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Depth Estimation Using a Sliding Camera
Kailin Ge, Han Hu, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract— Image-based 3D reconstruction technology is widely
used in different fields. The conventional algorithms are mainly
based on stereo matching between two or more fixed cameras,
and high accuracy can only be achieved using a large cam-
era array, which is very expensive and inconvenient in many
applications. Another popular choice is utilizing structure-from-
motion methods for arbitrarily placed camera(s). However, due
to too many degrees of freedom, its computational cost is heavy
and its accuracy is rather limited. In this paper, we propose a
novel depth estimation algorithm using a sliding camera system.
By analyzing the geometric properties of the camera system,
we design a camera pose initialization algorithm that can work
satisfyingly with only a small number of feature points and is
robust to noise. For pixels corresponding to different depths, an
adaptive iterative algorithm is proposed to choose optimal frames
for stereo matching, which can take advantage of continuously
pose-changing imaging and save the time consumption amazingly
too. The proposed algorithm can also be easily extended to handle
less constrained situations (such as using a camera mounted
on a moving robot or vehicle). Experimental results on both
synthetic and real-world data have illustrated the effectiveness
of the proposed algorithm.

Index Terms— Sliding camera, constrained structure from
motion, multi-view stereo, variational depth estimation,
pixel-wise frame selection.

I. INTRODUCTION

IMAGE-BASED depth estimation for stereo reconstruction
has received worldwide attention over the past decades and

is now widely used in augmented reality, 3D modeling and
printing, intelligent surveillance, etc.

Conventional depth estimation algorithms are mainly
based on image matching between two or more fixed
cameras [1], [2]. In this case, the cameras can be calibrated
in advance so the step of camera pose estimation can be
skipped at runtime. Feature points are extracted from the
captured images first and the matches between feature points
are utilized to obtain an initial depth estimation. The initial
estimation is then refined to a better result using pixel-wise or
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patch-wise correlation. Some studies have proved that high
accuracy can only be produced by using a large camera array
and a small array that lacks in redundancy will degrade the
precision of stereo reconstruction [3], [4]. But a large camera
array is very expensive and inconvenient in many applications.

In recent years, many studies have focused on pose esti-
mation and depth computing by using images captured from
arbitrarily placed camera(s) [5], [6]. This kind of method is
based on structure-from-motion (SfM) technology [7]. Since
the camera(s) are unconstrained, it seems much more conve-
nient in installation. However, due to too many degrees of
freedom (DOF) in SfM, its computational cost is heavy and
its accuracy is rather limited. In some circumstances (e.g., no
plenty number of valid matching features), it may totally fail.
To overcome the limitation of SfM, some other works [8]–[11]
try to use auxiliary information (e.g., measurements from
IMU and/or GPS) to help camera pose estimation and depth
computation. But such information is not very accurate and
thus not very helpful.

In this paper, we study depth estimation using a sliding
camera system, in which a camera is mounted to a controllable
straight track (as shown at the top of Fig. 1). This system is
cheaper and more portable than a fixed camera array, and can
provide dense and continuous views when the camera slides
from one end to another (considering the cost of the system
and the generalizability of the algorithm, we do not rely on
any camera location feedback or any assumption of moving
speed). On the other side, since the moving of the camera
is constrained by the track, there are much fewer DOF for
camera pose estimation. The pipeline of the whole algorithm
is shown in Fig. 1. A feature tracking procedure is first
applied to the captured image sequence, and the output feature
trajectories are further processed by the proposed camera
pose initialization algorithm. The camera poses are refined
by a constrained optimization algorithm. After compensating
camera vibration (an optional procedure), an initial depth map
is calculated based on a narrow baseline pair. The depth map is
then refined by iteratively adding data from the rest of images,
which is controlled by the proposed pixel-wise frame selection
framework. Experimental results on both synthetic and real-
world data have illustrated the effectiveness of the proposed
algorithm.

The main contributions of this paper are listed as below.
1) We propose a model of the sliding-camera system and
analyzed its geometric properties. There are three important
properties of this system, namely co-linear, concurrent and
cross-ratio properties. 2) Based on geometric analysis of
the sliding camera system, we propose a parametric model
for constrained camera pose estimation as well as a robust

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



GE et al.: DEPTH ESTIMATION USING A SLIDING CAMERA 727

Fig. 1. Pipeline of the whole algorithm. A feature tracking procedure is first
applied to the captured image sequence, and the output feature trajectories
are further processed by the proposed camera pose initialization algorithm.
The camera poses are refined by a constrained optimization algorithm. After
compensating camera vibration (an optional procedure), an initial depth map
is calculated based on a narrow baseline pair. The depth map is then refined
by iteratively adding data from the rest of images, which is controlled by the
proposed pixel-wise frame selection framework.

algorithm for camera pose initialization, which can work
satisfyingly with only a small number of feature points and
is robust to noise. 3) For pixels corresponding to different
depth, an adaptive iterative algorithm is proposed to choose
optimal frames for stereo matching, which can take advantage
of continuously pose-changing imaging and save the time
consumption amazingly too. Combining with a variational
optimization model, our algorithm can produce results with
high precision and low memory consumption. The proposed
algorithm can be easily extended to handle less constrained
situations (such as using a camera mounted on a moving robot
or vehicle). The basic part of this work has been described in
our previous conference paper [12], which does not include
the robust camera pose initialization, camera vibration com-
pensation and pixel-wise frame selection in the current paper.

The remainder of the paper is organized as follows:
In Section II, we model the proposed sliding camera system
in mathematics and deduce three important geometric prop-
erties of the system. Section III describes the camera pose
estimation pipeline, including the proposed robust pose initial-
ization algorithm and the refining optimization. In Section IV,
we describe the depth estimation pipeline and the proposed

pixel-wise selection algorithm. Section V shows experimental
results of the proposed framework on both synthetic and
real-world data, and Section VI is the summary and prospect
of this paper.

II. SYSTEM MODELING AND GEOMETRY PROPERTIES

As described in Section I, in our system we mount the
camera to a straight track, which constrains the camera to
move straightly and continuously. When moving along the
track, the camera captures a series of images {I1,I2, . . . ,In},
and our task is to calculate view-dependent depth maps,
{D1,D2, . . . ,Dn}, from these images. For a static scene, our
system is equivalent to a virtual linear array, and all images
can be treated as being captured at the same time. In this
section, we analyze the geometric properties of our system,
and propose a parametric model for constrained camera pose
estimation.

A. Geometry Analysis

The fundamental theory of camera geometry has been well
studied [13], and the case of camera in pure translational
motion (CPT) is also included, which can be treated as a
simplified two-view case of our system. Moons et al. [14]
studied how to do affine reconstruction of a 3D scene when a
camera purely translates between two places. Chen et al. [15]
proposed a method of estimating epipole under CPT.
Hu and Tan [16] proposed a method of sparse depth calcu-
lation under CPT. We will combine perspective geometry and
epipolar geometry of CPT to deduce the model of the sliding-
camera system and its geometric properties.

1) Coordinate System: We start with the ideal case: the
camera moves straightly along the track without any distur-
bance (such as shaking). In this case, the camera’s orientation
(i.e., the R in projective geometry) keeps constant and the
optical centers, C1, C2, . . . , Cn , are co-linear. We define the
coordinate system as follows:

• Origin: The optical center of the first camera of the virtual
array (C1 in Fig. 2). This camera is supposed to be at one
end of the virtual array.

• X-axis: X-axis is determined by the vector from the
optical center of the first camera to that of another
in the virtual array (

#        »
C1C2 or

#        »
C1C3 in Fig. 2). Since

{C1, C2, . . . , Cn} are co-linear, they are all on X-axis
and in this paper their coordinates are denoted by
{(c1, 0, 0), (c2, 0, 0), . . . , (cn, 0, 0)} (where c1 = 0).
Following this rule, in fact, X-axis is parallel to the track.

• Y-axis: Y-axis is determined by the cross product of
#       »
C1o1

˜(the vector from optical center to the principal point) and
X-axis, according to right-hand rule. If

#       »
C1o1

˜

is parallel
to X-axis, Y-axis could be any direction orthogonal to
X-axis.1

• Z-axis: Z-axis is determined by the cross product of
X-axis and Y-axis, according to right-hand rule. Follow-
ing these rules, all the principal points, {o1

˜

, o2
˜

, . . . , on
˜

},
are on X-Z-plane.

1Since a point on image planes can either be a 3D point or a 2D point (with
image coordinates), we denote its 2D form with lower case symbol (e.g., o1)
and 3D form with a under tilde lower case symbol (e.g., o1

˜

).
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Fig. 2. 3D geometry of the sliding camera system. It can also be treated as many cameras on a track which are parallel and co-linear.

Fig. 3. Among all frames, projections of the same 3D point are co-linear
with e, and they also satisfy cross-ratio property.

From Fig. 2 it can be found that the X-axis intersects
all image planes at the same place (with respect to image
coordinates of e1, e2, . . . , en), because all cameras in the
virtual array are identical and parallel. Stacking all the images
{I1,I2, . . . ,In} together as illustrated in Fig. 3, the principal
points {o1, o2, . . . , on} will coincide at o and {e1, e2, . . . , en}
will coincide at e. Now we prove three important geometric
properties of the system, i.e., co-linear, concurrent and
cross-ratio properties.

2) Co-Linear and Concurrent Properties:
Proposition 1: Projections, {x1, x2, . . . , xn}, of the same

3D point X are co-linear with e = KR[1, 0, 0]T with respect
to projective geometry (i.e., in perspective space P

2).
Proof: ∀i ∈ {1, 2, . . . , n}, since Ci = (ci , 0, 0) and

c1 = 0, we have

xi = KR
(

X − Ci
)

= KRX − KR[ci , 0, 0]T

= KR
(

X − C1
) − ci KR[1, 0, 0]T

= x1 − ci e.

Therefore, homogeneous coordinate xi can be linearly rep-
resented by x1 and e. That is, xi , x1 and e are co-linear
according to projective geometry. Then {x1, x2, . . . , xn} are
co-linear with e.

Fig. 4. Geometry relationship between e and R.

Proposition 1 shows that the projection trajectories of
3D scene points should be straight lines, and these lines
intersect at the same vanishing point of the stacked image
plane (Here the image plane is an extended 2D plane R̄

2,
where points at infinite are included). This clue will be
used for robust camera pose initialization in Section III. In
addition, R can be calculated if the homogeneous coordinate
of e is known.

According to the coordinate system defined above, R can
be decomposed using Y-Z Euler angles as

R =
⎡

⎣

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

⎤

⎦ ·
⎡

⎣

cos θy 0 − sin θy

0 1 0
sin θy 0 cos θy

⎤

⎦, (1)

where −π

2
< θy ≤ π

2
. This relationship is illustrated in

Fig. 4. Then we have

e = KR

⎡

⎣

1
0
0

⎤

⎦ = K

⎡

⎣

cos θy cos θz

cos θy sin θz

sin θy

⎤

⎦.

Now it is easy to find that

sin θy = ez

ne
, cos θy =

√

1 − sin2 θy,

cos θz = ex

ne cos θy
, sin θz = ey

ne cos θy
, (2)



GE et al.: DEPTH ESTIMATION USING A SLIDING CAMERA 729

where

[ex , ey, ez]T = K−1e, ne =
√

e2
x + e2

y + e2
z .

3) Cross-Ratio Property: Another useful geometric prop-
erty is cross-ratio, which can be used to calculate coordinate
correspondences even without normalization of image coor-
dinates. Take Fig. 2 and Fig. 3 for example. Based on the
analysis in [14], we have

( #       »

ex (1)
2 · #    »

d(1)
)( #             »

x (1)
1 x (1)

3 · #    »

d(1)
)

( #       »

ex (1)
1 · #    »

d(1)
)( #             »

x (1)
2 x (1)

3 · #    »

d(1)
)

=
#        »
C1C3 · #»

D
#        »
C2C3 · #»

D
,

where

#    »

d(1) =
#       »

ex (1)
3

∣

∣ex (1)
3

∣

∣

,
#»
D =

#        »
C1C3
∣

∣C1C3
∣

∣

.

More generally, if a 3D point X’s projections on image
Ii ,I j ,Ik are xi , x j , xk , respectively, we have

(

#   »ex j · #        »
d(xk)

)(

#     »xi xk · #        »
d(xk)

)

(

#  »exi · #        »
d(xk)

)(

#      »x j xk · #        »
d(xk)

) =
#       »
Ci Ck · #»

D
#        »
C j Ck · #»

D
, (3)

where

#        »

d(xk) =
#   »exk

∣

∣exk
∣

∣

.

Since
#       »
Ci Ck · #»

D = ck − ci ,
#        »
C j Ck · #»

D = ck − c j ,
#   »ex j =

#   »exk + #      »xk x j and #   »exk · #        »
d(xk) = ∣

∣exk
∣

∣, the above equation can be
rewritten as

#      »xk x j · #        »
d(xk) =

(

c j − ck
)∣

∣exk
∣

∣

(

#     »xk xi · #        »

d(xk)
)

(

ci − ck
)∣

∣exk
∣

∣+(

ci − c j
)

(

#     »xkxi · #        »
d(xk)

) . (4)

Notice that when e lies at infinity and xi , x j , xk are finite,
#        »

d(xk) becomes a constant vector (i.e., all trajectories are
parallel), and

lim|e|→∞

#   »ex j · #        »
d(xk)

#  »exi · #        »
d(xk)

= 1.

Then Equation (3) and Equation (4) degenerate to

#     »xi xk · #        »
d(xk)

#      »x j xk · #        »
d(xk)

=
#       »
Ci Ck · #»

D
#        »
C j Ck · #»

D

and

#      »xkx j · #        »

d(xk) = c j − ck

ci − ck

(

#     »xkxi · #        »

d(xk)
)

,

which are standard disparity transformations.
This cross-ratio property will be used in our camera pose

initialization as well as depth estimation algorithm.

B. Parametric Camera Pose Model

Bundle adjustment [17] is a state-of-the-art optimization
model of SfM, because it perfectly encodes all information
of matched features. However, the matched features are not
always sufficient, so a pure bundle adjustment may fail in
complicated cases. Therefore, some studies use auxiliary infor-
mation to enhance the robustness and practicality of bundle
adjustment. For example, Lhuillier [10] and Crandall et al. [11]
use GPS to get a coarse camera location for SfM initializa-
tion, [8], [9] use IMU to get relative poses between sequen-
tially captured images, and Nilsson et al. [18] combined the
motion model of the vehicle. These models do not match our
case because none of them reflects a global constraint that the
track provides. Therefore, based on the geometric analysis in
Section II, we propose the parametric model as

min
{X (l)},{ck},
R,{�Rk}

∑

k,l

w
(l)
k �

(

∥

∥x (l)
k − Pk(X (l))

∥

∥

2
2

)

∑

k,l

w
(l)
k

+ γ

n

∑

k

�
(

�Rk
)

,

(5)

where {X (l)} are the 3D coordinates of matched features,
{ck} and R are described in Section II, and {�Rk} are
compensations for possible vibration. The second term in this
model handles possible camera vibrations, which has not been
addressed in our previous conference paper [12].

The first term of Equation (5) is a variant of conventional
bundle adjustment model, where Pk projects a 3D point X (l)

onto camera k using the projection matrix as

Pk = K · �Rk · Rk ·
⎡

⎣ I

∣

∣

∣

∣

∣

∣

−ck

0
0

⎤

⎦,

and �(x2) = √
x2 + ε2 is a robust energy function to tolerate

outliers. The second term is for regularization which inhibits
large vibration compensation. Here γ is a balance factor and
�

(

�Rk
) = ∥

∥I − �Rk
∥

∥

2
F where

∥

∥·∥∥F is Frobenius norm.

III. CAMERA POSE ESTIMATION

Geometric analysis in the previous section provides three
important properties of our system, i.e., co-linear, concurrent
and cross-ratio properties. In this section, we will propose a
pose initialization algorithm based on these properties.

A. Initialization

Feature points are first detected from images as in [19]
and then Lucas-Kanade tracker [20] is used to establish the
correspondences. Denote the collection of feature points, their
visibilities and the corresponding 3D points by {x (l)

k }, {w(l)
k }

and {X (l)}, respectively. The visibilities are defined as:

w
(l)
k =

{

1 if a matching x (l)
k of X (l) is found in Ik ,

0 otherwise.

The initialization is based on these data, which may contain
some incorrect matches introduced by the previous phase.
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Algorithm 1 Camera Pose Initialization

We first use co-linear property to pick out the top-m (m is
set to 10 experimentally in our study) trajectories with highest
co-linear scores, which are further used for estimating initial
values of e and {ck}.2 The flowchart of our initialization algo-
rithm is shown in Algorithm 1, and the details are described
as follows.

We use principal component analysis (PCA) to decompose
the points of every trajectory, and the ones with smaller
λmin/λmax values are more likely to be co-linear. After penal-
izing short trajectories, the end points of top-m trajectories
are picked out and then used to estimate initial value of the
motion vanishing point e using the method in [21]. Using this
robust strategy, the estimated initial value of e is proved to be
reliable throughout all our experiments.

Notice that in perspective geometry both ±e (homogeneous
coordinates) correspond to the same 2D image coordinate, and
the sign does not matter during the phases above. However,
when we need to infer R using Equation (1) and (2), the sign
should be known. More intuitively, we need to know whether
e is the projection of the positive part of X-axis or the negative
part.

We use the following method to determine the sign of e.
By projecting e to 2D image coordinate (ex , ey) ∈ R̄

2, if
most trajectories are moving towards (ex , ey), R is calculated
using −e; if backwards, using +e.

After e is known, we use a stricter criterion to further
check trajectories, i.e., inliners should not only have a high
straightness score, but also be co-linear with e. By resorting all
the trajectories according to this criterion, we re-choose top-m
trajectories for estimating the initial values of {ck}. According
to Equation (3), we denote

rk = ck+1 − ck

ck − ck−1
= −

#              »
Ck+1Ck · #»

D
#              »
Ck−1Ck · #»

D

= −
(

#         »exk−1 · #        »

d(xk)
)(

#            »xk+1xk · #        »

d(xk)
)

(

#         »exk+1 · #        »

d(xk)
)(

#            »xk−1xk · #        »

d(xk)
) .

2We assume that small vibration of camera causes only small shifts of
feature points, so the three geometric properties approximately hold true.

Assume c1 = 0 and cn = 1,3 c1, c2, . . . , cn−1 can be
calculated as

ck = 1 + ∑k−1
i=2

∏i
j=2 r j

1 + ∑n−1
i=2

∏i
j=2 r j

.

For robustness, rk is set as the median value of the results of
top-m trajectories.

B. Constructed Bundle Adjustment

By clamping R and {ck} to the initial values calculated
above, we use Levenberg-Marquardt method to optimize
Equation (5) and get initial values for {X (l)} and {�Rk}. Then
we can find outliers by thresholding reprojection errors: if
the reprojection error of x (l)

k is larger than a threshold, set
w

(l)
k to 0. After this, we fully optimize Equation (5) and get

a final camera pose output.

IV. DEPTH ESTIMATION

In this section, we describe how to embed the geometric
properties into a variational model for depth estimation, as
well as a pixel-wise frame selection strategy.

Without loss of generality, we choose the k-th view as
reference view, and our task is to compute Dk . The depth
estimation pipeline consists of two main phases: 1) Choose
a view which is adjacent to the k-th view, then estimate a
coarse depth map using this narrow-baseline pair. 2) Iteratively
refine the depth map using the proposed pixel-wise frame
selection strategy. Note that when the vibration of camera is
too large to be ignored, a vibration compensation phase should
be performed by warping images according to the homography
transform, Hk = K�R−1

k K−1 [13].

A. Depth Initialization

There are two mainstream methods for modeling this prob-
lem, i.e., Markov random field (MRF) model and variational
model:

1) MRF model: Many MRF algorithms (e.g., graph
cut (GC) [22] and loopy belief propagation (LBP)
[23], [24]) have good convergence without relying on
an initial solution. But the precision is limited by quan-
tization, and the memory consumption grows linearly as
quantization resolution increases.

2) Variational model: The result is calculated by con-
tinuous optimization (which implies high preci-
sion) with low memory consumption. But most
algorithms [25]–[28] guarantee only local convergence
when the unary term is non-convex, i.e., it is sensitive
to initial solution.

Since variational model is sensitive to initial solution and
a good initial matching is very difficult to find in wide
baseline systems, MRF model is much more widely used
in stereo systems. In our sliding camera system, however,
because the length of baseline varies continuously, it is easy
to get a narrow-baseline pair, in which the captured images

3Since there intrinsically exists scale ambiguity in SfM problem, explicit
normalization is required.
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Fig. 5. Depth estimation results. Left: Image of reference view.
Middle: Initial estimation from a narrow baseline pair, which is almost correct
but has lower accuracy. Right: Result after multi-view depth refinement, which
has a much higher accuracy.

differ slightly. Therefore, a good initial solution can be found
by narrow triangulation, which compensates for the disad-
vantage of variational model. On the other hand, variational
models require much less memory than MRF models. That
is the reason why we choose variational model for depth
estimation.

Thank to the continuity of the slider, we can find a view,
namely the i -th view, which is near to the reference the k-th
view, and is used to initialize the algorithm. It is a two-view
stereo problem and we use the method of [27] (a constrained
version of [25]) to build the optimization model:

min
wki

ED(ωki ) + γ ES(ωki ). (6)

In this optimization, ωki is a function mapping a coordinate
xk ∈ � to the tangential disparity along the epipolar line
(as illustrated in Fig. 9) between the k-th view and the
i -th view. ED is the data term for measuring pixel variance,
which is defined as

ED(ωki ) =
∫

�
c(xk)�

(

∥

∥I∗
k

(

xk
)

−I∗
i

(

xk + wki (xk) · #        »

d(xk)
)∥

∥

2
2

)

dxk, (7)

where I∗
k and I∗

i are 6-channel images containing (R, G, B, β ·
∇ R, β ·∇G, β ·∇B) for measuring both color values and color
gradients, and

#        »
d(xk) (as illustrated in Fig. 9) is previously

defined in Equation (3). �(x2) = √
x2 + ε2 is a robust energy

function, and a confidence factor is defined as

c(xk) = 1 − σ 2
c

∥

∥∇Ik(xk)
∥

∥

2
2 + σ 2

c

.

ES is the smoothing term, defined as

ES(ωki ) =
∫

�
ξk(xk)�

(

∥

∥∇wi (xk)
∥

∥

2
2

)

dxk,

where ξk is the edge prior to preserve discontinuities as

ξk(xk) =
{

0.1 if
∥

∥∇Ik(xk)
∥

∥

2 > σc,

1 otherwise.

In the above formulation, the parameters are experimentally
set as: β = 4.0, γ = 1.6, σc = 8.0 (when color values are
between 0 and 255), ε = 0.001.

Equation (6) can be solved by the methods as described
in [25] and [27]. With an all-zero initial solution, the result
converges gradually along a fine pyramid of step 0.9, and each
step is solved by the fixed point iteration. An example of this
step is shown in Fig. 5, from which we can see that the initial
solution is roughly correct but lacks accuracy.

Fig. 6. The estimation of visible zone. Occlusion (as marked by black
bold line) is caused by the convex hulls (as marked by blue line) of both
sides.

Fig. 7. Errors of different baseline setups. The case in the middle achieves
lowest error.

B. Depth Refinement With Pixel-Wise Frame Selection

To achieve higher precision, information from more
captured images should be utilized. However, during camera
moving along the track, a lot of images are captured which
contain too much redundancy and some regions of the
reference view may be invisible in certain views due to
occlusions or out-of-FOV. If we simply add all images into the
optimization, it will consume too much computation resource
and the result may be disturbed by occlusions and/or out-
of-FOV. Therefore, a proper strategy is required to squeeze
useful information from the captured images, which can save
computation resource and inhibit those predictable disturbance
at the same time.

Conventional methods [5], [6] select several frames from
all captured images, and other frames are simply discarded
during the later procedure. Besides, studies on “Next Best
View Planning” (e.g., [29]–[31]) adopt similar idea, except
that they focus on expanding the set of captured frames. In this
paper, we want to consider all pixels, and select optimal frames
for every pixel, so that useful information could be efficiently
extracted. Similar idea has also been studied in [32]–[34].
Farid et al. [32] simply select left-hand-side or right-hand-
side views according to intensity correlation errors, without
considering the length of baseline between views, which is
necessary for judging occlusions. Gu et al. [33] propose a
pseudo selection algorithm by assigning different weights to
different frames, but the computation cost of depth estimation
can not be reduced because all frames have to be involved in
the calculation.

The selection algorithm of [34] is most related to the pro-
posed pixel-wise selection algorithm. It uses depth maps of all
the frames to judge occlusions and out-of-FoV. However, when
the number of frames n is large (this matches the case of the
proposed sliding camera system), calculating depth maps of all
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Fig. 8. Illustration for selection score. The visibility cost Cv is derived
from the visible zone, and the precision gain cost Cg is calculated from the
reference view (the k-th) as well as those already selected views (the i1-th and
the i2-th). By adding Cv and Cg together, the next selection can be deduced
from the minimum of Ca (the i3-th in this illustration).

frames is extremely expensive. Therefore, we design an effi-
cient selection strategy here to handle lots of available frames.

For every pixel of the reference view, our strategy consists
of three sequential steps: 1) visible zone analysis, 2) precision
gain estimation, and 3) greedy frame selection according to
the information acquired by the previous steps.

1) Visible Zone Analysis: While occlusion reasoning is
an essential part for frame selection algorithms, pixel-wise
occlusion reasoning usually consumes too much time when
there are a large number of frames, so it is obviated in
conventional methods. However, in the case of (approximately)
linear camera motion, we found this task can be significantly
simplified. When moving straightly, the optical center of
the camera is constrained on the same spatial straight line,
which is the common epipolar axis of all view pairs. This
property guarantees that pixel-wise occlusion relationship can
be inferred by individually analyzing each epipolar line instead
of each pixel.

To be specific, we first choose a group of uniformly
distributed epipolar lines which can cover all pixels in the
reference view (within a width of 2 pixels in our experiments),
then individually analyze occlusions on these epipolar lines.
Using the initial depth map calculated in the previous step,
the reference view can be projected into 3D space as a mesh
grid. For each epipolar line, the intersection of corresponding
epipolar plane and the mesh grid is a 3D curve. As illustrated
in Fig. 6, an algorithm is required to find out the visible zone
of all points, {Pi }, on the 3D curve.

A straightforward algorithm for this task is, for any point Pi

on the curve, traversing all other points, calculating geometric
relationships and keeping extremes on both sides, which
determines the visible zone of Pi . Take point P10 in Fig. 6
for example, this algorithm traverses {P1, P2, . . . , P9} and

Fig. 9. Tki→kj encodes the cross-ratio property of our system, which
transforms coordinates between different view pairs. ωi (xk ) is the disparity
of xk between view k and view i , so as ω j (xk).

{P11, P12, . . . , P21} and finds out the visible zone between
P7 and P17. To calculate visible zones for all points, the
temporal complexity of this algorithm is O(n2). However, by
comprehensively analyzing this problem, we found that convex
hulls could accelerate visible zone calculation.

Take point P10 in Fig. 6 for example again, only
the points on the convex hulls {P1, P3, P7, P9} and
{P11, P13, P17, P19, P21} on both sides should be taken into
account. For all points on the curve, only 2n − 2 convex hulls
are required, i.e., fch

({P1, P2, . . . , Pk}
)

, k ∈ {1, 2, . . . , n − 1}
and fch

({Pk, Pk+1, . . . , Pn}), k ∈ {2, 3, . . . , n}, where n is the
number of points on the curve, and fch extracts convex hull
from a set of points. Besides, for our task, the fch has the
following recursive relationship as

fch
({P1, P2, . . . , Pk}

)

= fch

(

fch
({P1, P2, . . . , Pk−1}

) ∪ {Pk}
)

,

and

fch
({Pk, Pk+1, . . . , Pn})

= fch

(

{Pk} ∪ fch
({Pk+1, Pk+2, . . . , Pn})

)

.

Utilizing this recursive relationship, this task can be done
with temporal complexity of O(n). In our experiments, this
procedure takes less than one second for an 800 × 600 image.
Finally, these results are intersected with FOV of cameras
which produces visibility maps denoted by Cv .

2) Precision Gain Estimation: With the visibility map cal-
culated in the previous step, we are able to pick out frame
candidates in which the 3D voxel can be seen. In this step,
we try to pick out one frame from these candidates, so that
we could minimize the error of depth estimation. A common
knowledge on dual-view camera system is that the error
of depth measurement varies inversely with the length of
baseline, but for a multi-view stereo system a proper error
model is required.

Here we use a simple Gaussian model. Suppose the projec-
tion on a certain view of a 3D voxel, X = (x, y, z), is a 3D
straight line, l = X + k(X − O), with a cylinder uncertainty
as in Fig. 7. The fused uncertainty of all observations could
be expressed by a quadratic kernel (which is the exponential
term of a Gaussian kernel). The uncertainty of a 3D straight
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Fig. 10. The performance of camera pose initialization with varying numbers of feature points and outliers on synthetic data.

Fig. 11. Our synthetic data set and results. The first column shows 3D models in Blender. The second and third show rendered 2D images and generated
ground truth depth maps. The last two show the results of our method and Zhang’s method [6].

line, X + k(X − O), can be expressed by a function matrix,

�l =
(

#»
d · #»

d T + εI
)−1

, where
#»
d = #    »

O X
/ ∣

∣O X
∣

∣. To get the
best precision, we try to minimize the following cost as

Cg =
(

∑

l

�−1
l

)−1

.

After the calculation of Cv and Cg , we let Ca = Cv + Cg ,
which is illustrated in Fig. 8. By minimizing Ca , we could get
the next best selection.

3) Iterative Frame Selection: We have described how we
select one frame from the candidates. Now we need to do
this iteratively to add multiple frames for depth refinement,
as described in Algorithm 2. With specific selections, we
can update the depth map D with the following refining

optimization, which is derived from Equation (6), as

min
wki

ED(ωki ) + γ Esel
S (ωki ). (8)

where

Esel
D (ωki ) =

∫

�
c(xk)

∑

j∈S(xk)

�
(

∥

∥I∗
k

(

xk
)

− I∗
j

(

xk + Tki→kj (wki )(xk) · #        »

d(xk)
)∥

∥

2
2

)

dxk . (9)

In this equation, Tki→kj encodes the cross-ratio property of
our system, as shown in Fig. 9.

This optimization is fast in practice since: 1) there is already
an initial solution calculated by Equation (6), and 2) only the
selected data should be involved in the calculation.
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Fig. 12. Statistical comparison between different depth estimation methods on the synthetic data set. Our method outperforms conventional methods especially
in the regions where the depth varies continuously. By the way, the proposed pixel-wise frame selection algorithm is slightly better than our previous work [12].

Algorithm 2 Iterative Frame Selection

V. EXPERIMENTS

In this section, we will first carry out experiments on the
synthetic data (with ground truth) to evaluate the performance
of both pose estimation and depth estimation algorithms.
We will also test the practicality of the proposed algorithms
on real data.

A. Quantitative Evaluation on Synthetic Data

1) Camera Pose Initialization: We carry out simulation
experiments to avoid the interference of other factors. A set
of 3D points {X (l)} are randomly generated, then these 3D
points are projected onto a linearly aligned camera array. With
Gaussian noise and FOV cropping, we get a set of 2D projec-

tions, {x (l)
k }, and visibilities, {w(l)

k }. Based on these synthetic
data, we have compared the results of our pose initialization
algorithm with the unconstrained one [7], which is a state-
of-the-art method for SfM without IMU or GPS. To evaluate
the results, we first manually find a global transformation to
align the estimated camera structure with ground truth (since
image-based SfM algorithms can not retrieve global poses),
and then cameras within an error threshold (10% of the total
array length for location, 10° for orientation) are considered

Fig. 13. Comparison on precision of different frame selection strategies.
To make the difference prominent, these curves are calculated on occluded
regions. These curves show our pixel-wise frame selection algorithm achieves
highest precision on occluded regions.

as correct. In this experiment, outliers are generated by adding
salt-and-pepper noise to the 2D projections.

The quantitative results are illustrated in Fig. 10. The left
plot shows the performances when the number of feature
points varies, and the right plot shows the performance when
the percentage of outliers (of totally 100 feature points)
varies. These results show that our initialization algorithm is
robust to the number of feature points as well as outliers.
Wu’s method [7] fails when the number of common feature
points seen by all the views is less than 20 (50 in total), or
when the proportion of outliers is large than 50%. Without
this initialization procedure, our previous method [12] fails
with bad inputs, especially when there are lots of outliers.

2) Depth Estimation: To quantitatively evaluate the accu-
racy of depth estimation, we have built a synthetic data set with
Blender,4 a free and open-source software which renders 3D
scene models into 2D images with depth maps. Our synthetic
data set contains three image sequences, i.e., the “Shelf”,

4http://www.blender.org/
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Fig. 14. Visual comparison of different frame selection strategies on the Middlebury data set.

Fig. 15. Samples of images before (the first row) and after (the second row, images are slightly warped so black borders appear) vibration compensation.

the “Kitchen” and the “Lobby”. Each sequence consists of
51 images rendered from a virtual linear camera array. The
“Shelf” is a degenerate case and the most difficult one. The
“Kitchen” contains lots of depth discontinuities. The “Lobby”
contains large proportion of plane areas. Some samples of
these scenes are shown in Fig. 11, and depth ranges are shown
in Table I. Using the ground-truth depth maps generated by
Blender, we are able to calculate errors of depth estimations
quantitatively.

We first carry out experiments to compare our variational
framework with conventional MRF-based methods.5 Fig. 12

5The results of Zhang’s method [6] reported in this paper are obtained using
the ACTS software (http://www.zjucvg.net/acts/acts.html).

shows the quantitative results of accuracy, where our
variational method outperforms state-of-the-art MRF-based
methods [5], [6], especially in the regions where depth varies
continuously. Besides, the variational framework consumes
less memory (up to 300 MB, with 800×600 resolution) than
MRF-based methods (up to 4 GB with 100 quantization
levels).

Then we carry out quantitative comparison on accuracy for
different selection strategies, including our pixel-wise selection
using visible zone analysis, pixel-wise selection using depth
maps of other frames [34], conventional frame-wise selection
(we use Zhang’s selection strategy [6], which selects the views
with higher overlapping FOV), manual frame-wise selection
(we manually choose the best combination within hundreds
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Fig. 16. Trajectories of feature points before (a) and after vibration compensation (b). The figure in (b) shows our vibration compensation algorithm
successfully aligns the captured images.

TABLE I

DEPTH RANGES OF OUR SYNTHETIC DATA SET

of good candidates) and no selection (when all frames are
used [12]). The overall accuracies (including all pixels in the
image) of different strategies are close, but when focusing on
the regions where pixels may be occluded, the accuracy of
our pixel-wise selection strategy is much higher than others.
As shown in Fig. 13: 1) Our pixel-wise selection strategy (with
only 4 frames selected per pixel) outperforms other frame-wise
selection methods, even including the one using all frames.
2) Although the selection algorithm of [34] is as accurate as
ours, it is n times slower than our algorithm because it has
to calculate depth maps of all available frames (here n is the
number of available frames).

Further more, for a sequence consisting of 51 images with
800×600 resolution, camera pose estimation takes less than
10 seconds (including pose initialization and bundle opti-
mization). Depth initialization, iterative frame selection and
depth refinement of the reference view take about 50 seconds,
5 seconds and 40 seconds, respectively.6 All these time values
are measured using our Python + Cython code on a 3.0 GHz
CPU with single thread. Note that since pixel-wise frame
selection can run in parallel, and variational model can also
be solved in parallel by GPU [35], it is possible to reduce the
total computation time to a few seconds with an optimized
implementation.

We also tested the proposed selection algorithm on the
Middlebury data set [36], [37]. This data set is widely used as
a benchmark for stereo estimation algorithms, and it includes
several multi-baseline inputs which are suitable for testing
the proposed algorithm. We pick 4 groups of input (Venus,

6For the same resolution, algorithm of [5] takes about 40 seconds for
one frame (with 100 quantization levels), and algorithm of [6] takes about
150 seconds (in average) for one frame.

TABLE II

PERCENTAGE OF BAD PIXELS (ERROR THRESHOLD = 1.0)
ON THE MIDDLEBURY DATA SET

TABLE III

ACCURACY WITH/WITHOUT VIBRATION COMPENSATION

Sawtooth, Teddy and Cones) because these groups contains
9 views each. Fig. 14 and Table II compare the results
between the proposed pixel-wise selection algorithm and other
strategies. These results tally with the conclusion from our
synthetic data set.

To test the efficiency of our vibration compensation algo-
rithm, we simulated camera vibrations in the synthetic data
set, and carried out comparative experiments on data set
with/without vibrations by switching on/off the compensation.
The quantitative results are shown in Table III, where the accu-
racy within 0.1 m is used as judgement. When tested on the
data set without vibrations, the algorithm with compensation
is as accurate as the one without. But when tested on the data
set with vibrations, the compensation is necessary, otherwise
the accuracy will drop by a large amount.

B. Evaluation on Real-World Data

To validate the practicality of our algorithm, we carry out
experiments on real-world scenes. First, we captured several
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Fig. 17. Depth estimation results for real scenes. Each odd row contains two samples of captured images and the restored depth map. Each even row shows
two groups (from two different view angles) of rendered point clouds. The last group is with vibration compensation.

image sequences with the proposed sliding camera system
(as in Fig. 1) so that the camera poses are strictly constrained
by the track, and then applied our whole pipeline on these
data. The first three groups in Fig. 17 (namely (a), (b) and (c))
show samples of these images as well as the final outputs.
Group (a) is an indoor scene which contains various kinds
of objects. Our algorithm can successfully restore the depth

map and the precision of regions with texture is good (e.g., the
curtains and things on the desk). The result of textureless areas
(e.g., the white wall) is less accurate. Group (b) is also an
indoor scene but with a lot of repeated objects (e.g., stools,
shelves and fences), which is much more complicated than
Group (a). Conventional methods [5], [6] fail to retrieve the
depth map under this circumstance, but our algorithm can
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still successfully restore the 3D structure of all these repeated
objects. Group (c) is an outdoor scene with weak textures
on the floor and walls. Although there are no ground-truth,
the smoothness of the ground plane and walls indicates good
precision of our algorithm.

We also carried out an experiment on an image sequence
captured by a camera mounted on a bicycle, which moves
under approximately linear translation but with a lot of distur-
bances. Fig. 16(a) illustrates the outputs (the longest top-100)
of Lucas-Kanade tracker [20] on original input images, where
the trajectories are all zigzag. In this situation, our previous
algorithm [12] could not get a good output. This sequence
is also successfully recovered by the proposed algorithm, and
Fig. 15 shows image samples before and after applying our
vibration compensation algorithm (described in the beginning
of Section IV). Fig. 16(b) shows the output trajectories of
Lucas-Kanade tracker on compensated images, where the
trajectories are almost straight lines. The final outputs are
shown in Fig. 17(d), where the 3D structure of the buildings,
trees and cars are successfully restored.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel depth estimation
algorithm based on a sliding camera system, which includes a
camera pose initialization algorithm and an adaptive iterative
optimal frame selection algorithm for stereo matching.

We have analyzed the properties of the sliding camera
system. After that, camera pose initialization algorithm is
designed to utilize the geometric properties of linearly camera
translation, which can work even with only a small number of
feature points and is robust to noise. Iterative optimal frame
selection algorithm is proposed for pixels corresponding to
different depths, which can take advantage of continuously
pose-changing imaging and reduce time consumption a lot.
The proposed algorithm can also be easily extended to handle
less constrained situations (such as using a camera mounted on
a moving robot or vehicle). The experiments on synthetic data
set show the proposed camera pose initialization algorithm and
pixel-wise frame selection algorithm outperform conventional
methods. The practicality of the proposed algorithms is also
verified on real-world data.

Nevertheless, the proposed depth estimation algorithm is
currently unable to handle scenes with moving objects. In the
future, we will try to model moving objects according to sparse
or low-rank representation, and improve it accordingly.
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