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Localized Multifeature Metric Learning for
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Abstract— This paper presents a new approach to image-set-
based face recognition, where each training and testing example
is a set of face images captured from varying poses, illuminations,
expressions, and resolutions. While a number of image set based
face recognition methods have been proposed in recent years,
most of them model each face image set as a single linear
subspace or as the union of linear subspaces, which may lose some
discriminative information for face image set representation.
To address this shortcoming, we propose exploiting statistics
information as feature representations for face image sets and
develop a localized multikernel metric learning algorithm to
effectively combine different statistics for recognition. Moreover,
we propose a localized multikernel multimetric learning method
to jointly learn multiple feature-specific distance metrics in the
kernel spaces, one for each statistic feature, to better exploit
complementary information for recognition. Our methods achieve
state-of-the-art performance on four widely used video face
datasets including the Honda, MoBo, YouTube Celebrities, and
YouTube Face datasets.

Index Terms— Face recognition, image set classification, metric
learning, multikernel learning, multimetric learning.

I. INTRODUCTION

THERE has been a high level of interest in image set
classification methods in recent years [1], [3], [4], [6],

[10], [16], [19], [20], [24], [26], [29], [35], [37], [41], [49],
[56], [59], [61], [63], which have a wide variety of appli-
cations in visual surveillance and multiview image analysis.
One representative application is video-based face recognition,
where each gallery and probe face video is considered as an
image set and the characteristics of the set are used for person
identification. Unlike conventional image classification, each
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Fig. 1. Basic idea of our proposed approach. For each face image set,
we first compute multiple statistics as feature representation. For each statistic,
we construct a kernel matrix to measure the pairwise similarity of two face
image sets. Then, we combine these P statistics using a localized multifeature
metric learning approach, where two kernel-based metric learning algorithms
called LMKML and LMKMML were proposed, respectively. Finally, a nearest
neighbor classifier is used for image-set-based face identification or face
verification.

training and testing example contains a set of image instances.
Compared with a single image, an image set provides more
information to describe objects of interest. However, it is also
challenging to exploit discriminative information of image sets
as intra-class variations are usually larger within an image set.

There has been substantial work on image-set-based face
recognition over the past two decades [1], [3], [10], [19], [25],
[28], [37], [41], [49], [50], [57]. However, most of these meth-
ods are based on prior assumptions, such as Gaussian models,
Gaussian mixture models, and subspace or manifold models,
to represent image sets. In many practical applications,
these assumptions do not hold, especially in the presence of
large and complex data variations within the face image set.
Moreover, the models learned based on these assumptions may
also lose some discriminative information for recognition.

In this paper, we propose a new approach to image-set-
based face recognition. Fig. 1 shows the basic idea. Given
a face image set, we compute multiple statistics as feature
representations for the image set. Compared with other
methods in [3], [19], and [50], our features robustly capture
the distribution of image instances within a set because no
parameter estimation is required. Moreover, our features are
less sensitive to noise. To better use the information extracted
from those statistics, we develop a localized multikernel metric
learning (LMKML) algorithm to learn a distance metric,
under which different statistic features are combined and
more discriminative information is exploited for recognition.
We further propose a localized multikernel multimetric learn-
ing (LMKMML) method to learn multiple feature-specific
distance metrics in the kernel spaces, one distance metric

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



530 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 3, MARCH 2016

for each feature, to better exploit complementary information
for recognition. Experimental results on four widely used
video face datasets show the effectiveness of our proposed
approach.

This paper is an extended version of [34]. New contributions
include the newly proposed LMKMML method, application
to face verification, analysis of the proposed approach, and
extensive comparisons with state-of-the-art methods in terms
of both accuracy and robustness.

II. BACKGROUND

In this section, we briefly review three related topics:
1) image set based face recognition; 2) multiple kernel
learning; and 3) metric learning.

A. Image Set Based Face Recognition

Recent algorithms for image set classification can be
mainly classified into parametric [1], [15], [28], [41] and
nonparametric [3], [9], [16], [19], [20], [25], [48], [50]
methods. Parametric methods model image sets using a
parametric family of probabilistic distribution, and the
Kullback–Leibler divergence between two distributions is used
to measure the similarity of two image sets. Representative
distributions include a single Gaussian model and a mixture
of Gaussian models. However, parametric methods usually
fail when the underlying distributional assumptions do not
hold. To overcome these limitations, nonparametric methods
have been recently proposed [3], [16], [19], [20]. They
exploit geometrical information to measure the similarity
of two image sets. While encouraging performance has
been obtained [3], [16], [19], [20], most of these methods
model each image set as a single linear subspace or as the
union of linear subspaces, which may result in the loss of
some discriminative information for classification. While
Wang et al. [49] explored the use of second-order statistics
of image set representation, other statistics were ignored.

B. Multiple Kernel Learning

There has been extensive research on multiple kernel
learning [2], [8], [12], [14], [21], [27], [32], [40], [47],
[51], [60], [62]. The key objective is to seek an optimal
combination of kernels to learn models for applications such
as classification [2], [12], [40], [51], clustering [60], transfer
learning [8], and dimensionality reduction [32]. However,
little progress has been made in metric learning with multiple
kernels. Recently, Wang et al. [47] proposed a multikernel
metric learning method by learning a universal weight vector
over the whole space. However, the characteristics of local
regions in the kernel space were ignored. Moreover, most
existing multiple kernel learning algorithms aim to learn a
single combined kernel, which is not powerful enough to
exploit the specific information of each feature. Hence, it
is desirable to learn multiple distance metrics in the kernel
spaces, one metric for each single feature, to jointly extract
complementary information and exploit the interactions of
different feature representations.

C. Metric Learning

In recent years, a number of metric learning algorithms
have been proposed in machine learning and computer
vision [7], [11], [53]. Representative methods includ
neighborhood component analysis [11], large-margin
nearest neighbor (LMNN) [53], and information theoretic
metric learning [7]. While these methods have achieved
encouraging performance in applications such as face
recognition [14], human activity recognition [44], person
reidentification [43], [62], image retrieval [58], and visual
tracking [45], [52], most of them only learn a distance
metric with a single feature representation and cannot handle
multiple features directly.

Lu et al. [33] proposed a multiview neighborhood repulsed
metric learning method, which learns a latent distance metric
space to combine multiple features for kinship verification.
However, the weights of different features are assumed to be
the same for all samples, which cannot effectively exploit the
data-adaptive characteristics of the samples in classification
because different features usually show different discrimina-
tive powers in different classes. Hence, it is desirable to exploit
such information to learn one or multiple more discriminative
distance metrics.

III. PROPOSED APPROACH

Fig. 1 shows our proposed approach. The details are
presented in Sections III-A–III-D.

A. Face Image Set Representation

Let X = [x1, x2, . . . , xn] be a face image set containing
n images of a subject, where xi ∈ R

d denotes the i th face
image sample, 1 ≤ i ≤ n, d is the feature dimension of
each face image, which is usually set in the range [300, 1000].
Image pixel values are used as raw features. We compute the
following statistics as features to represent the set.

1) First-Order Statistic: The sample mean vector m of the
image set is

m = 1

n

n∑

i=1

xi ∈ R
d . (1)

2) Second-Order Statistic: The sample d × d covariance
matrix C of the image set is

C = 1

n(n − 1)

n∑

i=1

n∑

j=1

(xi − m)(x j − m)T. (2)

3) Combined Statistic: The Kronecker product of the
covariance matrix C and the mean m of the image set
is considered as a combined statistic feature

T = C ⊗ m (3)

which is a d × d × d tensor.

The mean vector m roughly reflects the position of the
subject in the high-dimensional face space, and the covariance
matrix C represents the self-variation of single feature and
the correlations of different features. The combined statistic
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Fig. 2. Illustration of the importance of different order statistics in image set
classification. In this figure, the circles and triangles demote two different
image sets. (a) First-order statistics are the same and the second-order
statistics are different. (b) First-order statistics are different and the second-
order statistics are the same. Hence, we see that different order statistics
contribute different discriminative and complementary information for image
set classification.

is a function of C and m and is obtained through a kernel
function.1

Compared with previous image set representation methods,
our proposed face image set representation method presents
the following key advantages.

1) No distributional or geometric assumption on the data
is required.

2) The statistics can be computed from a face image set
containing any number of samples.

3) Different statistics characterize the image set from
different perspectives. Fig. 2 shows a toy example to
illustrate that different order statistics contain different
types of discriminative information for image set
classification.

B. Localized Multikernel Metric Learning

Having extracted a number P of statistic features, we
perform recognition using the nearest neighbor classifier,
which involves calculating the similarity between two image
sets. We use a multikernel approach and compare statistic
features in the kernel space [32], [60]. This is equivalent to
mapping the original statistic features to a new space and
calculating the dot product in the new space. We denote
the new vector for the pth statistic feature by φ p , and the
mapping function by R

dp → F , where R
dp is the original

feature space and F is the new space. Though φ p is usually
implicit, we first consider it as an explicit feature vector
for simplicity. Later, we will show any manipulation based
on φ p can be represented based on kernel values using the
kernel trick.

Similar to [2] and [12], we assume that different statistic
features can be mapped to a common high-dimensional feature
space. We aim to learn a distance metric to force face image
sets from the same category to be close and those from
different categories to be far apart in the learned metric space.
Unlike existing multikernel learning methods [2], [12] that

1While more combined statistics could be computed from the first-order
and second-order statistics, we only compute one in this paper because it is
very expensive to compute such features.

assume the weights of different types of features (which
are the different statistic features here) are the same for all
classes, we argue that weights should be data adaptive. For
example, if an image set’s mean vector is discriminative, then
we should assign a higher weight to it, compared with other
features.

We formulate our LMKML problem based on this concept.
Write S = [S1, S2, . . . , SN ] as the training set of N image
sets, where Si = [si1, si2, . . . , sini ] denotes the i th image
set, 1 ≤ i ≤ N , and ni is the number of samples in this
image set. For each image set Si , we compute its first-order,
second-order, and combined statistics mi , Ci , and Ti ,
respectively. Let X p = [x p

1 , x p
2 , . . . , x p

N ] be the pth statistic
feature set of all training samples and x p

i ∈ R
dp the

pth statistic feature extracted from the i th image set Si ,
where 1 ≤ p ≤ P . In this paper, P = 3 as we use three
different order statistics features for image set representation.
φ

p
i is the corresponding high-dimensional feature of x p

i , which
for notational convenience we assume to be finite dimensional.
M is a matrix to be learned in the high-dimensional space F .
The similarity between two image sets Si and Sj under M and
{ηp}P

p=1 is defined as

d(Si , Sj ) =
P∑

p=1

ηp
(
φ

p
i

)(
φ

p
i − φ

p
j

)T
M

(
φ

p
i − φ

p
j

)
ηp

(
φ

p
j

)

(4)

where ηp(φ
p
i ) is a gating function that assigns a positive

weight to φ
p
i , as detailed later. Because of ηp(φ

p
i ), our

learning method is localized. Clearly, previous global kernel
weighting algorithms [2], [12] can be considered as a special
case, where ηp(φ

p
i ) is independent of φ

p
i .

To learn the matrix M , we seek to simultaneously maximize
inter-class variations and minimize intra-class variations. The
learning criterion is

max
M,{ηp}1≤p≤P

J = 1

NS−

N∑

i, j=1
(Si ,S j )∈S−

d(Si , Sj )

− 1

NS+

N∑

i, j=1
(Si ,S j )∈S+

d(Si , Sj ) (5)

where S− and S+ denote the inter-class and intra-class sample
pairs in the training set, respectively, and NS− and NS+ denote
the number of pairs in these two sets, respectively.

Denote dF the dimensionality of the feature space. The
dF × dF matrix M is symmetric and positive semidefinite.
We seek a matrix W = [w1, w2, . . . , wd ] of size dF × d ,
where dF ≥ d and d is the number of weight vectors in W ,
such that

M = W W T. (6)

Combining (4)–(6), we express J as

J = tr[W T (A1 − A2)W ] (7)
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where

A1 = 1

NS−

N∑

i, j=1
(Si ,S j )∈S−

P∑

p=1

ηp
(
φ

p
i

)(
φ

p
i − φ

p
j

)

×(
φ

p
i − φ

p
j

)T
ηp

(
φ

p
j

)
(8)

A2 = 1

NS+

N∑

i, j=1
(Si ,S j )∈S+

P∑

p=1

ηp
(
φ

p
i

)(
φ

p
i − φ

p
j

)

×(
φ

p
i − φ

p
j

)T
ηp

(
φ

p
j

)
(9)

are dF × dF matrices.
In general, it is difficult or even impossible to compute

A1 and A2 directly in the feature space F because the explicit
form of φ

p
i is usually unknown. Hence, we use the kernel trick

by expressing the weight vector wk as a linear combination of
all the training samples in the mapped space

wk =
N∑

i=1

uk
i φ

p
i . (10)

Hence

P∑

p=1

wT
k φ

p
j =

N∑

i, j=1

P∑

p=1

uk
i

(
φ

p
i

)T
φ

p
j =

P∑

p=1

(uk)T K p
.i (11)

where uk is a N-vector with i th entry denoted by uk
i , and K p

.i
is the i th column of the pth kernel matrix K p . This is an
N × N kernel matrix, calculated from the pth statistic feature
between each pair of image sets.

Then, (5) can be expressed as

max
U,{ηp}1≤p≤P

J = tr[U T (B1 − B2)U ] (12)

where U = [u1, . . . , ud ] is a N × d matrix (N < d) and

B1 = 1

NS−

N∑

i, j=1
(Si ,S j )∈S−

P∑

p=1

ηp
(
φ

p
i

)(
K p

.i − K p
. j

)

×(
K p

.i − K p
. j

)T
ηp

(
φ

p
j

)
(13)

B2 = 1

NS+

N∑

i, j=1
(Si ,S j )∈S+

P∑

p=1

ηp
(
φ

p
i

)(
K p

.i − K p
. j

)

×(
K p

.i − K p
. j

)T
ηp

(
φ

p
j

)
(14)

are symmetric N × N matrices.
Now we discuss how to choose the gating functions ηp(·).

As in [12], we choose

ηp
(
φ

p
i

) = exp
(
hT

p φ
p
i + bp

)

∑P
p=1 exp

(
hT

p φ
p
i + bp

) (15)

which is parameterized by a vector h p and a scale factor bp.
This gating function is monotonically increasing, nonnegative,
and is easy to differentiate with respect to h p and bp.

Since φ
p
i is implicit, we express hT

p φ
p
i , similarly to (11),

as

hT
p φ

p
i =

N∑

i=1

aT
p

(
φ

p
i

)T
φ

p
i =

N∑

i=1

aT
p K p

.i (16)

where ap ∈ R
N×1 and bp ∈ R

1 are the parameters to be
learned. Then, the gating function can be written as

ηp
(
φ

p
i

) = exp
(
aT

p K p
.i + bp

)

P∑
p=1

exp
(
aT

p K p
.i + bp

) . (17)

To the best of authors’ knowledge, there is no closed-form
solution to the optimization problem in (12) because we aim
to learn U but have to infer ap and bp simultaneously. Hence,
we use an alternating optimization algorithm. The approach
is to fix ap and bp , update U , update ap and bp, and so on
iteratively.

We first initialize ap and bp with small random numbers,
1 ≤ p ≤ P , and obtain U by solving the optimization problem
in (12). The columns of U are constrained to be orthogonal.
Then, U can be obtained by solving the following eigenvalue
problem:

(B1 − B2)u = λu. (18)

Write U = [u1, u2, . . . , ug] such that the columns in U are
eigenvectors of (18) corresponding to the g largest eigenvalues
ordered according to λ1 ≥ λ2 ≥ · · · ≥ λg . Then, U is the
transformation matrix to be learned.

Having obtained U , we use the gradient descent method to
update {ap} and {bp} as

at+1
p = at

p − α
∂ J

∂ap
(19)

bt+1
p = bt

p − α
∂ J

∂bp
and 1 ≤ p ≤ P (20)

where α is the learning rate, which is set to 10−6 in our
experiments.

Having updated {ap} and {bp}, 1 ≤ p ≤ P , we
recompute the weight ηp(φ

p
i ) in (17), and then B1 and B2

in (13) and (14), respectively. Then, we update U by resolving
the eigenvalue equation in (18). We repeat this procedure
until convergence. The proposed LMKML algorithm is
summarized in Algorithm 1.

C. Localized Multikernel Multimetric Learning

While LMKML combines multiple features using the
learned distance metric, it only learns a single distance metric,
which may not be powerful enough to exploit the specific
information of each individual feature. This motivates us to
learn feature-specific metrics. Moreover, different features of
the same sample share the same identity information, and it is
also necessary to exploit some common characteristic among
different features. Hence, we propose a LMKMML to jointly
learn feature-specific distances and sharable metrics so that
complementary information can be better extracted.
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Algorithm 1 LMKML

Input: Training set: P N × N kernels K p, 1 ≤ p ≤ P ,
computed from N image sets, feature dimension g,
tolerance parameter ε.

Output: Transformation matrix U and parameters
{ap} and {bp}, 1 ≤ p ≤ P .

Step 1 (Initialization):
Initialize {a0

p} and {b0
p}, 1 ≤ p ≤ P, with small

random numbers.
Step 2 (Local optimization):

For t = 1, 2, · · · , T, repeat
2.1. Compute B1 and B2 using (13) and (14).
2.2. Solve the eigenvalue problem in (18), obtain

Ut = [u1, u2, · · · , ug].
2.3. For each p (1 ≤ p ≤ P), update ap and bp using

(19) and (20).
2.4. If t > 2, |at+1

p − at
p | < ε and |bt+1

p − bt
p | < ε

or |Ut+1 − Ut | < ε, go to Step 3.
Step 3 (Output transformation matrix and parameters):

Output the matrix U and parameters {ap} and {bp},
1 ≤ p ≤ P.

Let Mp be the distance metric to be learned for the
pth feature, 1 ≤ p ≤ P , and M0 be the shared distance metric
to be learned. We define the similarity between two image sets
Si and Sj under {Mp}P

p=1, M0, and {ηp}P
p=1 as

d ′(Si , Sj ) =
P∑

p=1

ηp
(
φ

p
i

)(
φ

p
i − φ

p
j

)T
(Mp + M0)

× (
φ

p
i − φ

p
j

)
ηp

(
φ

p
j

)
(21)

where ηp(φ
p
i ) is a gating function that assigns a positive

weight to φ
p
i , as in LMKML.

Similarly, we formulate LMKMML as the following
optimization problem:

max
M0,{Mp}1≤p≤P ,{ηp}1≤p≤P

H = H1 − λH2 (22)

where

H1 =
N∑

i, j=1
(Si ,S j )∈S−

d ′(Si , Sj )

NS−
−

N∑

i, j=1
(Si,S j )∈S+

d ′(Si , Sj )

NS+
(23)

H2 = ‖M0 − M‖2
F + δ

P∑

p=1

‖Mp‖2
F . (24)

Here λ and δ are two parameters that balance the contributions
of different terms in the objective function and M is the
distance metric learned by LMKML.

In (22), H1 aims to make the learned distance metrics
discriminative, and H2 models the interaction between the
individual distance metric and the shared metric. Specifically,
if δ is large, our LMKMML reduces to learning P individual
distance metrics. Otherwise, it degrades to LMKML if δ is
small. Therefore, LMKMML can be considered as a special
case of LMKMML if δ is set to zero, which enforces the
individual distance metric to be as close as to the shared
metric.

Fig. 3. From top to bottom: exemplar face images cropped from the Honda,
MoBo, YTC, and YTF datasets, respectively, where images in the same
row are face samples from the same person that were captured in different
environments.

Since M and Mp are symmetric and positive semidefinite,
we decompose (M0 + Mp) into L p LT

p , where L p ∈ R
dF×d ,

and rewrite H1 as

H1 =
P∑

p=1

tr
[
LT

p

(
C p

1 − C p
2

)
L p

]

=
P∑

p=1

tr
(
LT

p RL p
)

(25)

where

C p
1 = 1

NS−

N∑

i, j=1

(Si ,S j )∈S−

ηp
(
φ

p
i

)(
φ

p
i − φ

p
j

)

× (
φ

p
i − φ

p
j

)T
ηp

(
φ

p
j

)
(26)

C p
2 = 1

NS+

N∑

i, j=1

(Si ,S j )∈S+

ηp
(
φ

p
i

)(
φ

p
i − φ

p
j

)

× (
φ

p
i − φ

p
j

)T
ηp

(
φ

p
j

)
(27)

R �
(
C p

1 − C p
2

)
(28)

are dF × dF matrices.
It is also difficult or even impossible to compute C p

1 and C p
2

directly in the feature space F because the explicit form of
φ

p
i is usually unknown. Hence, we use the kernel trick and

express H1 as

H1 =
P∑

p=1

tr
[
U T

p

(
D p

1 − D p
2

)
Up

]
(29)

where Up = [u1
p, . . . , ug

p] is an N × d matrix (N < g), and

D p
1 = 1

NS−

N∑

i, j=1

(Si ,S j )∈S−

ηp
(
φ

p
i

)(
K p

.i − K p
. j

)

× (
K p

.i − K p
. j

)T
ηp

(
φ

p
j

)
(30)
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Algorithm 2 LMKMML

Input: Training set: P N × N kernels K p, 1 ≤ p ≤ P ,
computed from N image sets, feature dimension g,
tolerance parameter ε.

Output: Transformation matrix U0, Up , and parameters
{ap} and {bp}, 1 ≤ p ≤ P .

Step 1 (Initialization):
1.1. Initialize {a0

p} and {b0
p}, 1 ≤ p ≤ P, with small

random numbers.
1.2. Initialize U0 = U , where U is learned by

LMKML.
1.3. Initialize Up with random matrices, 1 ≤ p ≤ P,

where each element is a small number.
Step 2 (Local optimization):

For t = 1, 2, · · · , T , repeat
2.1. Fix Up and U0, update ap and bp .
2.2. Fix ap , bp and U0, update Up .
2.3. Fix ap , bp and Up , update U0.
2.4. If t > 2, |at+1

p − at
p | < ε and |bt+1

p − bt
p | < ε

or |Ut+1
p − Ut

p | < ε, go to Step 3.
Step 3 (Output transformation matrix and parameters):

Output U0, Up , {ap} and {bp}, 1 ≤ p ≤ P.

D p
2 = 1

NS+

N∑

i, j=1

(Si ,S j )∈S+

ηp
(
φ

p
i

)(
K p

.i − K p
. j

)

× (
K p

.i − K p
. j

)T
ηp

(
φ

p
j

)
(31)

are N × N matrices.
In general, H2 is hard to simplify because the explicit form

of Mp and M0 is unknown. To address this, we employ an
alternative method by enforcing the constraints on Up and U0
so that H2 can be rewritten as

H2 = ‖U0 − U‖2
F + δ

P∑

p=1

‖Up‖2
F (32)

where U is the projection matrix of LMKML.
Now, (22) can be rewritten as

max
U0,{Up}1≤p≤P ,{ηp}1≤p≤P

H =
P∑

p=1

tr
[
U T

p

(
D p

1 − D p
2

)
Up

]

−λ

⎛

⎝‖U0− U‖2
F + δ

P∑

p=1

‖Up‖2
F

⎞

⎠.

(33)

There appears to be no closed-form solution to the
optimization problem in (33). Hence, we use an alternating
minimization algorithm, which is similar to that used
in LMKML. The approach is to fix ap, bp, and U0 to
update Up , then update ap and bp by fixing U0 and Up , and
finally update U0 by fixing ap, bp, and Up . Gradient descent
is used to update the parameters {ap, bp}, Up , and U0, where
1 ≤ p ≤ P . The proposed LMKMML algorithm is summa-
rized in Algorithm 2.

TABLE I

VALUE OF N FOR FACE DATASETS IN OUR EXPERIMENTS

TABLE II

RANK-ONE RECOGNITION RATES (%) OF DIFFERENT IMAGE-SET-BASED

FACE RECOGNITION METHODS ON THE HONDA, MOBO,

AND YTC DATASETS

1) Comparison With Multitask Large-Margin Metric
Learning (MT-LMNN) [39]: The MT-LMNN method also
learns multiple metrics for classification, and has been
proposed for real-world insurance data classification and
speech recognition [39]. However, there are two differences
between our LMKMML and MT-LMNN.

1) The weights of different metrics are learned in a local-
ized manner in our LMKMML, and MT-LMNN learns
them in a global way.

2) Our LMKMML is a kernel-based metric learning
method, while MT-LMNN is a linear method.

D. Recognition

For image-set-based face identification, given a test image
set XT , we first compute its P statistics for feature represen-
tation, denoted by x p

T , 1 ≤ p ≤ P . Then, we calculate the
similarity between XT and each training image set Xi by (4)
for LMKML and (21) for LMKMML. Finally, we classify the
test image set XT into the class c that achieves

c = arg min
i

d(ST , Si ). (34)

Unlike face identification, the goal of face verification is to
determine whether a given pair of face image sets comes from
the same person or not. For face verification, the receiver oper-
ating characteristic (ROC) curve, which describes the tradeoff
between false acceptance rate and true acceptance rate, is used
for evaluation. The positive and negative pairs in the training
set are used to compute A1 and A2 in (8) and (9), respectively,
to learn the discriminative distance metric. Having obtained
the distance metric M , we first compute the distance between
two face image sets using (21) and normalize these distances
in the range [0, 1]. Finally, the ROC curve is computed.
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Fig. 4. Cumulative match characteristic (CMC) curves (%) of different image-set-based face recognition methods on (a) Honda, (b) MoBo, and
(c) YTC datasets, respectively, where average classification accuracy (ACA) denotes the ACA.

TABLE III

COMPARISONS OF THE MEAN VERIFICATION RATE AND STANDARD

ERROR (%) WITH THE STATE-OF-THE-ART RESULTS ON THE

YTF DATASET UNDER THE IMAGE RESTRICTED SETTING

IV. EXPERIMENTS

We evaluated our proposed approach on four publicly
available video face databases including the Honda [28],
MoBo [13], YouTube Celebrities (YTC) [23], and YouTube
Face (YTF) [54] datasets. The Honda, MoBo, and
YTC datasets are used to evaluate our face identification
method, and the YTF dataset is selected to evaluate our face
verification method.

A. Datasets

There are 59 videos of 20 subjects in the Honda dataset.
For each subject, 1–3 videos were collected, each containing
around 400 frames with pose and expression variations.

There are 96 videos of 24 subjects in the Carnegie Mel-
lon University MoBo dataset. For each subject, four video
sequences were collected, each of which corresponds to a
different walking pattern, and composed of about 300 frames.

The YTC dataset contains 1910 videos of 47 celebrities
that were collected from YouTube. Most videos have low
resolution and are highly compressed. The number of image
frames in those videos in this dataset ranges from 8 to 400.

Fig. 5. Comparisons of ROC curves between our work and the state-of-the-art
methods on the image restricted YTF dataset.

The YTF dataset contains 3425 videos of 1596 subjects
that were also downloaded from YouTube. The average length
of each video clip is about 180 frames. There are large
variations in pose, illumination, expression, and resolution in
these videos.

In the Honda, MoBo, and YTC datasets, each image frame
is first automatically detected by the face detector method
proposed in [46] and then resized to 20 × 20. For the
YTF dataset, each image frame is cropped to 20×20 according
to the provided eye coordinates. Hence, d is set to 400
in our implementations. For each image frame in all these
four datasets, we perform histogram equalization to remove
illumination effects. Fig. 3 shows some cropped face images
from the four datasets after resizing.

B. Experimental Settings

To make a fair comparison with previous methods, we
followed the same protocol used in [3], [19], and [48]–[50].
For the Honda, MoBo, and YTC datasets, we conducted
experiments 10 times by randomly selecting gallery/probe
combinations and computed the mean identification/
verification rates. Specifically, we randomly selected one
image set for each person as the gallery set and the remaining
image sets were used for probes. For the YTC dataset,
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TABLE IV

RECOGNITION/VERIFICATION RATES (%) OF DIFFERENT

STATISTIC FEATURES ON THESE FOUR DATASETS

TABLE V

RECOGNITION/VERIFICATION RATES (%) OF LMKML WHEN

DIFFERENT COMBINATIONS OF STATISTIC FEATURES

ARE USED ON THESE FOUR DATASETS

TABLE VI

RECOGNITION/VERIFICATION RATES (%) OF DIFFERENT MULTIKERNEL

METRIC LEARNING METHODS ON DIFFERENT DATASETS

TABLE VII

RECOGNITION/VERIFICATION RATES (%) OF DIFFERENT MULTIKERNEL

MULTIMETRIC LEARNING METHODS ON DIFFERENT DATASETS

the whole dataset was equally divided into five folds (with
minimal overlapping) each containing nine videos per subject.
In each fold, three image sets per subject were randomly
selected as the gallery set and the remaining six were selected
as the probe sets. For the YTF dataset, we followed the
standard evaluation protocol in [54] by evaluating our method
on 5000 video pairs. Half of them were from the same
person and the remaining half were from different persons.
These pairs were equally divided into 10 folds and each fold
contains 250 intra-personal pairs and 250 inter-personal pairs,
respectively. We trained our LMKML and LMKMML on the
YTC dataset and used the 10-fold cross validation strategy
for face verification on the YTF dataset [54]. The value of N
for the datasets in our experiments is given in Table I.

C. Results and Analysis

1) Comparison With Existing Image Set Based Face
Recognition Methods: We conducted image-set-based face
identification experiments on the Honda, MoBo, and
YTC datasets and compared the proposed approach
with several recently proposed methods, including
discriminant canonical correlation (DCC) analysis [25],

TABLE VIII

RECOGNITION/VERIFICATION RATES (%) OF SINGLE-METRIC AND

MULTIMETRIC LEARNING METHODS ON DIFFERENT DATASETS

manifold-to-manifold distance (MMD) [50], manifold
discriminant analysis (MDA) [48], affine-hull-based
image set distance (AHISD) [3], convex-hull-based
image set distance (CHISD) [3], sparse approximated
nearest point (SANP) [19], covariance discriminative learn-
ing (CDL) [49], and regularized nearest points (RNPs) [59].

We employed the standard implementations of all these
methods except CDL, which we implemented because the
source code has been not released. We tuned the parameters
of different methods for a fair comparison. Specifically,
we applied PCA to learn a linear subspace for DCC and
selected a 20-D subspace for similarity measure. For MMD
and MDA, the maximum canonical correlation was used to
compute MMD, and the number of nearest neighbors was set
to 15. For AHISD, there was no parameter. For CHISD and
SANP, we followed the same parameter settings as described
in [3] and [19]. For CDL, the kernel linear discriminant
analysis (KLDA) was used for discriminative learning so that
it is fair to compare it with our LMKML. The regularization
parameter of CDL was the same as in [49]. For RNP, there
are two regularization parameters: 1) λ1 and 2) λ2. In our
experiments, we followed the same setting in [59] and set
λ1 and λ2 to 0.001 and 0.1, respectively. For our LMKML
and LMKMML methods, the radial basis function kernel was
used and the standard deviation from each statistic feature
was used as the parameter to estimate the kernel values. The
parameters λ and δ were empirically set to 1 and 0.2 using
the cross-validation strategy from the training set. For DCC,
MDA, CDL, and our methods, since there is a single gallery
image set from each class in the Honda and MoBo datasets, we
randomly divided each gallery set into two subsets to model
the within-class variation.

Table II tabulates the average rank-one recognition rates
and Fig. 4 shows the cumulative match characteristic (CMC)
curves of different methods on the Honda, MoBo, and YTC
datasets, respectively.2 Our methods outperform the other
ones, especially on the most challenging YTC dataset. This
is because the other methods require certain assumptions for
image set representation and these assumptions may not hold
in this challenging dataset. However, no assumption is required
in our methods and hence better performance is obtained.

2) Comparison With the State-of-the-Art Face Verification
Methods: We compared our approach with the state-of-the-
art face verification methods on the YTF dataset.3 These

2The recognition performance of the other methods on the YTC dataset is
much better than that reported in [34]. The reason is that we found for our
detected YTC dataset that the optimal parameters of these methods are not
the default ones that were recommended by the original papers.

3Available from: http://www.cs.tau.ac.il/~wolf/ytfaces/results.html.
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Fig. 6. Rank-one recognition rate (%) of different image set based face recognition methods with noisy data on (a) Honda, (b) MoBo, and (c) YTC datasets,
respectively.

Fig. 7. Rank-one recognition rate (%) of different image set classification methods with varying data size on (a) Honda, (b) MoBo, and
(c) YTC datasets, respectively.

compared methods include matched background similar-
ity (MBGS) [54], APEM [30], STFRD + PMML [5],
MBGS + SVM	 [55], VSOF + OSS (Adaboost) [36], the
method in [38], PHL + SILD [22], DDML (LBP) [17],
DeepFace-single [42], EigenPEP [31], and LM3L [18].
Table III and Fig. 5 show the mean verification rate with
the standard error and ROC curves on the YTF dataset,
respectively. Our LMKML and LMKMML achieve compet-
itive performance in terms of mean verification rate. While
existing state-of-the-art video-based face verification methods
only considered the mean information of the video, our meth-
ods exploit more statistical information. This makes it possible
to better capture the relationship between different frames
within the video and extract complementary information for
verification.

3) Comparison of Statistic Features: We compared the
discriminative power of different statistic features for image
set classification. For each feature, we performed face recog-
nition/verification on different datasets. Table IV tabulates the
classification rates. We observe that the combined statistic
feature achieves better classification performance than the
other two features.

To further show the advantage of the combined statis-
tic feature, we removed it in our LMKML and performed
face recognition/verification by combining the first-order and
second-order features with LMKML. Table V shows the
classification rates. We observe that the combination of three
features slightly outperforms that of two features in LMKML.

4) Localized Versus Global Multikernel Metric Learning:
The multikernel distance metric can also be learned in a

global manner. To show the effect of localized multikernel
learning, we assume that ηp(φ

p
i ) is constant and learn a dis-

tance using the global multikernel metric learning (GMKML)
algorithm, where the weights of different kernels are learned
and updated by the multiview metric learning method of [33].
Moreover, we also compare LMKML with the kernel-based
multitask LMNN method [39], where the MT-LMNN method
was applied in the kernel space and the weight is learned
in a global way. Tables VI and VII show the recognition
rates of these three methods with different learning strategies.
We observe that our localized methods achieve better perfor-
mance than the GMKML methods. This shows that learning a
data-specific kernel is better because it exploits more geomet-
rical information of samples in learning the distance metric(s).

5) Single-Metric Versus Multimetric Learning: To better
show the advantage of multimetric learning over single-metric
learning with multifeature representation, we also develop
another baseline for LMKML by adding a regularizer on M
in LMKML, where the regularizer is introduced by following
the same procedure in LMKMML and the only difference is
we here only need to regularize one metric while LMKMML
regularizes multiple metrics. Table VIII shows the recognition
rates of these metric learning strategies. We observe that
multimetric learning outperforms single-metric learning and
the regularizer slightly improves the recognition rates on
different datasets.

6) Robustness Analysis: We tested the robustness of our
methods in case there is noise in the image sets and the image
sets are of different sizes. We conducted three experiments
using the same settings as in [3] and [49]: 1) the gallery
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image sets were noisy; 2) the probe image sets were noisy; and
3) both the gallery and probe image sets were noisy. To make
the image set noisy, we randomly selected one image from the
other classes and included it in the current image set. For these
three settings, we called the original and three noisy datasets
clean, NG (only gallery image sets were noisy), NP (only
probe sets were noisy), and NGP (both gallery and probe sets
were noisy), respectively. Fig. 6 shows the mean identification
rates of different image set based face recognition methods on
different face datasets.

We also evaluated the performance of our approach when
there are different number of frames in the image sets.
We randomly selected a subset from each image set for recog-
nition. We extracted 200, 100, and 50 frames from each image
set, denoted by F200, F100, and F50, respectively. When an
image set contains fewer frames, all image frames in this set
were used for evaluation. Fig. 7 shows the average recognition
rates of different face recognition methods on the YTC dataset.

From Figs. 6 and 7, we observe that our proposed
approach shows better robustness to these two challenges.
That is because we use different statistics features as the set
representation, which are robust to outliers and to the number
of samples in the set. Hence, the effects of the noisy samples
and varying data size are alleviated.

7) Parameter Analysis: Fig. 8 shows recognition accuracy
versus iteration number on the YTC dataset. Our iterative
methods rapidly achieve stable performance.

Fig. 9 shows recognition accuracy of LMKMML as a
function of λ and δ on the YTC dataset. LMKMML achieves
stable performance when λ and δ are set as around 1.0 and 0.2,
respectively.

8) Convergence Analysis: Fig. 10 shows the values of the
objective function of LMKML and LMKMML versus iteration
number on the YTC dataset. Our algorithms converge in about
30–40 iterations.

9) Computational Time: We compared the computational
time of different algorithms on the YTC dataset. Our hardware
configuration comprises a 2.8-GHz CPU and a 10-GB RAM.
Table IX shows the time spent by these methods for training
and testing (per face image set). It is to be noted that training
time is only required for discriminative learning methods
such as DCC, MDA, CDL, and our methods. We see that
the computational complexity of our methods is generally
larger than the other methods. That is because our methods
compute multiple features for image set representation, which
requires more algebraic operations than other methods and
hence higher computational complexity.

D. Discussion

From the above experimental results, we make the following
three observations.

1) Our proposed methods achieve better performance than
the existing image-set-based face recognition methods
on the Honda, MoBo, and YTC datasets, and obtain
very competitive results on the YTF dataset. Compared
with unsupervised methods such as MMD, AHISD,
CHISD, and SANP, our methods extract discriminative

Fig. 8. Average recognition rate (%) of our methods versus iteration number
on the YTC dataset.

Fig. 9. Average recognition rate (%) of our LMKMML versus λ and δ on
the YTC dataset.

Fig. 10. Convergence curve of LMKML and LMKMML on the YTC dataset.

information from face image sets, which is helpful to
improve the recognition rate. Compared with supervised
methods such as DCC, MDA, and CDL, our meth-
ods extract different statistic features from face image
sets and hence exploit more complete information for
classification.

2) Our methods consistently outperforms CDL on all four
datasets. This is because our methods utilize different
statistic features from each image set while CDL only
extracts the second-order statistic feature for image set
representation.
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TABLE IX

COMPARISONS OF COMPUTATIONAL TIME (SECONDS) OF DIFFERENT METHODS ON THE YTC DATASET

3) Our methods are more robust to outliers since they are
statistics of all the samples in the image set and the
effect of noise can be largely alleviated, especially com-
pared with the previous nearest sample-pair-based image
set classification methods such as AHISD, CHISD,
and SANP.

V. CONCLUSION

We have proposed a new image-set-based face recognition
approach using multiple statistic features and localized multi-
feature metric learning. Specifically, two kernel-based metric
learning algorithms called LMKML and LMKMML were pro-
posed to effectively combine multiple statistic features from
face image set. The proposed approach has been evaluated
on four widely used video face datasets. Experimental results
show that our approach outperforms prior image-set-based face
recognition methods in terms of both accuracy and robustness.

There are two interesting directions for future work.
1) The kernel computational method in this paper is time-

consuming, which is one limitation of the proposed
approach. It would be desirable to develop an efficient
kernel approximation method to improve the kernel esti-
mation speed, especially for combined statistic features.

2) In this paper, we applied LMKML and LMKMML
for image-set-based face recognition. It would be
interesting to use them for other visual analysis tasks
such as visual recognition and information retrieval.
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