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Abstract

Kinship verification from facial images is a challenging
problem in computer vision, and there is a very few at-
tempts on tackling this problem in the literature. In this pa
per, we propose a new neighborhood repulsed metric learn-
ing (NRML) method for kinship verification. Motivated by
the fact that interclass samples (without kinship relation
s) with higher similarity usually lie in a neighborhood and
are more easily misclassified than those with lower similar-
ity, we aim to learn a distance metric under which the intr-
aclass samples (with kinship relations) are pushed as close
as possible and interclass samples lying in a neighborhood
are repulsed and pulled as far as possible, simultaneously,
such that more discriminative information can be exploited
for verification. Moreover, we propose a multiview NRM-
L (MNRML) method to seek a common distance metric to
make better use of multiple feature descriptors to further
improve the verification performance. Experimental result
s are presented to demonstrate the efficacy of the propose
methods.

q—'igure 1. Several examples of our kinship database. Fronotop
bottom are face images with the Father-Son (FS), Fathegiitau
(FD), Mother-Son (MS) and Mother-Daughter (MD) kinshiperel
tions, respectively.

1. Introduction

Facial images convey many important human character-in the Wild (LFW) [11] was created for the face identi-
istics, such as identity, gender, expression, age, and ethfication research under uncontrolled conditions. Différen
nicity. Over the past two decades, a large number of from most previous face datasets such as AR [16], FER-
face analysis problems have been investigated in comput£T [19] and CMU PIE [20], LFW was specifically designed
er vision. Representative examples including face recogni for advancing face recognition techniques for practical ap
tion [2, 15, 21, 22, 29], facial expression recognition [6], plications because facial images in this dataset were col-
age estimation [7, 9, 14], gender classification [17] and eth |ected from the real world environments and many natu-
nicity recognition [10]. While encouraging results have ral variations rather than artificial controls were incldde
been obtained in previous studies, most existing work fo- Hence, face recognition methods/algorithms developed on
cus on face analysis under controlled conditions and sufferthis dateset are much closer to practical applications.-How
from great variations in many real-world applications wher  ever, due to the inevitable impact factors such as pose, ex-
face images are captured under uncontrolled conditions.  pression, lighting and aging on faces, human identification

Recently, a new face dataset called the Labeled Faceshrough unconstrained face images remains unsolved.



In this paper, we investigate the problem of human kin- N ST L I

ship verification from facial images under uncontrolledcon  / .ﬂ*\ - -/ \\.\ i \\_\
ditions. Figure 1 shows some representative examples of ! o 4\4—‘. P }
kinship image& This new research topic has several poten- T~ 7 Kinship I A
tial applications such as family album organization, image ~_ __-~ I S
annotation, and missing children searching. However, lit- A [ ] Al

tle research has been systematically conducted along this - @ ) 5l
direction, possibly due to lacking of such publicly avail- "IZ':’? 2',”7t”'|t“l:? |Ilhqst][at|0r} of the P“:ﬁoshe,thdRML metr:])tda)
able kinship databases and great challenges of this problem € original Kinship face 1mages in the high-cimensionat’ie
. . . space. (b) The expected distributions of kinship imageshé t
To address this, we collect two new kinship face databaseq .
K . earned metric space.
named KinFaceW-I (KFW-1) and KinFaceW-II (KFW-R)

from Internet search under uncontrolled conditions. Then,

we learn a robust distance metric under which facial imagesoung parents possess more facial resemblance in facial ap-
with kinship relations are projected as close as possilile an pearances. While encouraging results were obtained, there
those without kinship relations are pulled as far as as pos-are still two shortcomings among their work: 1) they used
sible. Since interclass samples (without kinship reldtion the conventional Euclidean metric for kinship verification
with higher similarity usually lie in a neighborhood and are and such metric is not appropriate to measure the similarity
more easily misclassified than those with lower similarity, of facial images because the intrinsic space that face usu-
we emphasize the interclass samples (without kinship rela-a|ly lies in is a low-dimensional manifold rather than the
tion) in a neighborhood more in learning the distance met- Eyclidean space; 2) their method was evaluated on com-
ric and expect those samples lying in a neighborhood areparatively small datasets (150 pairs in [5] and 180 pairs in
repulsed and pulled as far as possible, simultaneousll, suc [25], respectively), which are rather small to demonstrate
that more discriminative information can be exploited for the effectiveness of face analysis-based kinship verifioat
verification. Inspired by the fact that multiple feature de- Hence, more robust and effective metrics and larger kinship
scriptors could provide complementary informationin ehar datasets are desirable to demonstrate and improve the per-
acterizing facial information from different viewpointsg formance of existing kinship verification methods.

propose a multiview neighborhood repulsed metric learn-  petric Learning: Metric learning has received a lot of
ing (MNRML) method to seek a common distance metric attention in recent years, and there have been some such al-
to make better use of multiple feature descriptors to furthe gorithms proposed in the literature. Representative metri
improve the verification performance. Experimental result learning algorithms include neighborhood component anal-
s are presented to demonstrate the efficacy of the proposeg}siS (NCA) [8], cosine similarity metric learning (CSM-

methods. L) [18], large margin nearest neighbor (LMNN) [23], and
information theoretic metric learning (ITML) [4]. While
2. Related Work metric learning methods have achieved reasonably good

performance in many visual analysis applications, thege ar

Kinship Vilr'f'cﬁt'orr'{ "Fanget f6I‘<|.' [SE].was t_?_e first ?t' still two shortcomings among most existing methods: 1)
tempt to tackle the challenge of kinship verification from g, ,¢ training samples are more informative in learning the

facial images by using local facial feature extraction and distance metric than others, and most existing metric learn

selection. They_first localized some kgy parts of facial fea— ing methods consider them equally and ignore such differ-
tures such as kin color, gray value, histogram of gradient, oy contributions of the samples to learn the distance met-
anq fa_c:|al structure information were gmployed to des_crlbe fic; 2) existing metric learning methods assume that data
faC|a_I Images. _Then, the-.nearest-nellghbor (,KNN) with are drawn from a vector space and thus cannot handle mul-
Euclidean metrlc was applied to classify face images. More tiview data directly. To address this problem, we propose
recently, Xiaet al [25] proposed a new transfer subspace a new multiview metric learning method to learn a robust

learning method for kinship verification. Their key idea is metric by considering different importance of face samples

to utilize an intermediate young parent facial image set to and making use of multiple feature descriptors, simultane-
reduce the divergence between the children and old parenbus|y

images based on the assumption that the children and y-

1All the face images shown in this paper were collected frotariret 3. Proposed Methods
search, which are only used for academic research (noncoriaie

2The difference of KFW-l and KFW-Il is that each pair of kingHacial 3.1. Basic Idea
images in KFW-I was collected from different photos and thakFW-II . ..
was collected from the same photo. More examples will beigeal/in Figure 2 shows the basic !dea of_our .prgposed NRML
Section 4. method. There are three pairs of kinship images in Fig-



ure 2(a), denoted by circles, squares and triangles, and th¢he metricd is defined as Eq. (1). The objective function
blue and red colors denotes the parent and child facial im-of .J; in Eqg. (2) is to ensure that if;;, andy; are close,

ages, respectively. In the original image space, therege la

then they should be separated as far as possibleayiit

difference between the parent and child images in the circlethe learned distance metric space. Similarly, the objectiv
class due to some variation factors such as aging, illumi-function of J, in Eq. (2) is to ensure that if,;, andz; are
nation and expression. Hence, there are some other parertlose, they should be separated as far as possiblegwith
and child images lying in the neighborhoods of the parentin the learned distance metric space. On the other hand,
and child images in the circle class, as shown in Figure 2(a), /5 in Eq. (2) ensures that; andy; are pushed as close as
which is the main challenge in our task because there is apossible in the learned distance metric space because they
high chance to misclassify the images in the neighborhood-have kinship relations.

s. To address this challenge, we aim to learn a distance

It can be seen that the optimization criterion in Eq. (2)

metric under which facial images with kinship relations are poses a chicken-and-egg problem because the distance met-
projected as close as possible and those without kinship re+ic d needs to be known for computing thenearest neigh-
lations are pulled as far as as possible, as shown in Fig-bors ofz; andy;. To the best of our knowledge, there is no
ure 2(b). As a result, the kinship margin in the learned dis- closed-form solution for this objective function. We solve
tance metric space is much larger and more discriminativethis problem in an iterative manner inspired by recent ad-

information can be exploited for kinship verification.
3.2. NRML

Let S = {(z;,v:)|i = 1,2,---, N} be the training set
of N pairs of kinship images, wherg € R™ andy; € R™

vances in EM-based algorithms [13, 28]. The basic idea
is to first use the Euclidean metric to search theearest
neighbors ofr; andy;, and solvel sequentially.

Since A is symmetric and positive semidefinite, we can
seek a nonsquare matri¥X of sizem x [, wherel < m,

are theith parent and child images, respectively. The aim such that

of NRML is to seek a good metri¢ such that the distance
betweenz; andy; (i = j) is as small as possible, and that
between:; andy; (i # j) are as large as possible, simulta-
neously, where

dai, ;) = /(@i = )T Alwi — yj) (1)

Ais anm xm square matrix, antl < ¢, j < N. Sinced is a
metric,d(z;, y;) should satisfy the symmetry, nonnegativity
and triangle inequality. Hencel must be symmetric and
positive semidefinite.

As discussed above, we formulate the proposed NRML

as the following optimization problem:
max J(A) = J1(A) + J2(A) — J3(A)
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wherey;,, represents thg th k-nearest neighbors gf and
x;t, denotes thésth k-nearest neighbors af, respectively,

A=wwT (3)
Then, Eg. (1) can be rewritten as
d(wiy;) = \/(xi —y;) T Al — yj)
= @ — ) TWWT (2 — )
= \/ (ui = 03)" (ui — ;) (4)
whereu; = WTz; andv; = WTy;.

Combining Egs. (2) and (4), we simplify; (A4) to the
following form

Nk
1
Ji(A) = _k:z Z —yir,) WW (2 — yir,)
B 1 N k
_ T _ T
= W Nk Z 2:: (xz - ym)(xz - yltl) W)
= tr(WTH,W) (5)
whereH; £ L ST ST (@0 — i) (@i — yin,) T
Similarly, J>(A) and.J;(A) can be simplified as
1 N k
JQ(A) = WT k Z Z: xltz xltz — yi)TW)
= (WTH2W) (6)
1 N
Js(A) = tr(WT Z — )W)
= (WTH3W) (7)



Algorithm 1: NRML 27], and hence it is desirable to utilize multiple feature in
formation for our kinship verification task. However, mul-
tiple feature descriptors generally have multiple moadsdit
and existing metric learning cannot deal with such multi-
view data directly. To address this problem, we propose a
new multiview NRML (MNRML) method to learn a com-

Input: Training images:
S ={(zi,yi)li =1,2,---, N}, parameters:
neighborhood sizé, iteration numbef’, and
convergence errar.

Output: Distance metridV .

Step 1 (Initialization): mon d_istance mt_atri_c for measu_ring _multipl_e fgature repre-
Search thé:-nearest neighbors for each andy; by sentations of facial images for kinship verification.
using the conventional Euclidean metric. Assume there ard views of feature representations,
Step 2 (Local optimization): andS? = {(2%,4")]i = 1,2,---, N} be the feature rep-
Forr=1,2,---,T, repeat resentation of theth view set of N pairs of kinship im-

2.1 ComputeH;, H» and Hs, respectively.

2.2 Solve the eigenvalue problem defined in Eq. (9).
2.3 ObtainW" = [w1, w2, -+ ,wi].

2.4. Updatek-nearest neighbors af; andy; by W".

ages, where? € R™ andy? € R™ are theith paren-
t and child images from theth view, respectively, where
p=1,2,---, K. The aim of MNRML is to seek a common

25 1fr > 2and[W” — W] < ¢, go to Step 3. metricd such that the distance betweehandy’ (i = j)
Step 3 (Output distance metric): is as small as possible, and that betwegrandy’ (i # j)
Output distance metrith = W". are as large as possible, simultaneously.

In order to well discover the complemental information
of facial images from different views, we impose a honneg-
whereH, £ ﬁ vazl Zfzzl(xit2 —yi) (i, —y:)" and a_ltive Weighted vectop = [51,[32_, .-+, Bk] on the objec-
Hy = L ng (s — yi) (@i — y:)T tive function of NRML of each view. Generally, the larger
Nk 2=l v e f3, is, the more contribution of the feature representations
from thepth made to learn the distance metric. Hence, we
max JW) = tr[WT (H, + Hy — Hy)W] (8) formulate MNRML as the following optimization problem

Now, we can formulate our NRML method as

subjectto WTW = 1. K
max » _ Bptr[W'(HY + HY — HH)W]  (11)
whereWTW = [ is a constraint to restrict the scale of Wh
W such that the optimization problem with respectiois

K
well-posed. ThenJ¥” can be obtained by solving the fol- subjectto WTW =1, Zﬁp =1,8,>0.
lowing eigenvalue problem p—1

The solution to Eq. (11) i8, = 1 corresponding to the
maximaltr[W7T (HY + HY — HY)W] over different views,

Letw,ws, -+ ,w; be the eigenvectors of Eq. (9) corre- . . S
sponding to thd largest eigenvalues ordered according to andf, = 0 otherwise, which means only the best VIEW IS
AL > A > - > A Anm x [ transformation matrix sele_cted by our method, such that the co_mplementarylnfor-
W — [wy,ws,--- ;] can be obtained to project the o- mation of facial features from different views has not been

exploited. To address this, we modify; to be 3{, where

riginal face samples; andy; into low-dimensional feature L N .
g ple2: ancy; q > 1, and the new objective function is defined as

feature vectors,; andv;, as follows:

ui:WTxi,vi:WTyi, 121,2,,]\7 10 K
4o %agz gltr (W' (HY + HY — H))W]  (12)
Having obtained?, we can re-calculate the-nearest T op=l
neighbors ofr; andy; by using Eq. (1), respectively, and ) . K
updatelV by re-solving the eigenvalue equation in Eq. (9). subjectto W W =1, Zﬁp =1,5,20.
The proposed NRML algorithm is summarizedilgorith- p=1
m 1.

To the best of our knowledge, there is no closed-form
3.3. MNRML solution to Eq. (12) since it is nonlinearly constrained non
Previous studies have shown that different feature de-Convex optimization problem. Similar to NRML, we also
scriptors could provide complementary information in ehar Solve itin an iterative manner.
acterizing facial information from different viewpoint2, First, we fix1/ and updates. We construct a Lagrange



function

K
L(B:Q) = 3 paerlW! (i + HY — H)W]
p=1
K
ROIEY 49
p=1
Let%ﬁi’o -0 and%ﬁ’o =0, we have

By r[WT(HY + HY — HY)W] = ¢ =0 (14)

K
> Bp—1=0 (19
p=1

Combining Egs. (14) and (15), we can obtdinas fol-
lows

(1/trWT (HY + HY — HY)W])V/ =D
S (1t [WT (HY + HE — H)W])H/ D)

ﬂp = (16)

Then, we updat®” by using the nev. Wheng is fixed,
Eq. (12) is equivalent to
K
max tr[w™ (;(H{’ + HY — HD)YW]  (17)
subjectto WIW =1.

And ¥ can be obtained by solving the following eigenvalue

equation
K
(Z(H{’ + HY — H§)> w = Aw. (18)
p=1

The proposed MNRML algorithm is summarizedAi
gorithm 2.

3.4. Computational Complexity

Algorithm 2: MNRML
Input: Training images:
view set of N pairs of kinship images,
parameters: neighborhood sizgiteration
numberT’, tuning parametey, and
convergence erraf.
Output: Distance metridV .
Step 1 (Initialization):
1.1 Set3 = [1/K,1/K,--- ,1/K];
1.2 Obtaint¥° by solving Eg. (18).
Step 2 (Local optimization):
Forr =1,2,--- ,T, repeat
2.1 Computes by using Eq. (16).
2.2 ObtainWW" by solving Eq. (18).
23 1fr>2andW” — W"™!| < ¢, go to Step 3.
Step 3 (Output distance metric):
Output distance metrit = W".

4. Experiments

We have evaluated the proposed NRML and MNRML
methods by conducting a number of kinship verification ex-
periments on our two datasets. The following describes the
details of the experiments and results.

4.1. Data Sets

To advance the kinship verification research and show
the efficacy of our proposed methods, we collected two kin-
ship face datasets from the internet through an online earc
for images of public figures or celebrities and their parents
or children, named KFW-I and KFW-II. The difference of
KFW-I and KFW-II is that each pair of kinship facial im-
ages in KFW-1 was collected from different photos and that
in KFW-II was collected from the same photo. We pose no
restrictions in terms of pose, lighting, background, espre
sion, age, ethnicity and partial occlusion on the imaged use
for training and testing. Some examples from the KFW-I
dataset are shown in Figure 1, and Figure 3 shows some
samples in the KFW-II dataset.

We now briefly analyze the computational complexity of There are four kinship relations in both the KFW-1 and
the NRML and MNRML methods, which involveE iter- ~ KFW-II datasets: Father-Son (FS), Father-Daughter (FD),
ations. For NRML, each iteration calculate three matrices Mother-Son (MS) and or Mother-Daughter (MD). In the
H,, H, andH3, and solves a standard eigenvalue equation. KFW-| dataset, there are 134, 156, 127 and 116 pairs of kin-
The time complexity of computing these two parts in each ship images for these four relations. For the KFW-II dataset
iteration isO(N'k) andO(m?). Hence, the computational each relation contains 250 pairs of kinship images. Figure 4
complexity of our proposed NRML i©(NET) +O(m?3T). shows the ethnicity distributions of our datasets.

For the MNRML method, each iteration involves calcu-
late 5 and solving a standard eigenvalue equation. The time
complexity of implement these two parts in each iteration
is O((K + m)N?) andO(m?). Hence, the computational
complexity of our proposed NRML i©((K + m)N?T) +
O(m3T).

4.2. Experimental Settings

In our experiments, the images were converted to gray-
scale and normalized ol x 64 pixels according to the man-
ually labeled eyes positions. We adopted the 5-fold cross-
validation strategy for experiments. For each of the four
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Figure 3. Several examples of the KFW-Il database. Fromdop t
bottom are the Father-Son (FS), Father-Daughter (FD), &teth

Son (MS) and Mother-Daughter (MD) kinship relations, respe
tively.

ion of ethicity
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@
Figure 4. The ethnicity distributions of (a) KFW-1 and (b) YWFII
datasets, respectively.

subset, we construct all pairs of positive (true) and nega-
tive negative (false) samples for experiments. The pe@sitiv

feature, we followed the parameter setting in [24] and used
256 bins to encode a histogram feature for each image. For
details on these feature descriptors, we refer the readers t
[1, 3,12, 24].

Since our kinship verification is a binary classification
problem and support vector machine (SVM) has demon-
strated excellent performance for such tasks, we here apply
SVM for classification. In our experiments, the RBF ker-
nel was used for similarity measure of each pair of samples
because we also found this kernel yield higher verification
accuracy than other kernels.

We have compared our method with three other metric
learning-based face verification algorithms which coutd al
so address the kinship verification problem, including C-
SML [18], NCA [8], and (LMNN) [23]. For our proposed
NRML and MNRML methods, the neighborhood sizeras
empirically set to be 5.

4.3. Results and Analysis

Table 1 & 2 tabulate the verification rate of differen-
t methods with different features on our kinship databases.
The best recognition accuracy of each method was recorded
for a fair comparison. As can be seen from these two tables,
the proposed NRML (MNRML) methods outperforms the
other three compared methods with the lowest gains in ac-
curacy of1.0% (3.0%) on the F-S subse®.0% (3.3%) on
the F-D subset2.0% (3.0%), 1.0% (2.0% on the M-S sub-
set, andl.0% (6.6% on the mean accuracy of the KFW-|
dataset2.0% (3.1%) on the F-S subse®.0% (3.2%) on
the F-D subset.0% (1.6%), 1.0% (1.6%) on the M-S sub-
set, andl.2% (2.0%) on the mean accuracy of the KFW-II
dataset, respectively.

We have made four observations from the results listed
in Tables 1 & 2:

1. NRML consistently outperforms the other compared
methods on all experiments, which implies that learn-
ing a distance metric by considering and exploring the
differences of different interclass samples can provide
better discriminative information for recognition.

samples are the true pairs and the negative samples are each

parent with the selected child from the children images who
is not his/her true child.

We have experimented with several feature sets for face
analysis in recent work: Local Binary Patterns (LBP) [1],
LEarning-based (LE) [3], SIFT [12], and Three-Patch LBP
(TPLBP) [24]. For the LBP feature, we used 256 bins rather

than bins to describe each face image because we found
such parameter setting achieved better performance than

that used in [1]. For the LE method, we followed the param-
eter setting in [3] and used 200 bins to encode a histogram
feature for each image. For the SIFT feature, we dense-
ly sampled and computed the SIFT descriptorg® 16
patches over a grid with spacing of 8 pixels. For the TPLBP

. MNRML can improve the verification performance of
NRML. The reason is MNRML can make use of multi-
ple facial feature representations in a common learned
distance metric such that some complementary infor-
mation for our kinship verification task.

3. LE is the best feature representation among all used
feature descriptors and it has achieved the best perfor-
mance, which is consistent with some previous face
verification experimental results which also demon-
strated that the LE methods can beat most convention-
al feature representations in face verification [3]. That
is because the LE method has better utilized the lo-

cal patch information of face images and such local



Table 1. Verification accuracy (%) of different methods offedi Table 2. Verification accuracy (%) of different methods offedi

ent subsets of the KFW-I dataset. ent subsets of the KFW-II dataset.
Method Feature| F-<S F-D M-S M-D Mean Method Feature| F-<S F-D M-S M-D Mean
CSML LBP 63.7 61.2 554 624 60.7 CSML LBP 66.0 655 64.8 650 653
LE 61.1 581 609 70.0 62.5 LE 71.8 681 738 740 719
SIFT | 66,5 60.0 60.0 56.4 59.8 SIFT | 620 589 56.8 ©57.4 58.8
TPLBP | 57.3 615 63.2 57.0 59.7 TPLBP | 66.4 62.6 628 64.9 64.2
NCA LBP 61.7 62.2 56.4 624 60.7 NCA LBP 67.0 665 658 66.0 66.3
LE 62.1 571 619 69.0 62.3 LE 73.8 701 748 750 735
SIFT | 675 61.0 61.0 574 60.8 SIFT | 63.0 599 588 594 604
TPLBP | 56.3 60.5 62.2 56.0 58.7 TPLBP | 67.4 63.6 63.8 66.9 66.5
LMNN LBP 62.7 63.2 574 634 61.7 LMNN LBP 68.0 685 688 67.0 68.2
LE 63.1 581 629 70.0 63.3 LE 748 711 758 76.0 745
SIFT | 695 63.0 63.0 594 62.8 SIFT | 65.0 579 588 594 604
TPLBP | 57.3 615 63.2 57.0 59.7 TPLBP | 68.4 65.6 658 67.9 68.1
NRML LBP 64.7 65.2 594 654 63.7 NRML LBP 69.0 695 698 69.0 695
LE 64.1 59.1 639 71.0 64.3 LE 768 73.1 768 77.0 757
SIFT | 705 64.0 640 604 63.8 SIFT | 68.0 609 608 614 62.8
TPLBP | 59.3 63.5 65.2 60.0 62.9 TPLBP | 70.4 67.6 67.8 69.9 70.1
MNRML All 725 665 66.2 720 69.9 MNRML All 769 743 774 T77.6 76.5

patches may provide more discriminative information
for kinship relation discovery.

ceuracy (%)

4. The results obtained on the KFW-II dataset are gener- £
ally higher than those obtained on the KFW-I dataset, {®
which indicates that kinship verification on the KFW- <
| dataset is more difficult that that on the KFW-II
dataset. The reason is that face images in the KFW-
Il dataset are collected from the same photo and the @ (b)
kinship images have the same collection conditions, Figure 5. Mean verification accuracy of NRML and MNRML ver-
which could reduce some challenges of the some fac-sus different values of parameteon the (a) KFW-I and (b) KFW-
tors such as illumination and aging variations in the |l datasets, respectively.

KFW-I dataset.

Then, we investigate the effect of the paramétef our ° & 4
proposed NRML and MNRML methods. Figure 5 shows :/ -
the mean kinship verification accuracies of NRML (the LE 1.~ P

feature is applied) and MNRML (all the four features are i
applied) versus different values bf where Figure 5(a) and .
5(b) are the results obtained on the KFW-I and KFW-II = A
databases, respectively. We can observe from this figure * ° " e o * e
that NRML and MNRML demonstrates a stable recogni- @) ()

tion performance with versus varying neighborhood sizes. gjg e 6. Mean verification accuracy of NRML and MNRML ver-

Hence it is easy to select an appropriate neighborhood sizegys different number of iterations on the (a) KFW-l and (b)%H
for NRML and MNRML to obtain good performanceinreal datasets, respectively.

applications.

Since NRML and MNRML are iterative algorithms, we
also evaluate their performance with different number-of it As an important baseline, the human ability in kinship
erations. Figure 6 shows the mean verification accuracy ofverification from facial images was also tested. From each
DMMA versus different number of iterations, where Fig- of the above four subsets in the KFW-1 and KFW-II dataset-
ure 6(a) and 6(b) are the results obtained on the KFW-I ands, we randomly selected 100 pairs of face samples, 50 are
KFW-II databases, respectively. We can see from this figure positive and the other 50 are negative, and presented them to
that our proposed NRML and MNRML can converge to a 10 human observers (5 males and 5 females) with age of 20
local optimal peak in several iterations. to 30 years old. None of them received training on the task

6 7
Value of k Value of k




Table 3. The classification accuracy (%) of human ability om k

2
ship verification on different kinship subsets of the KF\Wataket. 4

Method
HumanA
HumanB

F-S
61.00
67.00

F-D
58.00
65.00

M-S
66.00
75.00

M-D
70.00
77.00

Mean
63.75
71.00

(3]
(4]
(5]
(6]
(7]

Table 4. The classification accuracy (%) of human ability on
kinship verification on different kinship subsets of the KHW
dataset.

Method
HumanA
HumanB

F-S
61.00
70.00

FD
61.00
68.00

M-S
69.00
78.00

M-D
73.00
80.00

Mean
66.75
74.00

(8]
El

before the experiment. There are two stages in the exper-
iment. The difference is that, in the first stage (HumanA), (10
only the cropped face regions are shown, while, in the sec-
ond stage (HumanB), the whole original color images are [11]
shown. HumanA intends to test kinship verification purely
based on face, while HumanB intends to test kinship ver-
ification based on multiple cues including face, hair, skin [12]
color, and background. Note that the information provided

in HumanA is the same as that provided to the algorithm- 13]
s. Tables 3 & 4 show the classification accuracy of human
ability on kinship verification on the KFW-I and KFW-1I  [14]
datasets, respectively. We can observe that our proposed N-
RML method can obtain better performance than HumanA, [15)
and performs slightly worse than HumanB on the KFW-I
dataset, which further indicates that some other cues sucfha
as hair, skin color, and background also contribute to kin-
ship verification. Moreover, our methods can achieve high- [17]
er verification accuracies than both HumanA and HumanB

on the KFW-II dataset. [18]
[19]
5. Conclusion and Future Work
[20]

We have proposed a neighborhood repulsed metric learn-
ing (NRML) method for kinship verification via facial im-  [21]
age analysis. To the best of our knowledge, this paper is the[22]
first attempt to investigate kinship verification in the wild
on the largest kinship data sets. Experimental results have23]
shown that the performance of our proposed methods arei24]
not only significantly better than that of the state-of-tre-
metric learning algorithms for kinship verification, but al
so comparable to that of the human observers. How to ex-
plore more discriminative features and combine them with
our proposed NRML and MNRML methods to further im-
prove the verification performance appears to be another in{27]
teresting direction of future work.

[25]
[26]

[28]
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