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Deep Metric Learning for Visual Tracking
Junlin Hu, Jiwen Lu, Senior Member, IEEE, and Yap-Peng Tan, Senior Member, IEEE

Abstract— In this paper, we propose a deep metric learn-
ing (DML) approach for robust visual tracking under the
particle filter framework. Unlike most existing appearance-based
visual trackers, which use hand-crafted similarity metrics, our
DML tracker learns a nonlinear distance metric to classify the
target object and background regions using a feed-forward neural
network architecture. Since there are usually large variations
in visual objects caused by varying deformations, illuminations,
occlusions, motions, rotations, scales, and cluttered backgrounds,
conventional linear similarity metrics cannot work well in such
scenarios. To address this, our proposed DML tracker first
learns a set of hierarchical nonlinear transformations in the feed-
forward neural network to project both the template and parti-
cles into the same feature space where the intra-class variations of
positive training pairs are minimized and the interclass variations
of negative training pairs are maximized simultaneously. Then,
the candidate that is most similar to the template in the learned
deep network is identified as the true target. Experiments on the
benchmark data set including 51 challenging videos show that
our DML tracker achieves a very competitive performance with
the state-of-the-art trackers.

Index Terms— Deep learning, metric learning, visual tracking.

I. INTRODUCTION

V ISUAL tracking is one of the most important topics in
computer vision due to its wide potential applications,

such as motion analysis, video surveillance, and human–
computer interaction. While extensive efforts have been
devoted and a large number of trackers have been developed
over the past two decades [1]–[19], generic visual object
tracking still remains a challenging problem in computer
vision due to large appearance variations in visual objects such
as varying deformations, illuminations, out-of-plane rotations,
occlusions, and cluttered backgrounds (see more detailed
discussions in [20] and [21]).

Most existing visual tracking systems usually employ
hand-crafted similarity metrics for template matching, such
as the Euclidean distance [5], Matusita metric [22],
Bhattacharyya coefficient [23], and Kullback–Leibler [24] and
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information-theoretic divergences [25]. However, predefined
similarity metrics are not precise enough to measure the target
distribution in the feature space because there are usually
large variations on visual objects so that there are significant
appearance differences on visual objects in successive frames.
To address this problem, several works have been done to learn
a discriminative similarity measure using advanced metric
learning approaches for visual tracking [8], [15], [26]–[28].
For example, Jiang et al. [28] proposed a sparsity-regularized
metric learning method, Li et al. [8] introduced an online
reservoir metric learning method for appearance-based visual
tracking, and Wu et al. [15] presented a metric-learning-based
structural appearance model (MLSAM) for structure object
representation and matching, respectively. However, these
methods mainly learn a Mahalanobis distance metric for object
matching between successive frames. While discriminative
information can be exploited, these approaches usually learn a
single linear transformation to project data points into another
feature space such that they may not be powerful enough
to exploit the nonlinear relationship of data. To address this
nonlinearity problem, the kernel method is often adopted
to map data points into a high-dimensional subspace, and
then conventional metric learning methods are employed to
learn a distance metric in this high-dimensional subspace.
Unfortunately, these kernel-based methods cannot explicitly
achieve the nonlinear mapping function in most cases such
that they suffer from the scalability problem.

Generally, the distribution of objects is usually in a non-
linear manifold due to various variations such as deforma-
tions, illuminations, and occlusions, and hence, it is desirable
to employ nonlinear discriminative methods to exploit such
information. In this work, we introduce a new deep metric
learning (DML) approach for robust visual tracking under
the particle filter framework. Unlike existing metric-learning-
based visual tracking approaches, the proposed DML tracker
can explicitly learn several hierarchical nonlinear transfor-
mations to map data points into another subspace via a
feed-forward neural network architecture so that these non-
linear transformations are explicitly solved by maximizing
the interclass variations of negative pairs and minimizing the
intra-class variations of positive pairs simultaneously. Fig. 1
shows the main procedure of our tracking approach. Experi-
ments on 51 challenging videos show the effectiveness of our
proposed tracking approach.

II. RELATED WORK

In this section, we briefly review some representative works
on visual tracking and deep learning, respectively.
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Fig. 1. Main procedure of the proposed DML tracker. Our tracker first samples a training set consisting of positive (red rectangle) and
negative (blue rectangle) samples from the t th frame to learn a set of hierarchical nonlinear transformations in a deep network architecture. When the
(t + 1)th frame comes, our tracker maps the candidates (particles) sampled from this frame into the top most level of the network by using hierarchical
nonlinear transformations to measure the confidence of all samples. Lastly, the candidate particle that has the maximum confidence to template is determined
as the tracked object in this frame.

A. Visual Tracking
Numerous visual tracking methods have been proposed

over the past decades and they can be roughly categorized into
two classes: 1) generative and 2) discriminative. Generative
trackers [1]–[3], [5], [7], [10], [29], [30] learn an appearance
model to represent the target object and search the best
candidate that has the maximal similarity score with the
templates. Representative trackers in this category include
incremental visual tracking (IVT) [3], �1 tracker (L1T) [5],
multitask tracker (MTT) [31], and least soft-threshold squares
tracker (LSST). The IVT [3] uses incremental principal
component analysis (PCA) to model the object appearance
changes in videos. L1T [5] represents the object, using a
sparse linear combination of numerous trivial templates and
several object templates, but the computational complexity of
L1T is high. To address this, many extensions of L1T have
been proposed to improve the tracking performance. For
example, MTT models the interdependencies of sampled
particles under the sparse representation framework, and
LSST [10] models the error term with the Gaussian–Laplacian
distribution based on a linear regression algorithm in L1T.
Recently, Wang et al. [30] introduced an online nonnegative
dictionary learning method to update the object templates.
For this category, sparse representation and dictionary-
learning-based tracking methods [5], [10], [30], [31] have
achieved encouraging results for visual tracking.

Unlike generative trackers, discriminative trackers [4], [9],
[32]–[37] formulate visual tracking as a binary classification
task that aims to discriminate the target object from the
surrounding backgrounds, and most of the trackers in
this category employ the tracking-by-detection framework.
State-of-the-art discriminative trackers are multiple instance
learning (MIL) tracker [4], compressive tracker (CT) [9],
online discriminative feature selection (ODFS) [35],

Struck [33], circulant structure with kernel (CSK) [36],
kernelized correlation filter (KCF) [19], and structure-
preserving object tracker (SPOT) [37]. The MIL tracker uses
an online MIL method to classify the positive and negative
bags. The CT adopts a sparse learning model to compress
features from the foreground targets and backgrounds. The
ODFS tracker directly computes the classifier score by
using a supervised learning method to improve the MIL
tracker. The Struck tracker utilizes a kernelized structured
output support vector machine in the tracking-by-detection
framework for adaptive visual tracking. The CSK tracker
explores the circulant structure of the kernel matrix for
fast tracking and detection with dense sampling strategy.
The SPOT is a model-free tracker, which incorporates
spatial constraints between multiple objects or multiple
parts in single-object tracking. In this paper, we present a
DML approach from a perspective of distance metric learning
with a feed-forward neural network for visual object tracking
by exploiting the merits of both generative and discriminative
trackers.

B. Deep Learning

In recent years, deep learning has received much atten-
tion in the research field of machine learning and computer
vision due to its excellent performance in learning hierarchical
feature representations directly from raw data, and many
deep learning approaches have been introduced in [38]–[42].
Recent advances in visual analysis have shown that deep
learning has been successfully employed in many computer
vision applications such as human action recognition [42],
object recognition [39], image classification [43], and face
verification [44]. A number of deep learning approaches
have been proposed in feature engineering, and representative
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methods include deep belief network [38], stacked denoising
autoencoder (SDAE) [45], and deep convolutional neural
networks (CNN) [43], [46]. However, most of them aim
to learn feature representations rather than distance metric
with a deep architecture. To address this, several metric
learning methods using deep neural network architecture
have been proposed recently for face verification tasks
such as deep nonlinear metric learning via independent
subspace analysis (DNLML-ISA) [47] and discriminative
DML (DDML) [48]. Specifically, DNLML-ISA learns a non-
linear distance metric using the stacked independent subspace
analysis network, and DDML explicitly obtains the nonlinear
distance metric by utilizing a large margin criterion at the top
most layer of a deep neural network.

Deep learning has also been exploited in visual tracking
in recent years. For example, Nowlan and Platt [49] utilized
CNN for hand tracking and identifying whether the hand
is open or closed. Fan et al. [50] broadened the common
use of CNN by a multipath strategy to alleviate the drift
problem in human tracking, where they extracted spatial and
temporal features for specific object. Jin et al. [51] employed
the CNN to obtain multidimensional feature vector, and then
the feature vector was fed into a radial basis function network
to produce confidence map to address tracking problems.
Li et al. [17], [18] proposed using CNN to learn discrimina-
tive features for robust visual tracking. Wang and Yeung [11]
proposed a deep learning tracker (DLT) to learn deep compact
image representations for object tracking. While encouraging
performance can be obtained, DLT requires a very large
auxiliary data set to learn offline feature representations using
SDAE [45]. This auxiliary data set may be inconsistent to
the objects captured online so that the learned features are
not adaptive to the objects. Moreover, the offline training is
time consuming. Unlike these deep-learning-based trackers,
in this paper, we present a DML approach to learn a set
of hierarchical nonlinear transformations for visual tracking.
Our tracker achieves a competitive performance with the
state-of-the-art trackers on 51 challenging videos.

III. PARTICLE FILTER FOR VISUAL TRACKING

The particle filter [3], [11], [52] is a Bayesian sequential
importance sampling technique for visual tracking. It estimates
the posterior distribution of state variables to characterize a
dynamic system based on a sequence of observations. There
are two steps in the particle filter framework: 1) prediction
and 2) update. Let st and yt be the latent state variable and
the observation variable of an object at time t , respectively.
The aim of visual object tracking is to predict the target
state variable st , given all available observations y1:t−1 =
{y1, y2, . . . , yt−1} up to the time t−1, employing the following
maximum a posteriori estimation:

ŝt = argmax
si

t

p
(
si

t |y1:t−1
)

= argmax
si

t

∫
p
(
si

t |st−1
)

p(st−1|y1:t−1)dst−1 (1)

where si
t is the i th sample (or particle) of the state st .

When a new observation yt is available at time t , the
posterior distribution of the state variable is recursively
updated according to the Bayes rule as

p(st |y1:t) = p(yt |st )p(st |y1:t−1)

p(yt |y1:t−1)
. (2)

In the particle filter framework, the true posterior state
distribution p(st |y1:t ) in (2) can be approximated by a finite set
of particles St = {si

t }Ni=1 with the corresponding importance

weights wt = {wi
t }Ni=1, where N is the number of particles

and the sum of vector wt is 1. The particles {si
t }Ni=1 are

sampled from an importance distribution q(st |s1:t−1, y1:t ) and
weights wt are updated as follows:

wi
t = wi

t−1

p
(
yt |si

t

)
p
(
si

t |si
t−1

)

q(st |s1:t−1, y1:t )
. (3)

For simplicity, the importance distribution q(st |s1:t−1, y1:t )
is assumed to follow a first-order Markov process and the
state transitional probability is p(st |st−1). In this case, the
weight wi

t in (3) is updated as wi
t = wi

t−1 p(yt |si
t ), where

p(yt |st ) is the observation likelihood to reflect the similarity
of an observed particle yt and the object templates.

A. Dynamical Model

For the visual tracking task, the state variable st is
often represented as six affine transformation parameters:
1) horizontal translation; 2) vertical translation; 3) scale;
4) angle; 5) aspect ratio; and 6) skewness at time t ,
respectively. The state transition distribution p(st |st−1) is
modeled by a zero-mean Gaussian distribution, and the
six parameters of st are assumed to be independent. Namely,
p(st |st−1) = N (st ; st−1,�), here � is a diagonal covariance
matrix with the variances of these six parameters in diagonal
direction.

B. Observation Model

For each frame in a target video, the tracked result is taken
to be the particle with the largest weight. Therefore, finding
a good observation model p(yt |st ) is a key issue under the
framework of particle filter. In this paper, we utilize a new
observation model by training a deep neural network that can
learn several hierarchical nonlinear transformations to map
both the template and particles into the same feature subspace
to calculate their similarity (or likelihood) as follows:

p(yt |st ) = 1

�
exp

(− γ d2
f (yt , mt )

)
(4)

where � is a normalization factor, γ is a constant that
controls the shape of the Gaussian kernel (e.g., γ = 0.01),
mt is the object template updated by a certain scheme, and
d2

f (yt , mt ) denotes the distance under the nonlinear distance
metric learned by our proposed DML tracker in the top most
layer of a deep neural network, which will be detailed in the
following section.

IV. DML TRACKER

In this section, we first present the formulation and
optimization of the proposed DML tracker and then introduce
its implementation details for visual tracking.
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A. Deep Metric Learning

Conventional metric learning methods mainly learn the
Mahalanobis distance metric by seeking a linear transforma-
tion with certain constraints, which are not powerful enough to
capture the nonlinear relationship of data points. To address
this nonlinearity issue, the kernel trick is widely utilized to
implicitly project data points into a high dimensional subspace,
and then common metric learning methods are employed
to obtain a favorable distance metric in the transformed
subspace. While these kernel-based methods can provide a
feasible solution, they still suffer from the scalability problem
because it is difficult to obtain the explicit nonlinear mapping
functions. To address both the nonlinearity and scalability
problems, we present a new DML approach to learn several
hierarchical nonlinear transformations by using a feed-forward
neural network architecture.

1) Data Preparation: The training data consist of
Np positive samples and Nn negative samples. For positive
samples, we sample Np image patches around the target
within a radius of a few pixels (e.g., two pixels) by follow-
ing a zero-mean Gaussian distribution, where the diagonal
covariance matrix of six parameters is diag([1, 1, 0, 0, 0, 0]),
and resize them into the same size (e.g., 32 × 32). Each
image patch is further flattened into a column vector.
Following the similar procedure, the Nn negative samples
are sampled far away from the target object by following a
zero-mean Gaussian distribution with the diagonal covariance
matrix diag([wtarget, htarget, 0, 0, 0, 0]), where wtarget and htarget
are the width and height of the target object (or image
patch). Hence, some negative samples may contain both the
background and parts of the target object. Having obtained
the training set, we randomly make up P positive pairs and
N negative pairs to learn the parameters of our deep network.
Each positive pair consists of two randomly selected posi-
tive samples. And each negative pair contains one randomly
selected positive sample and one randomly picked negative
sample.

2) Network Architecture: As shown in the top right corner
of Fig. 1, we first construct a deep neural network to learn the
nonlinear representation of a sample y by passing it through
multiple layers of nonlinear transformations. Assume that there
are K+ 1 layers in our designed network and r (k) units in the
kth layer, where k = 1, 2, . . . ,K. Given a sample (or particle)
y ∈ R

r(0)
with a size of r (0), its output from the first layer

is y(1) = ϕ(W(1)y + b(1)) ∈ R
r(1)

, where W(1) ∈ R
r(1)×r(0)

is
a projection matrix of the first layer1; b(1) ∈ R

r(1)
is a bias

vector; and ϕ : R �→ R is a nonlinear activation function
operated on componentwise, e.g., sigmoid and tanh functions.

1Previous studies have shown that learning a Mahalanobis distance metric
is equivalent to seeking a linear transformation to map each sample into a
low-dimensional subspace, where the Euclidean distance of two samples in
the transformed space is equal to the Mahalanobis distance, namely

d2
W(yi , y j ) = ‖Wyi −Wy j ‖22 = (yi − y j )

T WT W(yi − y j )

= (yi − y j )
T M(yi − y j ) = d2

M(yi , y j )

and the positive semidefinite matrix M =WT W is the learned Mahalanobis
distance metric in the original space.

Then, we use the output of the first layer y(1) as the input of
the second layer. Following this procedure, the output of the
kth (k > 1) layer can be given as:

y(k) = ϕ(W(k)y(k−1) + b(k)) ∈ R
r(k)

(5)

where W(k) ∈ R
r(k)×r(k−1)

, b(k) ∈ R
r(k)

, and ϕ are the projec-
tion, bias, and activation function of the kth layer, respectively.
Finally, the output of the top most layer of network can be
represented as

f (y) = y(K) = ϕ(W(K)y(K−1) + b(K)) ∈ R
r(K)

(6)

where the mapping f : R
d �→ R

r(K)
is a parametric

nonlinear function which is jointly determined by the

parameters {W(k)}Kk=1 and {b(k)}Kk=1.
Given a pair of particles yi and y j , we pass them into

K hierarchical nonlinear transformations and represent them
as f (yi ) = y(K)

i and f (y j ) = y(K)
j at the top most layer,

respectively. Then, their similarity is measured by calculating
the squared Euclidean distance between the representations
f (yi ) and f (y j ) in the designed deep neural network

d2
f (yi , y j ) = ‖ f (yi )− f (y j )‖22. (7)

3) Formulation: To learn the parameters {W(k)}Kk=1 and
{b(k)}Kk=1 in the designed network, we adopt the margin fisher
analysis criterion [53] at the top most layer of all the training
samples and formulate the proposed DML approach as the
following optimization problem:

min
f

O = 1

P
∑

�i j=1

d2
f (yi , y j )− α

N
∑

�i j=−1

d2
f (yi , y j )

+ β

K∑

k=1

(‖W(k)‖2F + ‖b(k)‖22
)

(8)

where the first term measures the intra-class compactness of
positive pairs, the second term defines the interclass separabil-
ity of negative pairs, and the last term is the regularization. α is
a positive parameter to balance the importance between intra-
class compactness and interclass separability; β (β > 0) is a
regularization parameter; and �i j is the pairwise label of a pair
of samples yi and y j , which is set as �i j = 1 if yi and y j are
from a positive pair (i.e., both particles yi and y j are sampled
from the same target object or positive samples) and −1 if they
are from a negative pair (i.e., one particle is sampled from
the positive sample and another is drawn from the negative
sample). The operation ‖ · ‖F means the Frobenius norm of
a matrix, and P and N denote the total number of positive
pairs and negative pairs in the training data, respectively.
Specifically, the DML aims to seek an optimal nonlinear
mapping f by minimizing the intra-class variations of positive
training pairs and maximizing the interclass variations of
negative training pairs in the transformed subspace for utilizing
more discriminative information.

4) Optimization: To our best knowledge, the optimization
problem in (8) is not convex and it is difficult to obtain
the closed-form solution directly. To solve this problem, we
use the gradient-descent-based method to solve the para-
meters {W(k), b(k)}Kk=1. With some algebraic simplification,
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the derivative of the objective function O with respect to the
parameters W(k) and b(k), k = 1, 2, . . . ,K can be calculated
as follows:

∂O
∂W(k)

= 2

P
∑

�i j=1

(
G(k)

i j y(k−1)
i

T +G(k)
j i y(k−1)

j

T )

− 2α

N
∑

�i j=−1

(
G(k)

i j y(k−1)
i

T +G(k)
j i y(k−1)

j

T )

+ 2βW(k) (9)
∂O

∂b(k)
= 2

P
∑

�i j=1

(
G(k)

i j +G(k)
j i

)

− 2α

N
∑

�i j=−1

(
G(k)

i j +G(k)
j i

)+ 2βb(k) (10)

where y(0)
i = yi denotes the original input sample and the

variables G(K)
i j and G(K)

j i for the top most layer are shown as
follows:

G(K)
i j =

(
y(K)

i − y(K)
j

)� ϕ′
(
x(K)

i

)
(11)

G(K)
j i =

(
y(K)

j − y(K)
i

)� ϕ′
(
x(K)

j

)
(12)

and the intermediate variables G(k)
i j and G(k)

j i for other layers

k = 1, 2, . . . ,K − 1 are given by the following updating
equations:

G(k)
i j =

(
W(k+1)T

G(k+1)
i j

)� ϕ′
(
x(k)

i

)
(13)

G(k)
j i =

(
W(k+1)T

G(k+1)
j i

)� ϕ′
(
x(k)

j

)
(14)

x(k)
i = W(k)y(k−1)

i + b(k) (15)

where the operation � denotes element-wise multiplication.
Having obtained these derivatives, the parameters

W(k) and b(k), k = 1, 2, . . . ,K can be updated using
the following gradient descent algorithm until convergence:

W(k) = W(k) − ρ
∂O

∂W(k)
(16)

b(k) = b(k) − ρ
∂O

∂b(k)
(17)

where ρ is the learning rate, which controls the convergence
speed of objective function O.

Algorithm 1 summarizes the detailed procedure of the
proposed DML approach for learning parameters of the deep
neural network.

B. Implementation Details

This section introduces some implementation details of
our DML tracker including the initialization of parameters
in neural network, template update strategy, and the online
tracking process.

1) Initialization: It is important to initialize parame-
ters W(k) and b(k), 1 ≤ k ≤ K in our designed network for
obtaining good performance. DAE [54] and its variants are
usually employed to pretrain parameters of the deep neural
network from a large auxiliary data set. In our experiments,
we apply the initialization approach in [55], which adopts

Algorithm 1 DML
Input: Training data: Y = {(yi , y j , �i j )}; Layers of

network: K + 1; Trade-off parameter: α;
Regularization parameter: β; The learning rate: ρ;
Total iterative number: T ; Convergence error ε.

// Optimization procedure of DML
O0 ← 0;
Initializing {W(k), b(k)}Kk=1 according to (18);
for t = 1, 2, · · · , T do

for k = 1, 2, · · · ,K do
Computing hierarchical representation y(k)

i of each
sample by using forward propagation;

end
// Back propagation
for k = K,K − 1, · · · , 1 do

Obtaining ∂O/∂W(k) and ∂O/∂b(k) in line with
(9) and (10), respectively;

end
// Updating parameters
for k = 1, 2, · · · ,K do

W(k) ←W(k) − ρ∂O/∂W(k);
b(k) ← b(k) − ρ∂O/∂b(k);

end
Calculating objective Ot using (8);
If |Ot −Ot−1| < ε, go to Output;

end
Output: Weights and biases: {W(k), b(k)}Kk=1.

a normalized random initialization strategy to initialize
W(k) and b(k) of each layer. The weight W(k) at each layer is
given by a uniform distribution as

W(k) ∼ U

[

−
√

6√
r (k) + r (k−1)

,

√
6√

r (k) + r (k−1)

]

. (18)

The bias b(k) in this layer is set as 0, and r (0) denotes the size
of the first input layer.

2) Template Update: The template update is another
important issue in visual tracking because the object usually
experiences rapid appearance changes during the tracking
process. If we use a fixed appearance template from the
first frame, it cannot capture well the appearance variations
resulting from the changes in illumination, pose, background,
and occlusion. If the template is updated quickly, small errors
will be introduced in each update, and the tracker drifts from
the object since the errors are gradually accumulated. In our
work, we use a simple update scheme with an incremental
subspace learning method. Specifically, let yo

t denote the
observation vector corresponding to the best candidate state
of the t th frame. The template mt is updated from several
observation vectors (e.g., yo

t ′, . . . , yo
t−2, yo

t−1, yo
t ) following the

mean update of the IVT [3] as:

mt = θ t ′

θ t ′ + τ
mt ′ + τ

θ t ′ + τ

τ−1∑

i=0

yo
t−i (19)
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where mt ′ is the template updated at the t ′th frame,
t ′ = t − τ + 1; the interval τ denotes the number of new
observations at each update; and θ , 0 < θ ≤ 1, is a forgetting
factor that balances the contribution between old and new
observations and also reduces the effect of the old observations
to the resulting template mt . In our experiments, τ and θ are
empirically set as 5 and 0.95, respectively.

3) Online Tracking Process: When a new frame arrives,
we first randomly sample N particles around the current state
of the tracked object according to a zero-mean Gaussian
distribution under the particle filter framework. Then, the
confidence (or likelihood) of each particle in (4) is calculated
at the top layer of the deep network. The particle with the
highest confidence to object template is selected as the tracked
object. Having localized the target object, we sample positive
and negative pairs to learn a set of nonlinear transformations
using the proposed DML method. In our implementations, we
learn the parameters of our designed network at every several
frames (e.g., ten frames in the experiments).

V. EXPERIMENTS

To evaluate the performance of the proposed DML tracker,
we conducted visual tracking experiments on the benchmark
data set [56] which contains 51 challenging video sequences.
These sequences present various challenging situations such as
illumination variation, partial occlusion, pose change, motion
blur, background clutter, scale variation, in-plane rotation, and
low resolution. Please refer to the tracking benchmark [56]
for more details. We compare our DML tracker with
11 state-of-the-art trackers: 1) tracker using Gaussian
processes regression (TGPR) [16]; 2) KCF [19];
3) Struck [33]; 4) sparse collaborative model (SCM) [57]
tracker; 5) CT [9]; 6) IVT [3]; 7) L1APG [58] (a powerful
variant of the L1T [5]); 8) MIL [4]; 9) MTT [31];
10) LSST [10]; and 11) DLT [11]. For a fair comparison, we
used the publicly available source codes provided by either
the benchmark [56] with the same parameters or the authors
with their original parameters.

A. Experimental Setup

For our DML tracker, we train a deep neural network of
four layers (K = 3) with the tanh activation function, where
the tradeoff parameter α, the regularization parameter β, and
the learning rate ρ are empirically set at 0.1, 0.01, and 0.01 for
all experiments, respectively, unless stated otherwise. For each
video, the location of the tracked object in the first frame is
manually labeled, and the number of particles is set at 600 for
each frame. Then each particle is resized to 32× 32 and further
flattened into a 1024D vector. To reduce the training and
testing time of our method, each feature vector is also reduced
to 100 dimension using PCA where the projection matrix is
learned from samples collected in the first frame of each video.
The units of all the layers in the designed neural network
are set at [r (0), r (1), r (2), r (3)] = [100, 100, 80, 80] for all the
video sequences. For the training set (see Data Preparation
in Section IV for more details), we first sampled Np = 20
positive samples and Nn = 200 negative samples, and then
generated P = 200 positive pairs and N = 800 negative

pairs to learn the parameters of our neural network for
every ten frames. In addition, the template is updated every
five frames using an incremental mean update scheme pro-
posed in [3]. Regarding the state transition distribution for
six affine parameters in the particle filter, their standard
deviations are set at diag(�) = [4, 4, 0.01, 0, 0.001, 0] for
all the 51 image sequences. We conduct experiments on a
PC whose hardware configuration comprises a 3.2-GHz CPU
(Intel i5-3470) and an 8-GB RAM. The proposed DML tracker
was implemented in the MATLAB platform, and it runs
at 5.53 frames/s on average.

B. Quantitative Evaluation

1) Evaluation Metric: We adopt two widely used evaluation
metrics for quantitative comparison: 1) overlapping ratio (OR)
and 2) central location error (CLE). The OR metric is defined
as OR = (area(BT ∩ BG)/area(BT ∪ BG)), where BT is the
bounding box of the tracked result and BG is the ground
truth bounding box for each frame. The CLE metric denotes
the Euclidean distance (in pixels) between the centers of
BT and BG . Based on the OR and CLE metrics, success
plot and precision plot [36], [56] are used for evaluating the
overall performance of trackers. The success plot shows the
ratios of successful frames over the whole video with various
thresholds densely sampled in the range [0, 1], where the
successful frame indicates that the OR of this tracked frame
is larger than the given threshold. In addition, the area under
curve (AUC) of each success plot is calculated and ranked
for evaluating different trackers. The precision plot simply
shows the percentage of frames whose CLE is within a range
of distance thresholds (e.g., 0–50 pixels). Hence, an accurate
tracker is expected to achieve a higher precision at the given
low distance threshold. Following [36] and [56], the precision
score at the specific threshold (i.e., 20 pixels) is chosen as the
representative precision score for ranking different trackers.
Lastly, we adopt the one-pass evaluation (OPE) [56] strategy
for evaluating the robustness of various trackers. Specifically,
we run these trackers from the ground truth location in the first
frame of a test video to the end, and then report the overall
tracking performance by both the success and precision plots.

2) Overall Performance: We quantitatively summarize the
overall tracking performance of the 12 trackers on all the
51 videos, and Fig. 2 shows the success and precision plots.
In the success plot, we make the following observations.

1) The AUC score of our DML tracker is 0.466,
which is ranked fifth, where the top four track-
ers are TGPR (0.529), KCF (0.503), SCM (0.499),
and Struck (0.474), respectively. The TGPR obtains
the best tracking result; the reason may be that the
TGPR exploits the auxiliary data collected from the early
frames to assist the tracking decision.

2) The success rate of our tracker is consistently higher
than that of Struck when the overlap threshold varies in
the range [0.4, 1].

3) For deep-learning-based trackers, our DML tracker
outperforms DLT (0.436) by 3.0%.

In the precision plot, our DML tracker also obtains
the fifth best results across all location error thresholds
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Fig. 2. Success plots and precision plots of the 12 trackers on the 51 sequences for comparing overall performance, respectively. The legend lists the
performance score for each tracker. The proposed DML tracker (in red curve) is ranked fifth among these trackers in both the success and precision plots.

Fig. 3. Success plots of trackers on the 11 subsets for attribute-based performance analysis. The value in bracket is the number of videos in the subset.

from 0 to 50 pixels. Furthermore, we see that the SCM tracker
shows a higher precision score than Struck when the distance
threshold is less than 20 pixels though the Struck is ranked
first at the location error threshold of 20 pixels. Hence, the
precision plot is used as an auxiliary evaluation criterion
for analyzing the rankings of trackers [56]. Overall, our
DML tracker is comparable with these state-of-the-art trackers
in both the success and precision plots.

3) Attribute-Based Performance Analysis: The benchmark
data set [56] also annotates the dominant attributes of each
sequence and brings about 11 subsets for analyzing the

performance of trackers with regard to different challenging
factors, where each subset consists of some videos sharing a
unique attribute. These 11 attributes are background clutters,
deformation, fast motion, illumination variation, in-plane
rotation, low resolution, motion blur, occlusion, out-of-plane
rotation, out of view, and scale variation. We report the
success plots and precision plots of different trackers for
these 11 attributes in Figs. 3 and 4, respectively. For a
low-resolution subset, our DML tracker obtains an AUC
of 0.488, which outperforms the second-ranked tracker
MTT (0.389) by 10% in the success rate. The reason is
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Fig. 4. Precision plots of trackers on the 11 subsets for attribute-based performance analysis. The value in bracket is the number of videos in the subset.

that the DML can learn a discriminative distance metric
for template matching. For objects in low-resolution videos,
it is not reliable to extract visual features to represent the
target objects, and most visual tracking methods significantly
degrade their performance. The DML tracker aims to
preserve the underlying metric in low-resolution data for
discriminative matching, and it focuses more on the similarity
measure and the matching function rather than on the object
representation. The DML tracker also achieves the fourth
place in deformation and occlusion, and the fifth place in
other six subsets in terms of the success rate. For fast motion,
most of the trackers degrade their performance while Struck
shows the best tracking results. This is because Struck is a
dense-sampling-based tracker that usually has larger search
regions than the trackers in the particle filter framework.

C. Qualitative Comparison

1) Illumination and Scale Changes: We evaluated various
trackers on three sequences including CarDark, Singer1, and
Skating1 with significant illumination variations as shown
in Fig. 5. In the CarDark sequence, the MIL, DLT, and IVT
cannot correctly track the object to the last frame, and they
begin to drift from frames #60 and #300 due to continuous illu-
mination variation in appearance. The sequence Singer1 shows
both large scale variation and severe illumination change.
MIL, Struck, L1APG, and MTT are not accurately tracking
the object because they cannot smoothly handle the large

scale variations (e.g., #120 and #310) while the DML, DLT,
and SCM trackers work well in this sequence. For Skating1,
the target object suffers from extreme illumination variations,
occlusions, as well as nonrigid deformation. Most of the track-
ers gradually lose the target object from frames #56 and #180
during tracking, and our DML approach reliably tracks this
video to frame #268 which performs slightly better than the
DLT and SCM trackers. Generally, the DML tracker achieves
the best overlapping rate on these videos, and it is robust to
illumination and scale changes.

2) Occlusion and Pose Variation: Fig. 6 shows several
sequences with heavy occlusion or long-time partial occlusion
and pose variation: 1) David3; 2) Walking2; 3) FaceOcc1; and
4) Liquor, respectively. For the sequence David3, the MTT
first loses target after frame #58, and Struck, SCM, MIL,
and DLT drift away from frame #130 due to the first heavy
occlusion caused by a tree. The DML tracker successfully
tracks the target object through all the frames of this video.
For Walking2, all the trackers except the MIL and LSST
can successfully track the object, and the MIL and LSST
lose the object at frame #230 because of similar appearance
occlusion. In addition, Struck shows an imperfect performance
in dealing with the scale change (e.g., #380 and #495). In the
sequence FaceOcc1, almost all the trackers obtain favorable
results. Regarding video Liquor, all the trackers drift from
the target object in the whole tracking process. For example,
most of the trackers get lost at frame #360, but the proposed
DML method still solidly tracks most of the frames (#850).
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Fig. 5. Sampled tracking results of representative trackers on the sequences with illumination and scale changes. The sequences are CarDark, Singer1, and
Skating1 from top to bottom. Frame numbers are shown in the top left of each figure.

Fig. 6. Sampled tracking results of representative trackers on the sequences with heavy occlusion. The sequences are David3, Walking2, FaceOcc1, and
Liquor from top to bottom. Frame numbers are shown in the top left of each figure.

The tracking results on these challenging sequences show
that our DML tracker has the ability to deal with occlusion
during tracking. Here we highlight an occlusion example
(i.e., sequence FaceOcc1) to show how DML works in this
case. In frame #872, a particle (face) with partial occlusion is
mapped into another subspace via the learned nonlinear trans-
formations by the DML approach for discriminative matching,
under which some relevant dimensions (without occlusion)
are highlighted and some irrelevant ones (with occlusion)
are suppressed to ease the effect of occlusion. Thus, our
DML tracker can handle partial occlusion even if it only
employs the holistic template.

3) Fast Motion and Motion Blur: Fig. 7 illustrates the
tracking results on the sequences Jumping, CarScale, Ironman,
and Soccer with fast motion and motion blur. In the sequence
Jumping, only Struck, MIL, and DML successfully track
the target object from the first frame to the last frame, and the

Struck and DML trackers achieve better results in terms of the
overlap rate. For sequence CarScale, the IVT, DLT, and DML
show better tracking performance than others at frame #170;
however, they only locate partial target object after frame #200
due to large scale variation caused by fast motion. In the
sequences Ironman and Soccer, the DML method fails to
correctly track the target object after some frames, and other
trackers also drift away the targets during tracking because the
tracked objects undergo several variations such as illumination,
occlusion, fast motion, and motion blur. Overall, fast motion
and motion blur are two very challenging factors for the
DML tracker.

4) Deformation: Fig. 8 shows the tracking results on
two sequences Bolt and Singer2 with nonrigid deformation.
In the sequence Bolt, most of the trackers lose the target object
from frame #30, and the proposed DML tracker can smoothly
follow up this sequence to frame #200 even though this
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Fig. 7. Sampled tracking results of representative trackers on the sequences with fast motion and motion blur. The sequences are Jumping, CarScale, Ironman,
and Soccer from top to bottom. Frame numbers are shown in the top left of each figure.

Fig. 8. Sampled tracking results of representative trackers on the sequences with nonrigid deformation. The sequences are Bolt and Singer2 from top to
bottom. Frame numbers are shown in the top left of each figure.

sequence undergoes large shape deformation. The sequence
Singer2 depicts that a singer goes through both changes in
body shape and significant illumination variations. Obviously,
three trackers (MIL, LSST, and DML) focus the target on
most of the frames and the DML track shows the precise
tracking performance. These tracking results show that the
DML tracker can handle some deformation, the reason for
which is that the DML method aims to preserve the underlying
metric of data points for discriminative matching by seeking
a nonlinear mapping to reduce the effect of deformation in
another feature space.

D. Performance Analysis

In this section, we investigate several factors that affect
the performance of the proposed DML tracker. Specifically,
we selected a subset consisting of ten video sequences from
the benchmark data set, and these sequences are Car4,
CarDark, Crossing, David3, Dudek, FaceOcc1, Mhyang,
Singer1, Skating1, and Walking2, respectively.

1) Effect of Different Layers of Network: To evaluate how
the number of layers in our deep network affects the tracking
performance of the proposed approach, we compare our
DML tracker with other two different structures: 1) three
layers (K = 2) with units [r (0), r (1), r (2)] = [100, 100, 80] and

Fig. 9. Success plots and precision plots of the DML tracker with different
layers of network on the ten video sequences.

2) five layers (K = 4) with units [r (0), r (1), r (2), r (3), r (4)] =
[100, 100, 80, 80, 80], respectively. Fig. 9 shows the perfor-
mance comparison of our method with different layers of
network in terms of the success and precision plots on the
ten videos. We see that the DML tracker with layers K = 4
reports the best result in the precision plot and the second
place in the success plot, and it obtains the best AUC score
in the success plot when K is set to 3. This indicates that
the performance of DML can be further improved when the
number of layers is increased. However, the improvement is
not significant and time-consuming. Therefore, we use the
number of layers K = 3 in the experiments.
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Fig. 10. Success plots and precision plots of the DML tracker with different
activation functions on the ten video sequences.

Fig. 11. Success plots and precision plots of the DML tracker with various
dimensions (50, 100, 150, 200) of input sample by PCA on ten sequences.

2) Effect of Different Activation Functions: We also analyze
the effect of the various nonlinear activation functions on our
DML tracker. These activation functions are tanh, sigmoid,
nonsaturating sigmoid (ns-sigmoid) [59], and rectified linear
unit (ReLu), and they are defined as

tanh: ϕ(x) = ex − e−x

ex + e−x
(20)

sigmoid: ϕ(x) = 1

1+ e−x (21)

ns-sigmoid: x = ϕ3(x)/3+ ϕ(x) (22)
ReLu: ϕ(x) = max (x, 0). (23)

Fig. 10 gives the performance of the DML tracker with differ-
ent activation functions in both the success and precision plots.
We find that the DML tracker with tanh and ns-sigmoid can
achieve better tracking performance than sigmoid and ReLu.
There are two possible reasons.

1) The activation function sigmoid becomes flatter than
tanh and ns-sigmoid far to the left or right.

2) The gradient of the ReLu goes to zero when the input
data are negative, and the weights are not updated in
this case.

Hence, we employ the tanh activation function for evaluating
our tracker in the experiments.

3) Effect of Different Dimensions by PCA: To investigate
the effect of different feature dimensions of our DML on
the tracking performance, we tested the DML tracker with
different feature dimensions (50, 100, 150, 200) reduced by
PCA on these ten sequences. Fig. 11 shows the performance
comparison of our DML tracker with various feature dimen-
sions in terms of the success and precision plots on these ten
videos. We see the following.

1) The DML tracker with the dimensionality of 100 shows
the best results in both the precision plot and the success
plot.

Fig. 12. Convergence curves of DML with the number of iterations on
five sequences (i.e., CarDark, Car4, Mhyang, David3, and Faceocc1) at one
update. Note that the numbers on the y-axis are the true loss.

2) The tracking performance of DML gradually reduces
when the sample dimensionality is too low (e.g., 50) or
too high (e.g., 200). Therefore, we fixed it at 100 in our
experiments.

4) Computational Complexity and Convergence Analysis:
The forward propagation (FP) and back propagation (BP)
are two important procedures to our DML approach. In each
iteration, the major calculation of the FP part is

4N
K∑

k=1

(
r (k−1) + 1+ 1

2
Nϕ

)
r (k) (24)

where N (N = P + N ) is the number of sample pairs
(including positive and negative pairs); r (k) is the number of
neurons at the kth layer; K+ 1 is the total number of layers;
and Nϕ is operations for evaluating activation function ϕ(·).
The major operations of the BP part in each iteration is

Nr (K) + 4N
K∑

k=1

(
1

2
Nϕ′ + 3

2
r (k−1) + 1

)
r (k) (25)

where Nϕ′ is operations for evaluating derivative ϕ′(·) of the
activation function ϕ(·). Adding (24) and (25), we can obtain
the computational complexity of the DML method for each
iteration as

Nr (K) + 2N
K∑

k=1

(5r (k−1) + Nϕ + Nϕ′ + 4)r (k). (26)

We evaluate the convergence rate of the DML approach
on several sequences at one update. These sequences are
CarDark, Car4, Mhyang, David3, and Faceocc1. Fig. 12 plots
the objective function value of DML versus different numbers
of iterations on several sequences at one update. We can see
that the proposed DML tracker converges in 20–30 iterations.

5) Comparison With Existing Metric Learning Methods: We
compared our DML with two exising metric-learning-based
methods: 1) information-theoretic metric learning [60] and
2) MLSAM [15]. Fig. 13 shows the performance comparison
of our DML tracker and other metric-learning-based methods
in terms of the success and precision plots on the whole
benchmark data set (51 videos). We see that our DML tracker
obtains some better tracking performance than other
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Fig. 13. Success plots and precision plots of DML and other distance metric-
learning-based methods on the benchmark data set (51 videos).

two metric-learning-based methods in both the precision plot
and the success plot. Hence, our DML tracker is complemen-
tary to existing distance metric-learning-based trackers.

VI. CONCLUSION

In this paper, we have proposed a DML approach for robust
visual tracking. The proposed DML tracker can adaptively
learn a set of hierarchical nonlinear transformations to map
samples into a latent subspace, where the objects are projected
much closer and the marginal between objects and back-
grounds are maximized, so that objects can be easily separated
from the background regions. Experiments on the benchmark
data set including 51 challenging videos have shown that
our DML tracker achieves a very competitive performance
compared with 11 state-of-the-art tracking methods.

In the future, we are going to further improve the perfor-
mance of our method by using other advanced procedures in
the whole tracking approach. Some possible future directions
include: utilizing auxiliary data for information transfer, using
advanced deep architectures, and employing more advanced
template update models and powerful feature representation.
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