
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function

L(β, ζ) =

K
∑

p=1

βq
ptr[W

T (Hp
1 +Hp

2 −Hp
3 )W ]

−ζ(

K
∑

p=1

βp − 1) (13)

Let ∂L(β,ζ)
∂βp

= 0 and ∂L(β,ζ)
∂ζ = 0 , we have

qβq−1
p tr[WT (Hp

1 +Hp
2 −Hp

3 )W ]− ζ = 0 (14)
K
∑

p=1

βp − 1 = 0 (15)

Combining Eqs. (14) and (15), we can obtainβp as fol-
lows

βp =
(1/tr[WT (Hp

1 +Hp
2 −Hp

3 )W ])1/(q−1)

∑K
p=1(1/tr[W

T (Hp
1 +Hp

2 −Hp
3 )W ])1/(q−1)

(16)

Then, we updateW by using the newβ. Whenβ is fixed,
Eq. (12) is equivalent to

max
W

tr[WT (

K
∑

p=1

(Hp
1 +Hp

2 −Hp
3 ))W ] (17)

subject to WTW = I.

AndW can be obtained by solving the following eigenvalue
equation

(

K
∑

p=1

(Hp
1 +Hp

2 −Hp
3 )

)

w = λw. (18)

The proposed MNRML algorithm is summarized inAl-
gorithm 2.

3.4. Computational Complexity

We now briefly analyze the computational complexity of
the NRML and MNRML methods, which involvesT iter-
ations. For NRML, each iteration calculate three matrices
H1, H2 andH3, and solves a standard eigenvalue equation.
The time complexity of computing these two parts in each
iteration isO(Nk) andO(m3). Hence, the computational
complexity of our proposed NRML isO(NkT )+O(m3T ).

For the MNRML method, each iteration involves calcu-
lateβ and solving a standard eigenvalue equation. The time
complexity of implement these two parts in each iteration
is O((K + m)N2) andO(m3). Hence, the computational
complexity of our proposed NRML isO((K +m)N2T ) +
O(m3T ).

Algorithm 2: MNRML
Input : Training images:

Sp = {(xp
i , y

p
i )|i = 1, 2, · · · , N} be thepth

view set ofN pairs of kinship images,
parameters: neighborhood sizek, iteration
numberT , tuning parameterq, and
convergence errorε.

Output : Distance metricW .
Step 1 (Initialization):

1.1. Setβ = [1/K, 1/K, · · · , 1/K];
1.2. ObtainW 0 by solving Eq. (18).

Step 2 (Local optimization):
Forr = 1, 2, · · · , T , repeat
2.1. Computeβ by using Eq. (16).
2.2. ObtainW r by solving Eq. (18).
2.3. If r > 2 and|W r −W r−1| < ε, go to Step 3.

Step 3 (Output distance metric):
Output distance metricW = W r.

4. Experiments

We have evaluated the proposed NRML and MNRML
methods by conducting a number of kinship verification ex-
periments on our two datasets. The following describes the
details of the experiments and results.

4.1. Data Sets

To advance the kinship verification research and show
the efficacy of our proposed methods, we collected two kin-
ship face datasets from the internet through an online search
for images of public figures or celebrities and their parents
or children, named KFW-I and KFW-II. The difference of
KFW-I and KFW-II is that each pair of kinship facial im-
ages in KFW-I was collected from different photos and that
in KFW-II was collected from the same photo. We pose no
restrictions in terms of pose, lighting, background, expres-
sion, age, ethnicity and partial occlusion on the images used
for training and testing. Some examples from the KFW-I
dataset are shown in Figure 1, and Figure 3 shows some
samples in the KFW-II dataset.

There are four kinship relations in both the KFW-I and
KFW-II datasets: Father-Son (FS), Father-Daughter (FD),
Mother-Son (MS) and or Mother-Daughter (MD). In the
KFW-I dataset, there are 134, 156, 127 and 116 pairs of kin-
ship images for these four relations. For the KFW-II dataset,
each relation contains 250 pairs of kinship images. Figure 4
shows the ethnicity distributions of our datasets.

4.2. Experimental Settings

In our experiments, the images were converted to gray-
scale and normalized to64×64pixels according to the man-
ually labeled eyes positions. We adopted the 5-fold cross-
validation strategy for experiments. For each of the four
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Figure 3. Several examples of the KFW-II database. From top to
bottom are the Father-Son (FS), Father-Daughter (FD), Mother-
Son (MS) and Mother-Daughter (MD) kinship relations, respec-
tively.
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Figure 4. The ethnicity distributions of (a) KFW-I and (b) KFW-II
datasets, respectively.

subset, we construct all pairs of positive (true) and nega-
tive negative (false) samples for experiments. The positive
samples are the true pairs and the negative samples are each
parent with the selected child from the children images who
is not his/her true child.

We have experimented with several feature sets for face
analysis in recent work: Local Binary Patterns (LBP) [1],
LEarning-based (LE) [3], SIFT [12], and Three-Patch LBP
(TPLBP) [24]. For the LBP feature, we used 256 bins rather
than bins to describe each face image because we found
such parameter setting achieved better performance than
that used in [1]. For the LE method, we followed the param-
eter setting in [3] and used 200 bins to encode a histogram
feature for each image. For the SIFT feature, we dense-
ly sampled and computed the SIFT descriptors of16 × 16
patches over a grid with spacing of 8 pixels. For the TPLBP

feature, we followed the parameter setting in [24] and used
256 bins to encode a histogram feature for each image. For
details on these feature descriptors, we refer the readers to
[1, 3, 12, 24].

Since our kinship verification is a binary classification
problem and support vector machine (SVM) has demon-
strated excellent performance for such tasks, we here apply
SVM for classification. In our experiments, the RBF ker-
nel was used for similarity measure of each pair of samples
because we also found this kernel yield higher verification
accuracy than other kernels.

We have compared our method with three other metric
learning-based face verification algorithms which could al-
so address the kinship verification problem, including C-
SML [18], NCA [8], and (LMNN) [23]. For our proposed
NRML and MNRML methods, the neighborhoodsizek was
empirically set to be 5.

4.3. Results and Analysis

Table 1 & 2 tabulate the verification rate of differen-
t methods with different features on our kinship databases.
The best recognition accuracy of each method was recorded
for a fair comparison. As can be seen from these two tables,
the proposed NRML (MNRML) methods outperforms the
other three compared methods with the lowest gains in ac-
curacy of1.0% (3.0%) on the F-S subset,2.0% (3.3%) on
the F-D subset,2.0% (3.0%), 1.0% (2.0% on the M-S sub-
set, and1.0% (6.6% on the mean accuracy of the KFW-I
dataset,2.0% (3.1%) on the F-S subset,2.0% (3.2%) on
the F-D subset,1.0% (1.6%), 1.0% (1.6%) on the M-S sub-
set, and1.2% (2.0%) on the mean accuracy of the KFW-II
dataset, respectively.

We have made four observations from the results listed
in Tables 1 & 2:

1. NRML consistently outperforms the other compared
methods on all experiments, which implies that learn-
ing a distance metric by considering and exploring the
differences of different interclass samples can provide
better discriminative information for recognition.

2. MNRML can improve the verification performance of
NRML. The reason is MNRML can make use of multi-
ple facial feature representations in a common learned
distance metric such that some complementary infor-
mation for our kinship verification task.

3. LE is the best feature representation among all used
feature descriptors and it has achieved the best perfor-
mance, which is consistent with some previous face
verification experimental results which also demon-
strated that the LE methods can beat most convention-
al feature representations in face verification [3]. That
is because the LE method has better utilized the lo-
cal patch information of face images and such local
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Table 1. Verification accuracy (%) of different methods on differ-
ent subsets of the KFW-I dataset.

Method Feature F-S F-D M-S M-D Mean
CSML LBP 63.7 61.2 55.4 62.4 60.7

LE 61.1 58.1 60.9 70.0 62.5
SIFT 66.5 60.0 60.0 56.4 59.8

TPLBP 57.3 61.5 63.2 57.0 59.7
NCA LBP 61.7 62.2 56.4 62.4 60.7

LE 62.1 57.1 61.9 69.0 62.3
SIFT 67.5 61.0 61.0 57.4 60.8

TPLBP 56.3 60.5 62.2 56.0 58.7
LMNN LBP 62.7 63.2 57.4 63.4 61.7

LE 63.1 58.1 62.9 70.0 63.3
SIFT 69.5 63.0 63.0 59.4 62.8

TPLBP 57.3 61.5 63.2 57.0 59.7
NRML LBP 64.7 65.2 59.4 65.4 63.7

LE 64.1 59.1 63.9 71.0 64.3
SIFT 70.5 64.0 64.0 60.4 63.8

TPLBP 59.3 63.5 65.2 60.0 62.9
MNRML All 72.5 66.5 66.2 72.0 69.9

patches may provide more discriminative information
for kinship relation discovery.

4. The results obtained on the KFW-II dataset are gener-
ally higher than those obtained on the KFW-I dataset,
which indicates that kinship verification on the KFW-
I dataset is more difficult that that on the KFW-II
dataset. The reason is that face images in the KFW-
II dataset are collected from the same photo and the
kinship images have the same collection conditions,
which could reduce some challenges of the some fac-
tors such as illumination and aging variations in the
KFW-I dataset.

Then, we investigate the effect of the parameterk of our
proposed NRML and MNRML methods. Figure 5 shows
the mean kinship verification accuracies of NRML (the LE
feature is applied) and MNRML (all the four features are
applied) versus different values ofk, where Figure 5(a) and
5(b) are the results obtained on the KFW-I and KFW-II
databases, respectively. We can observe from this figure
that NRML and MNRML demonstrates a stable recogni-
tion performance with versus varying neighborhood sizes.
Hence it is easy to select an appropriate neighborhood sizes
for NRML and MNRML to obtain good performance in real
applications.

Since NRML and MNRML are iterative algorithms, we
also evaluate their performance with different number of it-
erations. Figure 6 shows the mean verification accuracy of
DMMA versus different number of iterations, where Fig-
ure 6(a) and 6(b) are the results obtained on the KFW-I and
KFW-II databases, respectively. We can see from this figure
that our proposed NRML and MNRML can converge to a
local optimal peak in several iterations.

Table 2. Verification accuracy (%) of different methods on differ-
ent subsets of the KFW-II dataset.

Method Feature F-S F-D M-S M-D Mean
CSML LBP 66.0 65.5 64.8 65.0 65.3

LE 71.8 68.1 73.8 74.0 71.9
SIFT 62.0 58.9 56.8 57.4 58.8

TPLBP 66.4 62.6 62.8 64.9 64.2
NCA LBP 67.0 66.5 65.8 66.0 66.3

LE 73.8 70.1 74.8 75.0 73.5
SIFT 63.0 59.9 58.8 59.4 60.4

TPLBP 67.4 63.6 63.8 66.9 66.5
LMNN LBP 68.0 68.5 68.8 67.0 68.2

LE 74.8 71.1 75.8 76.0 74.5
SIFT 65.0 57.9 58.8 59.4 60.4

TPLBP 68.4 65.6 65.8 67.9 68.1
NRML LBP 69.0 69.5 69.8 69.0 69.5

LE 76.8 73.1 76.8 77.0 75.7
SIFT 68.0 60.9 60.8 61.4 62.8

TPLBP 70.4 67.6 67.8 69.9 70.1
MNRML All 76.9 74.3 77.4 77.6 76.5
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Figure 5. Mean verification accuracy of NRML and MNRML ver-
sus different values of parameterk on the (a) KFW-I and (b) KFW-
II datasets, respectively.
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Figure 6. Mean verification accuracy of NRML and MNRML ver-
sus different number of iterations on the (a) KFW-I and (b) KFW-II
datasets, respectively.

As an important baseline, the human ability in kinship
verification from facial images was also tested. From each
of the above four subsets in the KFW-I and KFW-II dataset-
s, we randomly selected 100 pairs of face samples, 50 are
positive and the other 50 are negative, and presented them to
10 human observers (5 males and 5 females) with age of 20
to 30 years old. None of them received training on the task
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Table 3. The classification accuracy (%) of human ability on kin-
ship verification on different kinship subsets of the KFW-I dataset.

Method F-S F-D M-S M-D Mean
HumanA 61.00 58.00 66.00 70.00 63.75
HumanB 67.00 65.00 75.00 77.00 71.00

Table 4. The classification accuracy (%) of human ability on
kinship verification on different kinship subsets of the KFW-II
dataset.

Method F-S F-D M-S M-D Mean
HumanA 61.00 61.00 69.00 73.00 66.75
HumanB 70.00 68.00 78.00 80.00 74.00

before the experiment. There are two stages in the exper-
iment. The difference is that, in the first stage (HumanA),
only the cropped face regions are shown, while, in the sec-
ond stage (HumanB), the whole original color images are
shown. HumanA intends to test kinship verification purely
based on face, while HumanB intends to test kinship ver-
ification based on multiple cues including face, hair, skin
color, and background. Note that the information provided
in HumanA is the same as that provided to the algorithm-
s. Tables 3 & 4 show the classification accuracy of human
ability on kinship verification on the KFW-I and KFW-II
datasets, respectively. We can observe that our proposed N-
RML method can obtain better performance than HumanA,
and performs slightly worse than HumanB on the KFW-I
dataset, which further indicates that some other cues such
as hair, skin color, and background also contribute to kin-
ship verification. Moreover, our methods can achieve high-
er verification accuracies than both HumanA and HumanB
on the KFW-II dataset.

5. Conclusion and Future Work

We have proposed a neighborhood repulsed metric learn-
ing (NRML) method for kinship verification via facial im-
age analysis. To the best of our knowledge, this paper is the
first attempt to investigate kinship verification in the wild
on the largest kinship data sets. Experimental results have
shown that the performance of our proposed methods are
not only significantly better than that of the state-of-the-art
metric learning algorithms for kinship verification, but al-
so comparable to that of the human observers. How to ex-
plore more discriminative features and combine them with
our proposed NRML and MNRML methods to further im-
prove the verification performance appears to be another in-
teresting direction of future work.
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