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a b s t r a c t

Fingerprint indexing is critical for identifying fingerprints efficiently in large-scaled fingerprint data-
bases. The state-of-the-art indexing accuracies are achieved by minutiae-based indexing approaches. A
major difference of these approaches is how they deal with fingerprint registration problem. Some of the
approaches do not use registration, while others perform relative/pairwise registration (e.g., based on
mated minutiae between two fingerprints). However, the former approach is not accurate, since without
geometric constraints, many false matches can be found even for non-mated fingerprints. The latter is
not efficient for large databases since the relative registration step has to be performed for each pair of
fingerprints. It is desirable to develop an absolute registration approach, which can register any single
fingerprint into a common coordinate system, and therefore can address efficiency and accuracy pro-
blems simultaneously. In this paper, we proposed a fingerprint pose estimation algorithm which can
register fingerprints into a common finger coordinate system. Fingerprint pose estimation problem is
viewed as a two-class classification problem and approached by sliding window classifiers trained on
labeled data. Ridge orientation information is used as features instead of singularities which are often
affected by noise. With the pose estimation, we are able to refine the matched minutiae with global
spatial constraint. By combining the proposed pose estimation algorithm with an improved Locality
Sensitive Hashing algorithm for MCC descriptor, our indexing system outperformed previous state-of-
the-art on widely used databases and its scalability was tested on a large database with one million
fingerprints.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fingerprint is easy to be measured, and believed to be unique
among individuals. These intrinsic characteristics and the great
advance in fingerprint recognition technologies make it the most
widely used biometrics. Nowadays, large scale fingerprint recog-
nition systems can have more than millions of fingerprints. For the
task of identifying a fingerprint in large databases, fingerprint
indexing algorithm is usually first used to quickly select a subset of
candidates and then accurate but slower matching algorithm is
employed to determine the final result [1,2].

Fingerprint indexing approaches can be roughly classified into
two categories: level-1 indexing approaches and level-2 indexing
approaches. Level-1 approaches use level-1 features, namely, ridge
orientation map and ridge frequency map [3–6]. Fingerprint clas-
sification can be viewed as a special case of level-1 indexing
approach, where the dimensionality of the feature vector is one.
. Su),
cn (J. Zhou).
Level-2 approaches are based on level-2 features, namely, minu-
tiae. Level-1 indexing approaches are commonly faster than level-
2 indexing approaches, as level-1 features can be represented as
compact feature vectors. On the other side, since minutiae contain
more discriminative information of fingerprints than ridge orien-
tation and frequency maps, level-2 indexing approaches should be
more accurate if implemented properly. Some indexing approa-
ches combine both features to make full use of them and get better
performance [7,8]. The proposed approach belongs to level-2
indexing approach.

Minutiae-based indexing approaches generally extract a set of
invariant features based on minutiae. Examples of invariant fea-
tures include descriptors of minutiae [9], features of minutia tri-
plets [10–12], and features of minutia quadruplets [13,14]. Most of
the level-2 indexing approaches are based on the inverted index
[15], which is a popular data structure in information retrieval. The
basic framework of these indexing algorithms is briefly described
as follows. A fingerprint is represented as a set of invariant fea-
tures based on minutiae. In the offline stage, inverted index is used
to store all the invariant features of all gallery fingerprints. In the
online stage, given a query fingerprint, for each of its invariant
features, corresponding invariant features in the inverted index
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are found and a vote is cast for each corresponding gallery fin-
gerprint. Finally, gallery fingerprints are ranked according to their
received votes.

Although most level-2 indexing algorithms adopt the above
basic framework, they may have some important differences. Two
key differences are whether a global spatial transformation con-
straint is enforced or not and how the global constraint is
enforced. The global constraint requires that the transformation
between each matched minutiae pair should be close to a same
rigid transformation. Without a global constraint, an invariant
feature in the query fingerprint may have many false matches in
non-mated gallery fingerprints. By enforcing global constraint
correctly, the number of false matches in non-mated gallery fin-
gerprints can be significantly reduced while the mated gallery
fingerprint is less affected. See Fig. 1 for an example.

If two fingerprints are registered in the same coordinate sys-
tem, global constraint can be simply enforced by requiring the
matched minutiae to be close in both location and direction.
Hence the key of enforcing global constraint is to register finger-
prints. There are two different methods for fingerprint registra-
tion: absolute registration and pairwise registration. The most
common method for absolute registration is to use singular points
(loop/delta) for fingerprint registration. However, singular points
are not present in some fingerprint images (fingerprints of plain
arch type and incomplete fingerprints) and are often affected by
noise which makes them not suitable for the use in absolute
Rank:1739

Rank:1

Fig. 1. Indexing results of MCC-LSH based fingerprint indexing algorithm [9] without/w
rotation (256 pixels and 451, just the same with that in [9]). (b) Indexing result with a
fingerprint in the middle column is query fingerprint, the left one is its mated gallery fing
(a). Center point and direction (namely pose) of fingerprints estimated by the propos
connected by lines. The ranks of gallery fingerprints are annotated on the bottom right
registration. That is why existing minutiae-based indexing
approaches either enforce it by pairwise registration [10] or simply
ignore it [9], since pairwise registration is not efficient for large
databases.

To efficiently utilize global constraint in fingerprint indexing,
we propose a pose estimation algorithm to register fingerprints
into a unified coordinate system. We learn classifiers with manu-
ally marked samples to detect well positioned fingerprint in an
image. We use ridge orientation as dominant features in the
algorithm instead of singularities, which makes our algorithm less
sensitive to noise. Pose determined by the well positioned fin-
gerprint is shown in Fig. 1. We use the pose as global spatial
constraint to refine the matched minutiae. As we can see from the
figure, false correspondences are reduced with such constraint,
especially for non-mated fingerprints. By combining the proposed
pose estimation algorithm with an improved Locality Sensitive
Hashing algorithm for MCC descriptor, our indexing system
achieved state-of-the-art performance on several public domain
databases as shown in experiments.

The rest of this paper is organized as follows: in Section 2,
published algorithms for fingerprint indexing and fingerprint pose
estimation are reviewed. Our pose estimation algorithm is intro-
duced in Section 3. Details of how we retrieval fingerprints with
estimated pose is explained in Section 4. The improved Locality
Sensitive Hashing algorithm is also presented in this section. Then,
Rank:1

Rank:71

ith pose constraint. (a) Indexing result with a loose constraint for translation and
tight constraint defined by finger poses estimated by the proposed algorithm. The
erprint, and the right one is the gallery fingerprint with highest score in the case of
ed algorithm are marked by circle and arrow, respectively. Matched minutiae are
corner of the images.
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in Section 5, the experimental results are presented and analyzed.
Finally, we finish with conclusions in Section 6.
2. Related work

2.1. Fingerprint indexing

Table 1 compares the proposed algorithm with representative
minutiae-based fingerprint indexing algorithms in terms of min-
utiae descriptor, index generator, spatial constraint and perfor-
mance. Germain et al. [10] proposed to use minutiae triplets as
descriptor. Geometric features of triplet includes length of each
side, the angles and the ridge count between each pair of minu-
tiae. As minutiae triplet is not very discriminating, false corre-
spondences are likely to happen. To reduce false correspondences,
pairwise registration is carried out between each gallery finger-
print and query fingerprint using transformation parameter clus-
tering, which is very time consuming.

Bhanu and Tan [11] improved the algorithm in [10] by using
new feature of minutiae triplets, and imposing ad hoc geometric
constraints on hypothesis matched triplets instead of pairwise
registration. They reported higher matching accuracy and faster
speed than the original algorithm.

The algorithm proposed in [9] uses binary minutia cylinder
code (MCC) as minutia descriptor which encodes locations and
directions of neighbor minutiae around each minutia into a fixed-
length bit vector. MCC is more accurate and robust than minutia
triplets, but its dimensionality is higher. Locality Sensitive Hashing
(LSH) is used to efficiently find out hypothesis correspondences of
MCC instead of traditional quantization scheme. Since the error
rates of other indexing algorithms are larger than Cappelli et al.
[9], we do not include them in the table.

2.2. Absolute fingerprint registration

Absolute registration or pre-alignment [1] refers to aligning
fingerprint images in a unified manner. With absolute registration,
tight constraint on location and direction of minutiae can be
applied to reduce false correspondences. Existing absolute regis-
tration algorithms can be classified into two categories: special
point based and Hough transform based.

Singularities were used for registration in [16]. Despite lots of
effort in singularity detection, it is still very sensitive to noise [17].
Besides, fingerprints of arch type do not even have singularities.
Other special points are also proposed, such as maximum curva-
ture point on the convex ridge [18], focal point [19], convex core
point [20]. However, similar to the detection of singularities, they
are sensitive to noise, too.

Yang et al. [21] proposed a Hough transform based fingerprint
pose estimation algorithm, which uses a whole fingerprint to predict
the pose. They first learn a statistical model of fingerprint orientation
field distributions in off-line training stage. Given an input
Table 1
Representative minutiae-based fingerprint indexing algorithms.

Algorithm Feature Index generator Re

Germain et al. [10] Feature of minutiae triplets Quantization Pa
Bhanu and Tan [11] Feature of minutiae triplets Quantization No
Cappelli et al. [9] MCC LSH No
Proposedb MCC Improved LSH Ab

a According to the implementation by Bhanu and Tan [11].
b Registration is not used in FVC databases.
fingerprint, the location of center point is estimated as follows:
estimate the orientation field, divide the orientation image into pat-
ches, then each patch votes for the potential location of center point
and direction of fingerprint according to the learned distribution of
the corresponding group. Votes are accumulated and the one with
highest votes is regarded as result. Although this algorithm is suitable
for its original purpose: orientation field estimation, the estimated
poses are not consistent in different impressions of a same finger-
print, which makes it not suitable for fingerprint indexing.
3. Pose estimation

The problem of fingerprint pose estimation is equal to search-
ing for a subwindow containing a centered and upright finger-
print. Rotation of finger has to be considered since many finger-
prints are not upright. This problem can be approached using two
types of methods: (1) rotate image to all possible directions, and
then use a single classifier to scan over the image; (2) scan the
original image using classifiers of all possible directions. We adopt
the second method since our experiment shows that it is faster.

Specifically, the pose estimation procedure is as follows (See
Fig. 2):

1. Input fingerprint image is scanned at all possible locations.
2. Classifiers of various directions are used to determine the pos-

sibility that there is a fingerprint of certain direction at each
location.

3. Direction and location with highest score (possibility) is chosen
as estimated result.

In the following subsections, we present details of our algorithm.
3.1. Fingerprint pose definition

The direction of fingerprint is defined to be perpendicular to
finger joint. But it is not easy to define finger center, as evidenced
by the fact that there is no consensus on the definition of finger-
print center. We provide a definition suitable for our case:

� For fingerprints with at least one loop and one delta, the loop
closer to finger joint and the delta farther away from the loop
are chosen as reference points. The center is then defined as the
middle point between loop and projective point of the delta on
the line parallel with fingerprint direction and crossing the loop.

� Otherwise, as the definition in [21], the midpoint of the
maximum curvature point and the northernmost straight ridge
perpendicular to the fingerprint direction is defined as the
center.

Examples are presented in Fig. 3 to illustrate the definition.
gistration Error rate (Penetration rate¼10%)

FVC2000 FVC2000 FVC2002 NIST NIST
DB2 DB3 DB1 SD4 SD14

irwise – – – 16.5%a -
– – – 14.5% -
2.2% 6% 1% 4% 5%

solute 1.49% 5.86% 0.714% 2.97% 2.33%
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3.2. Training examples

According to the above definition, we manually marked the
poses of a set of training fingerprint images. A supporting tool is
developed to make the process easier. Based on the marked poses,
we generate training samples for classifier of each direction. Take
01 as an example. Each positive example is required to be centered
at the center point of fingerprint and its upright direction is
required to be parallel with the direction of fingerprint. Negative
examples are generated in the same way except that the reference
poses (both centers and directions) are randomly produced. A
constraint has been enforced on the pose of negative examples to
guarantee that (1) the pose is sufficiently different from the true
pose; and (2) negative examples should cover sufficient finger-
print foreground region. Fig. 4 gives positive and negative exam-
ples for classifiers of three directions. Both of positive and negative
examples are of fixed size (640�576 pixels).
Fig. 2. Fingerprint pose estimation flowchart. After extracting histogram of orientation
image. A set of 37 classifiers (in direction ½�901; �851;…;01;…;851;901�, only positive c
centered fingerprint with corresponding direction. Decision values of classifiers are show
high score). The center and direction of window with global highest score (the extrema o

Fig. 3. Examples of manually marked pose, where the circle and arrow line specify center
maximum curvature point) and delta (or projective point of maximum curvature point on
of finger joint. (For interpretation of the references to color in this figure caption, the r
3.3. Feature extraction

As fingerprint pose can be inferred from ridge orientation field,
we extract features as follows (See Fig. 5):

1. Divide the input image into small overlapping blocks of
fixed size.

2. For each block, accumulate a local 1-D normalized histogram of
ridge orientations over the block. Ridge orientation are com-
puted with Sobel gradient operator.

3. To compute the feature vector of a sliding window, we combine
all the histogram entries of the blocks in the window to form
the feature vector.

Window size is of size 640�576 pixels and divided into 10�9
square blocks, with 16 pixels overlap between blocks. In each
block, a 16 bins fuzzy orientation histogram is calculated as fol-
lows: each pixel votes to two adjacent bins, and the voting values
of each block in a fingerprint, a detection window is slid over the input fingerprint
omponents are shown in figure) are used to estimate the possibility that there is a
n as 37 images, where the pixel intensity is proportional to score (low intensity for
f all classifiers in all locations) is regarded as the center and direction of fingerprint.

and direction, respectively. The square and triangle sign label the reference loop (or
the northernmost straight ridge), respectively. The red solid line labels the position

eader is referred to the web version of this paper.)



Fig. 4. Positive and negative training samples (only two are shown) for pose estimation and learned classifiers of three directions (�301;01, and 301). Computed features labeled by
variable-length line segments are drawn over the samples. Positive and negative coefficients in weighted sum of SVM support vectors are separately drawn on the third row.
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are inversely proportional to the angle between orientation of the
pixel and the two bins, respectively.

Our feature vector is histograms of orientation instead of orienta-
tion field, since it is a richer representation. Analogous descriptors that
capture edge feature with histogram have been proved to be effective
in computer vision problems [22,23]. The computed feature vectors
are shown in Figs. 2 and 4 as variable-length line segments centered
on each block. The longer a line segment is, the more concentrated
gradients in the block are on the direction perpendicular to it.

3.4. Classification

Features of training samples are fed to SVM classifiers of different
directions. The classifiers are shown in Figs. 2 and 4. In Fig. 2, positive
components of SVM weight vectors are rearranged into block feature
format. In Fig. 4, positive and negative SVM weights are separately
drawn. We can see that positive SVM weights are similar to feature of
a whorl with one core and two delta, and negative SVM weights are
perpendicular to positive ones.

Fig. 6 gives estimated poses of 12 fingerprints by two different
algorithms: the algorithm of Yang et al. [21] and the proposed algo-
rithm. These fingerprints are from 6 different fingerprints. Poses are
expected to be consistent between different images of the same fin-
gerprint. The algorithm by Yang et al. [21] estimates poses based on
votes from every small ridge pattern block and thus it fails to capture
global constraint. Our classifiers are learned from both positive and
negative samples. In this way, we are able to learn a global pattern of
fingerprints and separate positive and negative samples better.
4. Indexing

Performance of minutiae-based indexing approaches highly
depend on mapping and matching among minutiae in fingerprints.
Similarities among minutia descriptors are used to find out mated
minutiae. Examples of descriptors include MCC [9], features of minutia
triplets [10–12], and features of minutia quadruplets [13]. Although
these descriptors are invariant to translation and rotation, descriptors
of mated minutiae still would vary due to various kinds of noise.

MCC encodes neighborhood of a minutia by projecting its neighbor
minutiae to a three dimensional space based on their relative locations
and directions with center minutia. A discretization of the space into
cells is then carried out to convert these projection values into a fixed
length vector. Neighborhood of minutia includes more information of
minutia than the other descriptors, making it comparatively easy to
distinguish among minutiae. Thus, we use MCC as descriptor in the
paper. Besides, the projection value is calculated by smoothing func-
tions making the representation insensitive to small distortion and
noise. However, the dimension of MCC is too high to be directly used
in indexing which requires real-time operations.

Locality Sensitive Hashing (LSH) is effective and efficient in finding
approximate nearest neighbor of high-dimensional vector [24,25]. In
the basic LSH scheme, a family of functions H ¼ h1;h2;…;hl are used
to project vectors into buckets. Near vectors are more likely to be
projected into the same buckets by these functions. Finding approx-
imate nearest neighbors could then be simplified to be finding vectors
projected into the same buckets with the query one. In this scheme,
construction of hash functions H is the most important part. For
binary vectors, picking out a few bits from the original vectors is often
used as the projectionmethod. In Cappelli et al. [9], hash functions are
randomly generated. However, spurious or missing minutiae are quite
common especially in low quality or small fingerprints. For minutiae
that are near low quality area, or around fingerprint edge, some bits in
MCC features may be invalid or very noisy. Hash functions that are
robust to noise and occlusion are thus desired.

4.1. Construction of hash functions

We use a group of hash functions that cover area of different
size on neighborhood of minutia instead of randomly selection.
Fig. 7 gives a few examples of such hash functions. Disks of
cylinder are equally divided into 4 small regions. Hash function



Direction (Degree)
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Accumulated orientation histogram

Fig. 5. Feature extraction procedure. (a) A block on input fingerprint. (b) Ridge orientations. Length of line segments are proportional to magnitude of local gradient.
(c) Accumulated orientation histogram.

Fig. 6. Estimated poses by two algorithms for six pairs of fingerprints in NIST SD14. Impressions in each column are two different images of the same fingerprint. Poses
estimated by the proposed algorithm are marked with blue circle and arrow, and poses estimated by Yang et al. [21] are marked with red cross and arrow. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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(a) covers the upper-left region, and selects bits only in this area.
Hash function (b) covers two regions in the right side, so it selects
bits randomly in this area. Let H1=4 be the set of functions that
cover a quarter of the disk, H1=2 and H be the sets of functions that
cover half of the disk and the whole disk, respectively. Each
function randomly selects ND � n bits, where ND means the number
of disks in a MCC.

Intuitively, when using the first hash function shown in Fig. 7,
minutiae projected into the same bucket have similar neighborhood in
the upper-left area. When using the last hash function, minutiae
projected into the same bucket are roughly similar to each other in
global area. Combination of such functions makes our algorithm more
robust in dealing with various noise. See Fig. 8 for an example. Due to
noise, there are one spurious minutia and one shifted minutia in the
lower left part (Fig. 8(d)) in the query fingerprint, making much noise
in the corresponding area in MCC. In this case, hash functions that
select bits only in local area are more robust to noise than those that
randomly select bits in the whole disk.

4.2. Searching

Inverted index table is a popular data structure in information
retrieval which can significantly speed up the indexing process. In
the offline stage, inverted index table is used to store all the
invariant features of all gallery fingerprints. In the online stage,
given a query fingerprint, for each of its invariant features, corre-
sponding buckets in the inverted index tables are found and a vote
is cast for each gallery fingerprint in the buckets. Finally, gallery
fingerprints are ranked according to their received votes.

Our indexing algorithm is also built within this framework. The
major steps of making inverted index table are:

1. Estimate pose of gallery fingerprint images.
2. Extract MCC features from gallery fingerprint image and use

hash functions to generate index terms.
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Fig. 7. Examples of selected bits of hash functions in a MCC code. (a) This hash function
right side. (c) This hash function selects bits randomly in the whole disk.
3. Construct inverted index table for each hash function.

With the proposed global registration strategy, when finding
mated minutiae for query minutia, we only consider those minu-
tiae that are stored under the same index terms as the query one,
and are matchable with the query one. We call two minutiae
matchable, if they are close to each other (less than el in location
and eθ in direction) after transformed into the coordinate system
defined by estimated pose. To efficiently filter unmatchable min-
utiae, location and direction of minutia are stored in inverted
index table together with its ID. Note that, these thresholds (el and
eθ) are set based on the accuracy of pose estimation algorithm.
Besides, index terms with number of 1 bits small than minpc are
discarded when constructing inverted index tables as they are less
able to discriminate minutiae.

The major steps of searching a fingerprint in inverted index
table are described as follows:

1. Estimate pose of query fingerprint images.
2. Extract MCC features, transform them into index terms with

hash functions.
3. For each minutia mi in query fingerprint fq, find mated minutiae

mg;j in every gallery fingerprint fg, and vote for corresponding
gallery fingerprints according to their similarity si;g;j.

4. Score each gallery fingerprint by averaging over the votes from
its minutia.

Sq;g ¼ 1=ng �
Xnq

i ¼ 1

Xng

j ¼ 1

si;g;j; ð1Þ

where nq, ng mean the number of minutiae of query fingerprint fq
and gallery fingerprint fg, respectively.

As we use a group of hash functions, some minutiae may collide
with each other in multiple hash functions. We calculate similarity
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selects only bits in the upper-left area. (b) This hash function selects only bits in the



Fig. 8. Matchedminutiae found by indexing algorithmwith different hash functions. On the top row,matchedminutiae are connectedwith lines.Width of line connectingmatchedminutiae
is proportional to the times they projected into the same bucket. (a) Using a group of hash functions that randomly select bits from the whole disk. (b) Using a group of hash functions that
cover area of different size. (c) and (d) show the local structures of minutiae connected by linewith circle mark in (b), respectively. (e), (g) showMCC of the left minutia, and (f), (h) showMCC
of the right minutia. Note that they are mapped into the same buckets by hash functions which selecting bits only in the right side area ((e), (f)) and the upper area ((g), (h)).
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between two minutiae si;g;j based on the collision times ti;g;j:

si;g;j ¼ tp=hi;g;j; ð2Þ

in which, hmeans the number of hash functions, and p is a parameter
controlling the similarity function shape.
5. Experiment

5.1. Databases

To compare the performance of our algorithm with published
work, several public domain fingerprint databases used in pre-
vious studies are used, including:
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� FVC2000 DB2 Set A [26]: Containing 100 fingers and 8 impres-
sions per finger (800 in total). Each fingerprint is captured by
capacitive sensor “TouchChip” as plain impression.

� FVC2000 DB3 Set A [26]: Containing 100 fingers and 8 impres-
sions per finger (800 in total). Each fingerprint is captured by
optical sensor “DF-90” as plain impression.

� FVC2002 DB1 Set A [27]: containing 100 fingers and 8 impres-
sions per finger (800 in total). Each fingerprint is captured by
optical sensor “TouchView II” as plain impression.

� NIST Special Database 4 [28]: Containing 2000 fingers and 2 (“F”
and “S”) impressions per finger (4000 in total). Each fingerprint
is rolled against a paper card and then scanned into digital form.
The database is evenly distributed over different fingerprint
pattern types (arch, left loop, right loop, tented arch, and
whorl). The size of images is 512�480 pixels.

� NIST Special Database 14 [29]: Containing 27,000 fingers and 2
(“F” and “S”) impressions per finger (54,000 in total). Each
fingerprint is rolled against a paper card and then scanned into
digital form. The size of images is 800�768 pixels.

In addition, a database of 1,000,000 rolled fingerprints from law
enforcement agencies is used as the background database in our
indexing experiments to make the experiments more realistic.
5.2. Performance indicators

5.2.1. Pose estimation
As we hope the estimated poses are consistent in different

impressions of one fingerprint, we provide a method to measure
how consistent they are. Since fingerprint center cannot be accu-
rately marked, evaluating fingerprint pose based on manual
marking is not very meaningful. Hence we estimate the pose
deviation between different impressions of same fingerprint as
follows:

1. Get mated minutia pairs between two fingerprints using a
minutiae matcher,1 as shown in Fig. 9(a).

2. Transform the coordinates of minutiae of each fingerprint into
the coordinate system defined by its estimated fingerprint
center and direction. The fingerprint center is defined as origin,
the Y-axis is determined by the direction, and the X-axis is
determined according to the right-hand rule. The transformed
minutiae of two fingerprints are plotted in Fig. 9(b).

3. Calculate the mean direction deviation and the mean location
deviation between mated minutia pairs. The location and
direction deviation of the example illustrated in Fig. 9(b) is 46
pixels and 6:21, respectively.

5.2.2. Indexing
Error rate and penetration rate are commonly used to measure

the accuracy of fingerprint indexing approaches. The penetration
rate is the proportion of retrieved fingerprints in the whole
database. The error rate is defined as the proportion of query
fingerprints whose mated fingerprints are not included in the
retrieved fingerprints. An error-penetration curve is typically
plotted by the trade-off between error rate and penetration rate as
shown in Fig. 11. Moreover, execution time and memory require-
ment are another two important performance indicators for a
fingerprint indexing algorithm.
1 Cappelli et al. [30] described four matching algorithms to select potentially
mated minutia pairs and then calculate similarity score of two fingerprints. We get
the mated minutia pairs by taking the union of minutia pairs found by the third and
fourth matching algorithms.
5.3. Evaluation of pose estimation

5.3.1. Evaluation setup and parameters
The first 1500 pairs of fingerprints in NIST SD14 are used to train

fingerprint classifiers. For each direction, one positive and one nega-
tive image are cropped from every training fingerprint image.

5.3.2. Results
Fig. 10 shows empirical cumulative distribution function of

location and direction deviation of mated minutiae on the last
2700 pairs of NIST SD14 before and after registration (with core
points, our pose estimation algorithm and algorithm proposed by
Yang et al. [21]). We use VeriFinger SDK 6.2 [31] to extract location
and direction of core points. Among the last 2700 pairs of NIST
SD14, 1915 pairs are able to be aligned with the core points (at
least one core point are detect in both of the mated fingerprints).
The deviations of minutiae on the other fingerprint pairs are
directly evaluated without registration.

It can be seen that core point based registration even increases
the direction deviation compared to without registration. That is
because the direction of core point is usually determined by local
orientation field which, however, changes rapidly around core
point. Affected by the large direction deviation, location deviation
is also very large. It is clear that both location and direction
deviations become smaller after registration with our algorithm.
Especially, location deviation is significantly reduced after regis-
tration. In contrast, when using algorithm proposed by Yang et al.
[21], location deviation is reduced, but direction deviation
becomes larger. The left region (small deviation) of the two plots
in Fig. 10 is more important whenwe use tight pose constraints for
minutiae matching, since the pose constraints should not affect
most genuine matches. This indicates that we can use tighter
constraints for minutiae matching when registered by our algo-
rithm compared with by the algorithm of Yang et al. [21]. Tight
spatial constraints are beneficial for both speed and accuracy of
minutiae based indexing algorithms.

5.4. Evaluation of indexing

5.4.1. Evaluation setup and parameters
Location uncertainty and direction uncertainty are set as el¼80,

eθ ¼ 201. We use h¼32 local hash functions with each selecting 24
ðn¼ 4;ND ¼ 6Þ bits from MCC cylinder in indexing, including

� 8 quarter hash functions H1=4, namely, two independent H1=4

functions for each quarter of the cylinder disk;
� 12 half hash functions H1=2, namely, 3 independent hash func-

tions for each half disk on upper, below, left and right side; and
� 12 hash functions H covering the whole disk.

VeriFinger SDK 6.2 [31] is used to extract minutiae. Parameters for
MCC creation and searching are the same as Cappelli et al. [9].

5.4.2. Results
On NIST SD14, the “F” impressions of the last 2700 pairs of

fingerprints are used as gallery fingerprints, and the “S” impres-
sions are used as query fingerprints. The trade-off curves between
error rate and penetration rate for different indexing algorithms
(Cappelli et al. [9] and proposed one) are shown in Fig. 11(a). We
use MCC SDK (version 1.4) available online [32], and the same
indexing parameters as [9].

For comparison, results of improving Cappelli et al. [9] by
adding different pose constraints are also shown in Fig. 11(a). We
transform minutiae into coordinate system defined by the esti-
mated pose by two algorithms: the proposed algorithm and Yang
et al. [21], and use two pose constraints separately. For loose



Fig. 9. An example showing how to measure pose deviation. (a) The estimated poses and mated minutia pairs (found by a minutiae matcher without using pose constraint)
in two impressions of one fingerprint. (b) Mated minutia pairs transformed into the coordinate system defined by the estimated poses. The average location and direction
deviation between these minutia pairs is about 46 pixels and 6:21, respectively.
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Fig. 10. Empirical cumulative distribution function of location (a) and direction (b) deviations between mated minutiae before and after registration. Three estimation
approaches (core points, Hough transform based fingerprint pose estimation algorithm proposed by Yang et al. [21] and the proposed estimation algorithm with step of 16
pixels) are evaluated on the last 2700 pairs of fingerprints in NIST SD14. The left region (low deviation) is more relevant because tight spatial constraints are beneficial for
both speed and accuracy of minutiae based indexing algorithms.
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constraint we use el ¼ 256; eθ ¼ 451, just the same as that in [9],
and for tight constraint we use el ¼ 80; eθ ¼ 201.

We can see that with poses estimated by Yang et al. [21] and
loose constraint, indexing performance is better than without any
registration. However, when applying tight constraint, the error
rates are higher than our algorithm with loose constraint on high
penetration rate. The reason is that poses estimated by Yang et al.
[21] can remove some false mated minutiae, but since they are not
that consistent, when applying tight constraint, some genuine
mated minutiae are rejected, too. The proposed pose estimation
algorithm outperforms previous ones markedly with both loose
and tight constraints.

We also test the algorithm on NIST SD4 (Fig. 11(b)). The 2000
“F” impressions are used as gallery fingerprints, and the “S”
impressions as query. The advantage of our algorithm is evident
from the figure. The error rate is significantly smaller than Cappelli
et al. [9] in both low and high values of penetration rate.

To test algorithm performance on larger database, we use a
database of 1,000,000 rolled fingerprints as the background
database. The result in Fig. 11(c) confirms the scalability of our
algorithm. Note that size of fingerprint images in the background
database are 640�640 pixels, different from that of images in
NIST SD14. It makes no difference to our algorithm, as minutiae are
all transformed to a united coordinate system when indexing. But
for algorithm by Cappelli et al. [9], the constraints on mated
minutiae may affect indexing performance, as no registration has
been performed. So we augmented fingerprint images in back-
ground database with blank border to make them as big as fin-
gerprint images in NIST SD14 when testing algorithm by Cappelli
et al. [9].

As for plain fingerprints, small foreground area and large out-
of-plane rotation makes it far more challenging to keep estimated
pose consistent among different impressions (as shown in Fig. 12).
Thus, the proposed pose estimation algorithm wasn't used in
experiments on plain fingerprints. While, with the proposed local
hash functions, indexing performances on FVC2000 DB2 (Fig. 11
(d)), FVC2000 DB3 (Fig. 11(e)) and FVC2002 DB1 (Fig. 11(f)) are
better than previous state of the art [9]. In these experiments, the
first impressions are selected as gallery fingerprints, and the
remaining 7 impressions are used as query fingerprints, following
the evaluation protocol in [9].

The proposed indexing algorithm is highly dependent on accuracy
of estimated fingerprint pose. Fig. 13 shows an example where the
estimated poses of query fingerprint and gallery fingerprint are
inconsistent due to poor image quality around the central area. Most
of the mated minutiae are determined as unmatchable after being



Fig. 11. Indexing performance on several fingerprint databases. (a) Last 2700 pairs of NIST SD14. (b) NIST SD4. (c) Last 2700 pairs of NIST SD14 and large background
database (containing 1,000,000 rolled fingerprints). (d) FVC2000 DB2A. (e) FVC2000 DB3A. (f) FVC2002 DB1A. “Global hash” means hash functions covering the whole disk
in MCC. “Local hash” means to use the proposed local hash functions in our paper.

Fig. 12. Challenges for consistent pose estimation in plain fingerprints with small common area. (a) and (b) are from one fingerprint. (c) and (d) are from another fingerprint.
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transformed into the coordinate system defined by estimated poses.
As a result, the matching score of the mated gallery fingerprint is
very low.

Table 2 shows the single threaded execution times and memory
consumptions of proposed algorithm and Cappelli et al. [9]. The
program is tested on a 2.5 GHz Intel Xeon CPU. Implemented with
Matlab, the pose estimation program takes 754 ms to process one
fingerprint image of size 800�768 pixels with step of 16 pixels (in
direction ½�901; �851;…;01;…;851;901�). The indexing program is
implemented with Cþþ without special optimization. For each
fingerprint image, pose estimation algorithm needs to be per-
formed only once. With GPU and proper optimization, the time
required will be further reduced. With the proposed pose esti-
mation algorithm, we use tight constraints in selecting mated
minutiae, which dramatically reduces the number of false mated
minutiae, and thus greatly improves the speed of the indexing
program. Besides, coordinates of minutiae are scaled to be stored
in 1 Byte (i.e. costs 2 Bytes to store X and Y values), which helps to
reduce memory consumptions.
6. Conclusion

In this paper, we proposed a learning-based fingerprint pose
estimation algorithm. The estimated poses are quite consistent
among different impressions of roll fingerprint which makes it pos-
sible to align fingerprints in an efficient way. With estimated pose,
we proposed a minutiae-based indexing algorithm which refine the
matched minutiae with global spatial constraint made by poses. The
experimental results on public domain fingerprint databases show



Rank:1272

Fig. 13. A failure example of the proposed algorithm due to inconsistent poses. The fingerprint in the right side is query fingerprint, the left one is its mated gallery
fingerprint. A tight constraint (80 pixels and 201) is posed on minutiae to justify whether they are matchable. Center point and direction of fingerprint are marked by circle
and arrow, respectively. Matched minutiae are connected by lines. The ranks of gallery fingerprints are annotated on the bottom right corner of the image.

Table 2
Execution time and memory of the proposed algorithm on NIST SD14 without/with
background fingerprints.

Algorithma Adding a template
(ms)

Searching (ms) Memory cost
(Byte)

Cappelli et al. [9]b 34.9/36.8 141/5.49�104 400M/46.1G
Proposed 3.51/8.69 13.9/4.43�103 300M/40.8G

a The database sizes of without/with background fingerprints are 2700 and
1,002,700 respectively.

b According to our experiments using MCC SDK (of version 1.4) available
online [32].
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that the proposed approach performs better than the state-of-the-art
algorithm. Besides, we proposed an improved version of Locality
Sensitive Hashing algorithm for MCC descriptor which is shown to be
useful for improving accuracy further. Experiment in large scale
database containing one million rolled fingerprints from real appli-
cations also confirmed the scalability of our algorithm.

However, the proposed algorithm can be still improved by: (1)
speeding up the pose estimation algorithm with GPU; (2)
extending the pose estimation algorithm for plain fingerprints
especially those with small foreground area and large out-of-plane
rotations; (3) developing a quality evaluation algorithm that can
determine uncertainty of estimated pose, which can be used to
adaptively adjust tolerance of location and direction deviation
between minutia pairs in fingerprint indexing.
Conflict of interest

No conflict of interest.
Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grants 61225008, 61572271, 61527808,
61373074 and 61373090, the National Basic Research Program of
China under Grant 2014CB349304, the Ministry of Education of
China under Grant 20120002110033, and the Tsinghua University
Initiative Scientific Research Program.
References

[1] D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of Fingerprint Recog-
nition, Springer, London, UK, 2009.

[2] D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J. Benitez, Fast fingerprint
identification for large databases, Pattern Recognit. 47 (2) (2014) 588–602.

[3] M. Liu, X. Jiang, A.C. Kot, Efficient fingerprint search based on database clus-
tering, Pattern Recognit. 40 (6) (2007) 1793–1803.

[4] X. Jiang, M. Liu, A.C. Kot, Fingerprint retrieval for identification, IEEE Trans. Inf.
Forensics Secur. 1 (4) (2007) 532–542.

[5] Y. Wang, J. Hu, D. Phillips, A fingerprint orientation model based on 2D fourier
expansion (FOMFE) and its application to singular-point detection and fin-
gerprint indexing, IEEE Trans. Pattern Anal. Mach. Intell. 29 (4) (2007)
573–585.

[6] M. Liu, P.T. Yap, Invariant representation of orientation fields for fingerprint
indexing, Pattern Recognit. 45 (7) (2012) 2532–2542.

[7] R. Cappelli, M. Ferrara, A fingerprint retrieval system based on level-1 and
level-2 features, Expert Syst. Appl. 39 (12) (2012) 10465–10478.

[8] A.A. Paulino, E. Liu, K. Cao, A.K. Jain, Latent fingerprint indexing: fusion of level
1 and level 2 features, in: IEEE International Conference on Biometrics: Theory,
Applications and Systems (BTAS), IEEE, Arlington, VA, USA, 2013, pp. 1–8.

[9] R. Cappelli, M. Ferrara, D. Maltoni, Fingerprint indexing based on minutia
cylinder-code, IEEE Trans. Pattern Anal. Mach. Intell. 33 (5) (2011) 1051–1057.

[10] R.S. Germain, A. Califano, S. Colville, Fingerprint matching using transforma-
tion parameter clustering, IEEE Comput. Sci. Eng. Mag. 4 (4) (1997) 42–49.

[11] B. Bhanu, X. Tan, Fingerprint indexing based on novel features of minutiae
triplets, IEEE Trans. Pattern Anal. Mach. Intell. 25 (5) (2003) 616–622.

[12] X. Liang, A. Bishnu, T. Asano, A robust fingerprint indexing scheme using
minutia neighborhood structure and low-order Delaunay triangles, IEEE Trans.
Inf. Forensics Secur. 2 (4) (2007) 721–733.

[13] O. Iloanusi, A. Gyaourova, A. Ross, Indexing fingerprints using minutiae
quadruplets, in: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshop on Biometrics, IEEE, Colorado Springs, CO, US,
2011, pp. 127–133.

[14] O.N. Iloanusi, Fusion of finger types for fingerprint indexing using minutiae
quadruplets, Pattern Recognit. Lett. 38 (2014) 8–14.

[15] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval,
vol. 1, Cambridge University Press, Cambridge, UK, 2008.

[16] J.H. Wegstein, An Automated Fingerprint Identification System, US Depart-
ment of Commerce, National Bureau of Standards, 1982.

[17] S. Yoon, J. Feng, A.K. Jain, On latent fingerprint enhancement, in: SPIE Defense,
Security, and Sensing, International Society for Optics and Photonics, 7767
(2010) 395–407.

[18] M. Liu, X. Jiang, A.C. Kot, Fingerprint reference-point detection, EURASIP J. Adv.
Signal Process. 2005 (4) (2005) 498–509.

[19] K. Rerkrai, V. Areekul, A new reference point for fingerprint recognition, in:
International Conference on Image Processing, vol. 2, IEEE, Vancouver, BC, CA,
2000, pp. 499–502.

[20] T.H. Le, H.T. Van, Fingerprint reference point detection for image retrieval
based on symmetry and variation, Pattern Recognit. 45 (9) (2012) 3360–3372.

[21] X. Yang, J. Feng, J. Zhou, Localized dictionaries based orientation field esti-
mation for latent fingerprints, IEEE Trans. Pattern Anal. Mach. Intell. 36 (5)
(2014) 955–969.

[22] D.G. Lowe, Object recognition from local scale-invariant features, in: IEEE
International Conference on Computer Vision, vol. 2, IEEE, Kerkyra, Greece,
1999, pp. 1150–1157.

[23] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, IEEE, San Diego, CA, US, 2005, pp. 886–893.

http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref1
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref1
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref2
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref2
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref2
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref3
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref3
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref3
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref4
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref4
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref4
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref5
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref5
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref5
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref5
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref5
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref6
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref6
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref6
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref7
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref7
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref7
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref9
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref9
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref9
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref10
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref10
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref10
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref11
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref11
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref11
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref12
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref12
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref12
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref12
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref14
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref14
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref14
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref15
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref15
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref16
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref16
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref18
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref18
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref18
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref20
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref20
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref20
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref21
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref21
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref21
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref21


Y. Su et al. / Pattern Recognition 54 (2016) 1–13 13
[24] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing
the curse of dimensionality, in: Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, ACM, New York, NY, USA, 1998,
pp. 604–613.

[25] A. Gionis, P. Indyk, R. Motwani, et al., Similarity search in high dimensions via
hashing, in: VLDB, vol. 99, 1999, pp. 518–529.

[26] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, A.K. Jain, FVC2000: fingerprint
verification competition, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002)
402–412.

[27] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, A.K. Jain, FVC2002: second
fingerprint verification competition, Int. Conf. Pattern Recognit. 3 (2002)
811–814.
[28] C. Watson, C. Wilson, NIST Special Database 4, Fingerprint Database, vol. 17,
National Institute of Standards and Technology. 〈http://www.nist.gov/srd/
nistsd4.cfm〉.

[29] C. Watson, NIST Special Database 14, Fingerprint Database, National Institute
of Standards and Technology. 〈http://www.nist.gov/srd/nistsd14.cfm〉.

[30] R. Cappelli, M. Ferrara, D. Maltoni, Minutia cylinder-code: a new representa-
tion and matching technique for fingerprint recognition, IEEE Trans. Pattern
Anal. Mach. Intell. 32 (12) (2010) 2128–2141.

[31] Neurotechnology Incorporated, VeriFinger SDK (2015). URL 〈http://www.neu
rotechnology.com/verifinger.html〉.

[32] R. Cappelli, M. Ferrara, D. Maltoni, Minutia cylinder-code SDK (2014), URL
〈http://biolab.csr.unibo.it/〉.
Yijing Su received the B.S. degree from Beijing University of Posts & Telecommunications, Beijing, China, in 2010. Since 2010, she has been working toward the Ph.D. degree
in the Department of Automation, Tsinghua University. Her research interests include fingerprint indexing, pattern recognition and computer vision.
Jianjiang Feng is an associate professor in the Department of Automation at Tsinghua University, Beijing. He received the B.S. and Ph.D. degrees from the School of
Telecommunication Engineering, Beijing University of Posts and Telecommunications, China, in 2000 and 2007, respectively. From 2008 to 2009, he was a post doctoral
researcher in the PRIP lab at Michigan State University. He is an associate editor of Image and Vision Computing. His research interests include fingerprint recognition and
computer vision.
Jie Zhou was born in November 1968. He received B.S. degree and M.S. degree both from Department of Mathematics, Nankai University, Tianjin, China, in 1990 and 1992,
respectively. He received Ph.D. degree from Institute of Pattern Recognition and Artificial Intelligence, Huazhong University of Science and Technology (HUST), Wuhan, China,
in 1995. From then to 1997, he served as a postdoctoral fellow in Department of Automation, Tsinghua University, Beijing, China. From 2003, he has been a full professor in
Department of Automation, Tsinghua University. His research area includes computer vision, pattern recognition and image processing. In recent years, he has authored
more than 100 papers in peer-reviewed journals and conferences. Among them, more than 30 papers have been published in top journals and conferences such as PAMI, T-IP
and CVPR. He is an associate editor for International Journal of Robotics and Automation, Acta Automatica and two other journals. Zhou is a recipient of the National
Outstanding Youth Foundation of China.

http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref26
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref26
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref26
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref26
http://www.nist.gov/srd/nistsd4.cfm
http://www.nist.gov/srd/nistsd4.cfm
http://www.nist.gov/srd/nistsd14.cfm
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref30
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref30
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref30
http://refhub.elsevier.com/S0031-3203(16)00008-X/sbref30
http://www.neurotechnology.com/verifinger.html
http://www.neurotechnology.com/verifinger.html
http://biolab.csr.unibo.it/

	Fingerprint indexing with pose constraint
	Introduction
	Related work
	Fingerprint indexing
	Absolute fingerprint registration

	Pose estimation
	Fingerprint pose definition
	Training examples
	Feature extraction
	Classification

	Indexing
	Construction of hash functions
	Searching

	Experiment
	Databases
	Performance indicators
	Pose estimation
	Indexing

	Evaluation of pose estimation
	Evaluation setup and parameters
	Results

	Evaluation of indexing
	Evaluation setup and parameters
	Results


	Conclusion
	Conflict of interest
	Acknowledgments
	References




