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Abstract—In this paper, we address two problems in unsu-
pervised subspace learning: 1) how to automatically identify the
feature dimension of the learned subspace, and 2) how to learn
the underlying subspace in the presence of gross corruptions such
as Gaussian noise. We show that these two problems are two sides
of one coin, i.e., they can be solved by removing possible errors
from training data D ∈ Rm×n. To achieve this, we propose
a new method (called Principal Coefficients Embedding, PCE)
that can simultaneously learn a clean data set D0 ∈ Rm×n and
a linear representation (denoted by C) from D. By embedding
C into a k-dimensional space, PCE obtains a projection matrix
that preserves some desirable properties of inputs, where k � m
is exactly the rank of C. PCE has three advantages: 1) it can
automatically determine the feature dimension even though data
are sampled from a union of multiple linear subspaces; 2) it is
robust to various noises and real disguises; 3) it has a closed-form
solution and can be calculated very fast. Extensive experimental
results show the superiority of PCE on a range of databases with
respect to classification accuracy, robustness and efficiency.

Index Terms—Subspace dimension determination, metric
learning, graph embedding, corrupted data, robustness.

I. INTRODUCTION

Subspace learning or metric learning aims to find a projec-
tion matrix Θ ∈ Rm×m′

from the training data Dm×n, so
that the high-dimensional datum y ∈ Rm can be transformed
into a low-dimensional space via z = ΘTy. Existing subspace
learning methods can be roughly divided into three categories:
supervised, semi-supervised, and unsupervised. Supervised
method incorporates the class label information of D to obtain
discriminative features. The well-known works include but
not limit to linear discriminant analysis [1], neighbourhood
components analysis [2], and their variants such as [3], [4],
[5], [6]. Semi-supervised methods [7], [8], [9] utilize limited
labeled training data as well as unlabeled ones for better
performance. Unsupervised methods seek a low-dimensional
subspace without using any label information of training sam-
ples. Typical methods in this category include Eigenfaces [10],
Neighbourhood Preserving Embedding (NPE) [11], Locality
Preserving Projections (LPP) [12], Sparsity Preserving Pro-
jections (SPP) [13] or known as L1-graph [14]. For these
various subspace learning methods, Yan et al. [15] have
shown that most of them can be unified into the framework
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of graph embedding, i.e., low dimensional features can be
achieved by embedding some desirable properties (described
by a similarity graph) from a high-dimensional space into
a low-dimensional one. By following this framework, this
paper focuses on unsupervised subspace learning, i.e., label
information is unavailable in training data.

Although a large number of subspace learning methods have
been proposed, less works have discussed two challenging
problems: 1) how to automatically determine the dimension of
the feature space, referred to as automatic subspace learning,
and 2) how to immune the affect of corruptions, referred to
as robust subspace learning.

Automatic subspace learning involves the technique of
dimension estimation which aims at identifying the number of
features necessary for the learned low-dimensional subspace to
describe a data set. In previous studies, most existing methods
experimentally set the feature dimension by exploring all
possible values based on the classification accuracy. Clearly,
such a strategy is time-consuming and easily overfits to
the specific data set. In the literature of manifold learning,
some dimension estimation methods have been proposed, e.g.,
spectrum analysis based methods [16], [17], box-counting
based methods [18], fractal-based methods [19], [20], tensor
voting [21], and neighbourhood smoothing [22]. Although
these methods have achieved impressive results, this problem
is still far from solved due to the following limitations: 1)
these methods may work only when data are sampled in a
uniform way and data are free to corruptions, as pointed
out by Saul and Roweis [23]; 2) most of these methods
can accurately estimate the intrinsic dimension of a single
subspace and fail to work well for the scenarios of multiple
subspaces, especially, when the subspaces are dependent or
disjoint; 3) although some dimension estimation methods can
be used prior to the final step to set the number of embedding
coordinates of previous subspace learning algorithms, it is
preferable to design a subspace learning method that can
automatically determine the dimension of feature space and
reduce the dimension of data at the same time.

Robust subspace learning aims at identifying underlying
subspaces even though the training data D contains gross
corruptions. Since D is corrupted by itself, accurate prior
knowledge about the desired geometric properties is hard to
be learned from D. Furthermore, grossly corruptions will
make dimension estimation more difficult. This robust learning
problem, to the best of our knowledge, is seldom studied
before. The well-known Principal Component Analysis (PCA)
achieves robust results by removing the bottom eigenvectors
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corresponding to the smallest eigenvalues1. However, PCA
can achieve a good result only when data are sampled from
a single subspace and are contaminated by small Gaussian
noise. Moreover, PCA needs specifying a parameter (e.g.,
98% energy) to distinct the principal components from the
minor ones. To improve the robustness of PCA, Candes et al.
recently proposed robust PCA (RPCA) [24] which can handle
the sparse corruption and has achieved a lot of success [25],
[26], [27]. However, RPCA directly removes the errors from
the input space, which cannot obtain the low-dimensional
features of inputs. Moreover, the computational complexity of
RPCA is too high to handle large scale data set with very high
dimensionality. Bao et al. [28] proposed an algorithm which
can handle the gross corruption. However, the class label
information plays an important role in their model and they did
not explore the possibility to automatically determine feature
dimension. Tzimiropoulos et al. [29] proposed a subspace
learning method from image gradient orientations by replacing
pixel intensities of images with gradient orientations. Their
method outperforms a lot of popular methods such as Gabor
features in illumination- and occlusion-robust face recognition.
Besides the above robust subspace learning works, recent
development [30], [31], [32], [33] in subspace clustering have
also motivated this work a lot.

Based on the above observations, we present a parameter-
free method for robust unsupervised subspace learning. The
proposed method, referred to as Principal Coefficients Em-
bedding (PCE), formulates the possible corruptions into an
objective function so that a clean data set D0 and the corre-
sponding reconstruction coefficients C can be simultaneously
learned from the training data D. By embedding C into a m′-
dimensional space, PCE obtains a projection matrix Θm×m′

,
where m′ is determined by the rank of C. Our dimension
determination method is motivated by classic PCA and the
well known Locally Linear Embedding [34]. PCA suggests
that the key of dimension reduction is to identify ‘important’
(i.e., principal) components and eliminate ‘unimportant’ (i.e.,
minor) ones. Thus, the dimension of feature space naturally
equals to the number of principal components. Such conclu-
sion motivates us to treat robust subspace learning and auto-
matic subspace learning as two sides of one coin. Furthermore,
LLE encodes each data point as the linear combination of its
neighbourhood and assumes such reconstruction relationship
is variant to different mapping spaces. The method implies that
the subspace dimension equals to the size of neighbourhood
for each data point. By extending this local representation
into global case, PCE provides a dimension estimation for the
entire data set based on the rank of the coefficient matrix C.
The contributions of this work are summarized as follows:

• We propose a robust subspace learning method (i.e., PCE)
to handle the gross corruptions that probably exist into
training data. Different from the existing methods such
as LLE and NPE, PCE formulates the corruptions into
its objective function and calculates the reconstruction
coefficients using a clean data set.

1In this paper, we adopt a PCA-like definition on corruptions and errors,
i.e., the corruptions correspond to the minor parts of inputs.

TABLE I
SOME USED NOTATIONS.

Notation Definition

n the number of data points
ni data size of the i-th subject
m the dimension of input
m′ the dimension of feature space
s the number of subject
r the rank of a given matrix
y a given testing sample
z the low-dimensional feature
D = [d1,d2, . . . ,dn] training data set
D = UΣVT = UrΣrV

T
r full and skinny SVD of D

D0 the desired clean data set
E the errors existing into D
C = [c1, c2, . . . , cn] the representation of D0

σi(C) the i-th singular value of C

Θ ∈ Rm×m′
the projection matrix

• Unlike previous subspace learning methods, the proposed
method can automatically determine the feature dimen-
sion of the learned low-dimensional subspace. Automatic
dimension determination largely reduces the efforts for
finding an optimal dimension and makes PCE is more
competitive in real applications.

• PCE is computational efficient, which only involves
performing Singular Value Decomposition (SVD) over
training data one time.

The rest of this paper is organized as follows. Section II
briefly introduces some related works. Section III presents
our proposed algorithm. Section IV reports the experimental
results and Section V concludes this work.

II. RELATED WORKS

A. Notations and Definitions

In the following, lower-case bold letters represent column
vectors and UPPER-CASE BOLD ONES denote matrices.
AT and A† denote the transpose and pseudo-inverse of the
matrix A, respectively. I denotes the identity matrix.

For a given data matrix D ∈ Rm×n, the Frobenius norm of
D is defined as

‖D‖F =
√
trace(DDT ) =

√√√√ r∑
i=1

σi(D), (1)

where σi(D) denotes i-th singular value of D, and r denotes
the rank of D.

The full Singular Value Decomposition (SVD) and the
skinny SVD of D are defined as D = UΣVT and D =
UrΣrV

T
r , where Σ and Σr are in descending order. Ur, Vr

and Σr consist of the top (i.e., largest) r singular vectors and
singular values of D. TABLE I summarizes some notations
used throughout the paper.

B. Locally Linear Embedding

In [15], Yan et al. have shown that most unsupervised,
semi-supervised, and supervised subspace learning methods
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can be unified into a framework known as graph embedding.
Under this framework, subspace learning methods obtain low-
dimensional features by preserving some desirable geomet-
ric relationships from a high-dimensional space into a low-
dimensional one. Thus, the performance of subspace learning
largely depends on the identified relationship which is usually
described by a similarity graph (i.e., affinity matrix). In
the graph, each vertex corresponds to a data point and the
edge weight denotes the similarity between two connected
points. There are two popular ways to measure the similarity
among data points, i.e., pairwise distance such as Euclidean
distance [35] and linear reconstruction coefficients introduced
by Locally Linear Embedding (LLE) [34].

For a given data matrix D = [d1,d2, . . . ,dn], LLE solves
the following problem:

min
ci

n∑
i=1

‖di −Bici‖2, s.t.
∑
j

cij = 1, (2)

where ci ∈ Rp is the linear representation of di over Bi, cij
denotes the j-th entry of ci, and Bi ∈ Rm×p consists of p
nearest neighbors of di that are chosen from the collection of
[d1, . . . ,di−1,di+1, . . . ,dn] in terms of Euclidean distance.

By assuming the reconstruction relationship ci is invariant
to ambient space, LLE obtains the low-dimensional features
Y ∈ Rm′×n of D by

min
Y
‖Y −YW‖2F , s.t. YTY = I, (3)

where W = [w1,w2, . . . ,wn] and the nonzero entries of
wi ∈ Rn corresponds to ci.

However, LLE cannot handle the out-of-sample data that
are not included into D. To solve this problem, NPE [35]
calculates the projection matrix Θ instead of Y by replacing
Y with ΘTD into (3).

C. L1-Graph

By following the framework of LLE and NPE, Qiao et
al. [13] and Cheng et al. [14] proposed SPP and L1-graph,
respectively. The methods sparsely encode each data points
by solving the following sparse coding problem:

min
ci

‖di −Dici‖2 + λ‖ci‖1, (4)

where Di = [d1, . . . ,di−1,0,di+1, . . . ,dn].
After obtaining C ∈ Rn×n, SPP and L1-graph embed

C into the feature space by following NPE. The advantage
of sparsity based subspace methods is that they can auto-
matically determine the neighbourhood for each data point
without the parameter of neighbourhood size. Inspired by the
success of SPP and L1-graph, a number of representation
based methods [36], [37], [38] have been proposed. However,
these methods including L1-graph and SPP have still required
specifying the dimension of feature space.

D. Robust Principal Component Analysis

RPCA [24] is proposed to improve the robustness of PCA,
which solves the following optimization problem:

min
D0,E

rank(D0) + λ‖E‖0 s.t. D = D0 + E, (5)

where λ > 0 is the parameter to balance the possible
corruptions and the desired clean data, and ‖ · ‖0 is `0-norm
to count the number of nonzero entries of a given matrix or
vector.

Since the rank operator and `0-norm are non-convex and
discontinuous, ones usually relax them with nuclear norm and
`1-norm [39]. Then, (5) is approximated by

min
D0,E

‖D0‖∗ + λ‖E‖1 s.t. D = D0 + E, (6)

where ‖D‖∗ = trace(
√

DTD) =
∑r
i=1 σi(D) denotes the

nuclear norm of D and σi(D) is the i-th singular value of D.
(6) can be solved by a lot of algorithms such as [40]. RPCA

and its extension have achieved remarkable performance in a
lot of applications, e.g., image alignment [25], background
subtraction[26], dimension reduction [27].

III. PRINCIPAL COEFFICIENTS EMBEDDING FOR
UNSUPERVISED SUBSPACE LEARNING

A. Algorithm Description

In this section, we present an unsupervised algorithm for
automatic subspace learning, i.e., Principal Coefficients Em-
bedding (PCE). For a given training data matrix D, PCE
removes the corruption E from D and then linearly encodes
each data point using the clean data set D0. The proposed
objective function is as follows:

min
C,D0,E

1

2
‖C‖2F +

λ

2
‖E‖2F s.t. D = D0 + E,D0 = D0C

(7)
where ‖ · ‖F denotes the Frobenius norm of a given matrix.
The Frobenius norm can improve the generalization ability.
Moreover, it has shared some desirable properties with nuclear
norm based representation [33] as shown in our previous
works [41], [42].

To solve (7), we first consider the case of corruption-free,
i.e., E = 0. In such setting, the objective function of PCE can
be simplified as follows:

min
C
‖C‖F s.t. D = DC. (8)

Note that, D†D is a feasible solution to D = DC, where
D† denotes the pseudo-inverse of D. However, it remains
unknown what is the unique minimizer to (8). To solve this
problem, we have the following lemma:

Lemma 1. Let D = Ur∆rV
T
r be the skinny SVD of the data

matrix D 6= 0. The unique solution to

min ‖C‖F s.t. D = DC, (9)

is given by C∗ = VrV
T
r , where r is the rank of D and D is

a clean data set without any corruptions.

Proof. Let D = U∆VT be the full SVD of D. The pseudo-
inverse of D is D† = Vr∆

−1
r UT

r . Defining Vc by VT =[
VT
r

VT
c

]
and VT

c Vr = 0. To prove that C∗ = VrV
T
r is the

unique solution to (9), two steps are required.
First, we prove that C∗ is the minimizer to (9), i.e., for any

X satisfying D = DX, it must hold that ‖X‖F ≥ ‖C∗‖F .
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Since for any column orthogonal matrix P, it must hold that
‖PM‖F = ‖M‖F . Then, we have

‖X‖F =

∥∥∥∥[ VT
r

VT
c

]
[C∗ + (X−C∗)]

∥∥∥∥
F

=

∥∥∥∥[ VT
r C∗ + CT

r (X−C∗)
VT
c C∗ + VT

c (X−C∗)

]∥∥∥∥
F

. (10)

As C∗ satisfies D = DC∗, then D (X−C∗) = 0, i.e.,
UrΣrV

T
r (X−C∗) = 0. Since UrΣr 6= 0, VT

r (X−C∗) =
0. Denote Γ = Σ−1r UT

r D, then C∗ = VrΓ. Because
VT
c Vr = 0, we have VT

c C∗ = VT
c VrΓ = 0. Then, it follows

that
‖X‖F =

∥∥∥∥[ Γ
VT
c (X−C∗)

]∥∥∥∥
F

. (11)

Since for any matrixes M and N with the same number of
columns, it holds that∥∥∥∥[ M

N

]∥∥∥∥2
F

= ‖M‖2F + ‖N‖2F . (12)

From (11) and (12), we have

‖X‖2F = ‖Γ‖2F + ‖VT
c (X−C∗)‖2F , (13)

which shows that ‖X‖F ≥ ‖Γ‖F .
Furthermore, since

‖Γ‖F = ‖VrΓ‖F = ‖C∗‖F , (14)

we have ‖X‖F ≥ ‖C∗‖F .
Second, we prove that C∗ is the unique solution of (9). Let

X be another minimizer, then, D = DX and ‖X‖F = ‖C∗‖F .
From (13) and (14),

‖X‖2F = ‖C∗‖2F + ‖VT
c (X−C∗) ‖2F . (15)

Since ‖X‖F = ‖C∗‖F , it must hold that
‖VT

c (X−C∗) ‖F = 0, and then VT
c (X−C∗) = 0.

Together with VT
r (X−C∗) = 0, this gives

VT (X−C∗) = 0. Because V is an orthogonal matrix, it
must hold that X = C∗.

The proof is complete.

Based on Lemma 1, we consider the robust version of PCE
(i.e., E 6= 0) and have the theorem as follows:

Theorem 1. Let D = UΣVT be the full SVD of D ∈ Rm×n,
where the diagonal entries of Σ are in descending order,
U and V are corresponding left and right singular vectors,
respectively. Suppose there exists a clean data set and errors,
denoted by D0 and E, respectively. The optimal C to

min
E,D0,C

1

2
‖C‖2F +

λ

2
‖E‖2F s.t. D = D0 + E, D0 = D0C,

(16)
is given by C∗ = VkV

T
k , where λ is a balanced factor,

Vk consists of the first k right singular vectors of D, k =
argminrr+λ

∑
i>r σ

2
i , and σi denotes the i-th diagonal entry

of Σ.

Proof. (16) can be rewritten as

min
D0,C

1

2
‖C‖2F +

λ

2
‖D−D0‖2F s.t. D0 = D0C, (17)

Let D∗0 = UrΣrV
T
r be the skinny SVD of D0, where r is

the rank of D0. Let Uc and Vc be the basis that orthogonal
to Ur and Vr, respectively. Clearly, I = VrV

T
r +VcV

T
c . By

Lemma 1, the representation over the clean data D0 is given
by C∗ = VrV

T
r . Next, we will bridge Vr and V.

Using Lagrange method, we have

L(D0,C) =
1

2
‖C‖2F +

λ

2
‖D−D0‖2F + < β,D0−D0C >,

(18)
where β denotes the Lagrange multiplier and the operator <
· > denotes dot product.

Letting ∂L(D0,C)
∂D0

= 0, it given that

βVcV
T
c = λE. (19)

Letting ∂L(D0,C)
∂C = 0, it given that

VrV
T
r = VrΣrU

T
r β. (20)

From (20), β must be in the form of β = UrΣ
−1
r VT

r +
UcM for some M. Substituting β into (19), it given that

UcMVcV
T
c = λE. (21)

Thus, we have ‖E‖2F = 1
λ2 ‖MVc‖2F . Since VT

c Vc = I,
‖E‖2F is minimized when MVc is a diagonal matrix and can
be chosen as MVc = Σc, i.e., E = 1

λUcΣcVc. Thus, the
SVD of D could be chosen as

D = UΣVT = [Ur Uc]

[
Σr 0
0 1

λΣc

] [
VT
r

VT
c

]
. (22)

Thus, the minimal cost of (17) is given by

Lmin(D
∗
0,C

∗) =
1

2
‖VrV

T
r ‖2F +

λ

2
‖ 1
λ

Σc‖2F

=
1

2
r +

λ

2

min{m,n}∑
i=r+1

σ2
i ,

(23)

where σi is the i-th largest singular value of D. Let k be the
optimal r to (23), then we have k = argminrr + λ

∑
i>r σ

2
i .

The proof is complete.

Theorem 1 shows that the skinny SVD of D is auto-
matically separated into two parts, the top and the bottom
one correspond to a desired clean data D0 and the possible
corruptions E, respectively. Such PCA-like result provides
a good explanation toward the robustness of our method.
Furthermore, PCE estimates the dimension of the feature space
with the rank of the coefficient matrix C (i.e., k) which is
further determined by the parameter λ. Because λ actually
measures the ratio between the clean data D0 and E, this again
verifies our motivation, i.e., the key of automatic subspace
learning is removing possible errors from inputs.

Fig. 1 gives an example to show the effectiveness of PCE.
We carried out experiment using 700 clean AR facial im-
ages [43] as training data that distribute over 100 individuals.
Fig. 1(a) shows the coefficient matrix C∗ obtained by PCE.
One can find that the matrix is approximately block-diagonal,
i.e., cij 6= 0 if and only if the corresponding points di and dj
belong to the same class. The block-diagonal property of C∗

not only guarantees the discrimination of C∗, but also directly
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(a) The coefficient matrix C∗ obtained by PCE.
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(b) Singular values of C∗

Fig. 1. An illustration using 700 AR facial images. (a) PCE can obtain a block-diagonal affinity matrix, which is benefit to classification. (b) The intrinsic
dimension of the used data set is exactly 69, i.e., m′ = k = 69. This result is obtained without truncating the trivial singular values like PCA. Dotted line
denotes the accumulated energy of the first k singular value.

provides a feasible way to estimate the dimension of feature
space, i.e., the feature dimension can be estimated by the rank
of C∗. To verify the effectiveness of this dimension estimation,
we perform SVD over C∗ and show the singular values of C∗

in Fig. 1(b). One can find that only the first 69 singulars values
are nonzero. In other words, the intrinsic dimension of the
entire data set is 69 and the first 69 singular values preserve
100% energy. It should be pointed out that, PCE does not set a
parameter to truncate the trivial singular values like PCA and
PCA-like methods [17], which incorporates all energy into a
small number of dimension.

After obtaining the coefficient matrix C∗ and the feature
dimension k, PCE builds a similarity graph and embeds it
into a k-dimensional space by following NPE [11], i.e.,

min
Θ

1

2
‖ΘTD−ΘTDA‖2F , s.t. DTΘΘTD = I, (24)

where Θ ∈ Rm×k denotes the projection matrix. Algorithm 1
summarizes our algorithm.

B. Computational Complexity Analysis

For a training data set D ∈ Rm×n, PCE performs the
skinny SVD over D in O(m2n + mn2 + n3). However, a
number of fast SVD methods can speed up this procedure.
For example, the complexity can be reduced to O(mnr) by
Brand’s method [44], where r is the rank of D. Moreover,
PCE estimates the feature dimension k in O(rlogr) and solves
a sparse generalized eigenvector problem in O(mn + mn2)
with Lanczos eigensolver. Putting everything together, the time
complexity of PCE is O(mn+mn2) due to r � min(m,n).

IV. EXPERIMENTS AND RESULTS

In this section, we reported the performance of PCE
and six state-of-the-art unsupervised feature extraction meth-
ods including Eigenfaces [10], Locality Preserving Projec-
tions (LPP) [35], [12], neighbourhood Preserving Embedding

Algorithm 1. Automatic Subspace Learning via Principal Coefficients Em-
bedding

Input: A collection of training data points D = {di} sam-
pled from a union of linear subspaces and the balanced
parameter λ > 0.

1: Perform the full SVD or skinny SVD on D, i.e., D =
UΣVT , and get the C = VkV

T
k , where Vk consists of

k column vector of V corresponding to k largest singular
values, where k = argminrr+λ

∑
i>r σ

2
i (D) and σi(D)

is the i-th singular value of D.
2: Construct a similarity graph by A = C and normalize

each column of A to have a unit `2-norm.
3: Embed A into a k-dimensional space and get the projec-

tion matrix Θ ∈ Rm×k that consists of the eigenvectors
corresponding to the k largest eigenvalues of the following
generalized eigenvector problem:

D(I−A)(I−A)TDTΘ = σDDTΘ. (25)

Output: The projection matrix Θ. For any data point y ∈
span{D}, its low-dimensional representation can be ob-
tained by z = ΘTy.

(NPE) [11], L1-graph [14], Non-negative Matrix Factorization
(NMF) [45], and RPCA [24].

A. Experimental Setting and Data Sets

We implemented a fast version of L1-graph by using Ho-
motopy algorithm [46] to solve the `1-minimization problem.
According to [47], Homotopy is one of the most competitive
`1-optimization algorithms in terms of accuracy, robustness,
and convergence speed. For RPCA, we adopted the accelerated
proximal gradient method with partial SVD [48] which has
achieved a good balance between computation speed and
reconstruction error. As mentioned above, RPCA cannot obtain
the projection matrix for subspace learning. For fair com-
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TABLE II
THE USED DATABASES. s AND ni DENOTE THE NUMBER OF SUBJECT AND

THE NUMBER OF IMAGES FOR EACH GROUP.

Databases s ni Original Size Cropped Size

AR 100 26 165× 120 55× 40
ExYaleB 38 58 192× 168 54× 48
MPIE-S1 249 14 100× 82 55× 40
MPIE-S2 203 10 100× 82 55× 40
MPIE-S3 164 10 100× 82 55× 40
MPIE-S4 176 10 100× 82 55× 40
COIL100 100 10 128× 128 64× 64

parison, we incorporated Eigenfaces with RPCA (denoted by
RPCA+PCA) to obtain the low-dimensional features of the
inputs. Unless otherwise specified, we assigned m′ = 300
for all the tested methods except PCE which automatically
determines the value of m′.

In our experiments, we evaluated the performance of these
subspace learning algorithms with three classifiers, i.e., Sparse
Representation based Classification (SRC) [49], Support Vec-
tor Machine (SVM) with linear kernel [50], and the Nearest
Neighbor classifier (NN). We adopted the cross-validation
method to determine the optimal parameters for all the
methods and reported the mean and standard deviation of
classification accuracy and time costs.

We used seven image data sets including AR facial
database [43], Expended Yale Database B (ExYaleB) [51], four
sessions of Multiple PIE (MPIE) [52], and COIL100 objects
database [53].

The used AR data set contains 2600 samples from 50 male
and 50 female subjects, of which 1400 samples are clean
images, 600 samples are disguised by sunglasses, and the
remaining 600 samples are disguised by scarves. ExYaleB
contains 2414 frontal-face images of 38 subjects, and we
use the first 58 samples of each subject. MPIE contains the
facial images captured in four sessions. In the experiments,
all the frontal faces with 14 illuminations2 are investigated.
For computational efficiency, we downsized all the data sets
from the original size to smaller one. TABLE II provides an
overview of the used data sets.

B. The Influence of the Parameter

PCE uses the parameter λ to measure the possible corrup-
tions and estimate the feature dimension m′. To investigate the
influence of λ, we increased the value of λ from 1 to 99 with
an interval of 2 by performing experiment on a subset of AR
database. The used data set includes 1400 clean images over
100 individuals. In the experiment, we randomly divided the
data into two parts with equal size for training and testing.

Fig. 2 shows that: 1) while λ increases from 13 to 39,
the recognition accuracy of PCE almost remains unchanged,
which ranges from 93.86% to 95.29%; 2) with increasing λ,
the rank of the obtained coefficient matrix (i.e., k) increases
from 10 to 202. However, a larger k cannot make the recog-
nition rate higher.

2illuminations: 0,1,3,4,6,7,8,11,13,14,16,17,18,19.
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Fig. 2. The influence of the parameter λ of PCE, where the NN classifier
and 1400 AR clean images are used.

To further show the effectiveness of our dimension deter-
mination method, we investigated the performance of PCE by
manually specifying m′ = 300, denoted by PCE2. We carried
out the experiments on ExYaleB by choosing 40 samples
from each subject as training data and using the rests for
testing. TABLE III reports the result from which we can find
that:
• the automatic version of our method, i.e., PCE, performs

competitive to PCE2 which manually set m′ = 300.
This shows that our dimension estimation method can
accurately estimate the feature dimension.

• both PCE and PCE2 outperform the other methods by a
considerable performance margin. For example, PCE is
3.68% at least higher than the second best method when
the NN classifier is used.

• PCE is also the one of the fastest algorithms, which is
remarkably faster than L1-graph, NMF, and RPCA+PCA.

C. Performance with Increasing Training Data and Feature
Dimension

In this section, we examined the performance of PCE with
increasing training samples and increasing feature dimension.
In the first test, we randomly sampled ni clean AR images
from each subject for training and used the rest for testing.
Beside RPCA+PCA, we also reported the performance of
RPCA without dimension reduction.

In the second test, we randomly chose a half of images
from ExYaleB for training and used the rest for testing. We
reported the recognition rate of the NN classifier with the
first m′ features extracted by all the tested subspace learning
methods, where m′ increases from 1 to 600 with an interval
of 10.

From Fig. 3, we can conclude:
• PCE performs well even though only a few of training

samples are available. Its accuracy is about 90% when
ni = 5, whereas the second best method achieves the
same accuracy when ni = 9.

• RPCA and RPCA+PCA perform very close, however,
RPCA+PCA is more efficient than RPCA.
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TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING EXYALEB, WHERE TRAINING DATA AND TESTING DATA CONSIST OF 1520 AND
380 SAMPLES, RESPECTIVELY. NOTE THAT, PCE, EIGENFACES, AND NMF HAVE ONLY ONE PARAMETER. PCE NEEDS SPECIFYING THE PARAMETER λ,

AND EIGENFACES AND NMF HAVE TO SET THE FEATURE DIMENSION. ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION.
‘PARA.’ INDICATES THE TUNED PARAMETERS USING VALIDATION DATA SET. THE SECOND PARAMETER OF PCE DENOTES m′ (i.e., k) WHICH IS

AUTOMATICALLY CALCULATED VIA THEOREM 1.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 96.90±0.74 23.50±2.36 10, 169 98.93±0.18 7.44±0.37 50, 331 97.03±0.57 6.96±0.71 5, 118
PCE2 96.92±0.59 28.02±2.84 16.00 98.20±0.43 8.07±0.67 26.00 96.86±0.57 7.89±0.88 19.00
Eigenfaces 95.32±0.80 27.79±0.22 - 95.53±0.85 5.65±0.14 - 82.53±1.70 4.97±0.14 -
LPP 83.87±6.59 17.20±0.71 9.00 87.92±9.12 7.40±0.12 2.00 79.97±1.36 7.18±0.19 3.00
NPE 90.47±15.72 37.80±0.45 50.00 82.50±8.74 27.57±0.24 47.00 93.35±0.53 28.37±0.30 49.00
L1-graph 91.29±0.60 633.95±47.94 1e-2,1e-1 82.08±1.66 870.04±61.01 1e-3,1e-3 89.75±0.70 988.27±74.98 1e-2,1e-3
NMF 87.54±1.15 137.46±6.26 - 91.59±1.09 19.39±0.36 - 72.11±1.44 11.13±0.03 -
RPCA+PCA 95.88±0.56 497.48±32.72 0.30 95.79±1.02 466.17±35.85 0.10 82.57±1.18 466.11±42.70 0.20
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Fig. 3. (a) The performance of the evaluated subspace learning methods with the NN classifier on AR images. (b) The recognition rates of the NN classifier
with different subspace learning methods on ExYaleB. Note that, PCE does not automatically determine the feature dimension in the experiment of performance
versus increasing feature dimension.

• Fig. 3(b) shows that PCE consistently outperforms the
other methods. This benefits an advantage of PCE, i.e.,
PCE obtains a more compact representation which can
use a few of variables to represent the entire data.

D. Subspace Learning on Clean Images

In this section, we performed the experiments using MPIE
and COIL100. For each data set, we split it into two parts with
equal size. As did in the above experiments, we set m′ = 300
for all the tested methods except PCE. TABLEs IV–VIII report
the results, from which one can find that:

• with three classifiers, PCE outperforms the other investi-
gated approaches on these five data sets by a considerable
performance margin. For example, the recognition rates
of PCE with these three classifiers are 6.59%, 5.83%, and
7.90% at least higher than the rates of the second best
subspace learning method on MPIE-S1.

• PCE is more stable than other tested methods. Although
SRC generally outperforms SVM and NN with the same
feature, such superiority is not distinct for PCE. For
example, SRC gives an accuracy improvement of 1.02%

over NN to PCE on MPIE-S4. However, the correspond-
ing improvement to RPCA+PCA is about 49.50%.

• PCE achieves the best results in all the tests, while
using the least time to perform dimension reduction and
classification. PCE is more efficient than L1-graph, NMF,
and RPCA+PCA, and only Eigenfaces, LPP, and NPE can
be competitive to it in computational efficiency.

E. Subspace Learning on Corrupted Facial Images

In this section, we investigated the robustness of PCE
against two corruptions using ExYaleB and the NN classifier.
The corruptions includes white Gaussian noise (additive noise)
and random pixel corruption (non-additive noise) [49].

In our experiments, we chosen a half of images (29 images
per subject) to corrupt using these two noises. Specifically,
we added white Gaussian noise into the sampled data d via
d̃ = d+ ρn, where d̃ ∈ [0 255], ρ is the corruption ratio, and
n is the noise following the standard normal distribution. For
random pixel corruption, we replaced the value of a percentage
of pixels randomly selected from the image with the values
following a uniform distribution over [0, pmax], where pmax
is the largest pixel value of d. After adding the noises into
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TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE FIRST SESSION OF MPIE (MPIE-S1). ALL METHODS EXCEPT PCE

EXTRACT 300 FEATURES FOR CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 99.27±0.32 51.96±0.29 55.00 96.56±1.23 14.38±0.52 45.00 97.72±0.55 13.21±0.59 40.00
Eigenfaces 92.64±0.56 90.64±0.73 - 90.73±1.81 12.87±0.20 - 55.03±0.93 6.21±0.22 -
LPP 81.84±0.94 30.58±2.60 10.00 70.16±0.07 7.38±0.54 55.00 71.31±2.39 4.85±0.39 4.00
NPE 80.56±0.41 58.95±0.77 29.00 80.25±0.15 36.38±0.55 43.00 77.71±1.65 36.19±0.38 49.00
L1-graph 80.36±0.17 3856.69±280.16 1e-1,1e-1 86.79±1.62 5726.08±444.82 1e-6,1e-5 89.82±1.44 8185.55±503.80 1e-6,1e-4
NMF 65.18±0.87 520.94±6.27 - 66.42±1.66 121.89±0.58 - 41.78±1.18 11.03±0.00 -
RPCA+PCA 92.68±0.57 1755.27±490.99 0.10 90.51±1.26 1497.13±329.00 0.30 54.95±1.38 1557.33±358.93 0.10

TABLE V
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE SECOND SESSION OF MPIE (MPIE-S2). ALL METHODS EXCEPT PCE

EXTRACT 300 FEATURES FOR CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 93.87±0.82 29.00±0.36 10.00 92.63±0.95 4.97±0.11 20.00 93.18±0.87 4.14±0.14 5.00
Eigenfaces 64.36±2.42 81.71±14.99 - 51.72±2.81 0.50±0.11 - 30.86±1.44 0.36±0.06 -
LPP 59.62±2.33 36.69±7.64 2.00 34.28±2.53 2.73±0.60 2.00 62.64±2.20 2.73±0.84 3.00
NPE 84.65±0.77 33.03±1.51 41.00 64.66±3.03 12.45±0.30 27.00 85.56±0.92 12.24±0.24 49.00
L1-graph 47.67±3.09 874.91±53.69 1e-3,1e-3 65.41±1.69 657.69±53.51 1e-3,1e-3 74.15±1.67 703.54±37.97 1e-2,1e-3
NMF 81.88±1.31 323.93±8.70 - 83.19±1.47 46.72±1.22 - 57.21±1.38 26.01±0.01 -
RPCA+PCA 91.18±1.11 401.62±7.46 0.20 91.18±1.11 401.62±7.46 0.20 67.80±1.93 366.50±8.78 0.10

TABLE VI
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE THIRD SESSION OF MPIE (MPIE-S3). ALL METHODS EXCEPT PCE

EXTRACT 300 FEATURES FOR CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 97.79±0.81 13.14±0.19 85.00 95.37±1.82 2.74±0.08 90.00 94.04±0.84 2.29±0.04 70.00
Eigenfaces 88.04±0.70 29.51±0.36 - 80.99±2.28 2.01±0.05 - 37.96±1.18 0.94±0.05 -
LPP 78.73±2.04 28.61±4.62 40.00 60.44±2.49 1.61±0.25 3.00 65.96±2.49 1.03±0.13 75.00
NPE 77.83±3.14 25.79±1.02 46.00 72.29±0.99 7.56±0.07 7.00 79.18±2.38 7.06±0.09 48.00
L1-graph 70.40±0.22 1315.37±192.65 1e-1,1e-5 79.28±2.54 1309.27±193.38 1e-3,1e-3 89.40±2.80 1539.26±226.57 1e-3,1e-3
NMF 60.94±0.80 90.64±0.91 - 51.34±1.68 40.04±0.37 - 39.89±1.04 4.28±0.01 -
RPCA+PCA 88.49±2.17 630.08±88.89 0.10 81.02±2.52 491.36±26.75 0.30 37.85±0.83 481.87±25.01 0.30

the images, we randomly divide the data into training and
testing sets. In other words, both training data and testing data
probably contains corruptions. TABLE IX shows that:
• PCE is more robust than the other approaches. When 10%

pixels are randomly corrupted, the accuracy of PCE is at
least 9.46% higher than that of the other methods.

• with the increase of level of noise, the dominance of PCE
is further strengthen. For example, the improvement in
accuracy of PCE increases from 9.46% to 23.23% when
more pixels are randomly corrupted.

F. Subspace Learning on Disguised Facial Images

Besides the above tests on the robustness to corruptions, we
also investigated the robustness to real disguises. TABLEs X–
XI reports results on two subsets of AR database. The first
subset contains 600 clean images and 600 images disguised
with sunglasses (occlusion rate is about 20%), and the second
one includes 600 clean images and 600 images disguised
by scarves (occlusion rate is about 40%). Like the above
experiment, both training data and testing data will contains
the disguised images. From the results, one can conclude that:

• PCE significantly outperforms the other tested methods.
When the images are disguised by sunglasses, the recog-
nition rates of PCE with SRC, SVM, and NN are 5.88%,
23.03%, and 11.75% higher than these of the second
best method. With respect to the images with scarves, the
corresponding improvements over the second best method
are 12.17%, 21.30%, and 17.64%.

• PCE is still the most computationally efficient method.
Considering SRC is used, the time of speedup of PCE
ranges from 2.27 (over NPE) to 497.16 (over L1-graph)
on the images with sunglasses and from 2.17 (over NPE)
to 484.94 (over L1-graph) on the images with scarves.

V. CONCLUSION

Based on a key assumption, i.e., dimension determination
can be realized by removing the corruptions from inputs, this
paper has proposed a novel unsupervised subspace learning
method, called Principal Coefficients Embedding (PCE). Un-
like existing subspace learning methods, PCE automatically
determines the dimension of feature space without specifying
the parameter. Experimental results on several popular image
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TABLE VII
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE FOURTH SESSION OF MPIE (MPIE-S4). ALL METHODS EXCEPT PCE

EXTRACT 300 FEATURES FOR CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 98.36±0.41 14.07±0.31 40.00 90.55±1.02 3.04±0.12 40.00 97.34±0.78 2.73±0.09 85.00
Eigenfaces 92.05±1.37 32.43±0.32 - 82.18±3.88 2.34±0.05 - 43.74±1.17 1.12±0.05 -
LPP 64.67±2.52 27.38±1.57 3.00 61.47±1.12 1.94±0.20 2.00 73.69±2.68 1.11±0.17 2.00
NPE 84.74±1.50 30.45±1.28 46.00 63.80±1.56 9.87±0.49 49.00 87.30±1.10 8.54±0.36 45.00
L1-graph 70.45±0.31 1928.24±212.21 1e-3,1e-3 84.67±2.46 1825.09±197.62 1e-3,1e-3 93.56±1.13 1767.57±156.61 1e-3,1e-3
NMF 69.41±1.73 98.91±1.37 - 53.48±2.07 47.26±0.44 - 25.47±1.40 4.85±0.00 -
RPCA+PCA 93.16±1.17 682.27±39.20 0.30 84.45±3.02 535.31±19.08 0.10 43.66±0.63 514.51±20.82 0.10

TABLE VIII
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING COIL100. ALL METHODS EXCEPT PCE EXTRACT 300 FEATURES FOR

CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 59.60±1.94 12.25±0.32 5.00 53.00±1.22 1.36±0.01 25.00 57.40±1.83 1.15±0.03 5.00
Eigenfaces 57.40±1.67 12.97±0.25 - 44.40±2.21 1.04±0.06 - 54.76±1.14 0.67±0.06 -
LPP 45.86±1.51 13.22±0.54 60.00 30.20±3.08 0.80±0.11 2.00 41.10±2.15 0.63±0.02 90.00
NPE 47.72±2.25 15.30±0.28 43.00 32.78±2.90 5.33±0.08 36.00 44.88±2.12 6.81±0.03 49.00
L1-graph 45.16±1.83 960.80±123.43 1e-2,1e-4 39.42±2.81 801.73±147.83 1e-3,1e-3 38.06±1.96 664.92±93.75 1e-1,1e-5
NMF 51.42±2.17 76.05±1.21 - 41.74±2.05 32.81±0.18 - 56.82±1.46 6.47±0.00 -
RPCA+PCA 58.04±0.90 244.92±50.17 0.30 45.52±2.70 229.54±51.06 0.20 56.48±1.32 227.27±52.66 0.10

TABLE IX
PERFORMANCE OF DIFFERENT SUBSPACE LEARNING ALGORITHMS WITH THE NN CLASSIFIER USING THE CORRUPTED EXYALEB. ALL METHODS

EXCEPT PCE EXTRACT 300 FEATURES FOR CLASSIFICATION. RPC IS THE SHORT FOR RANDOM PIXEL CORRUPTION. THE NUMBER IN THE
PARENTHESES DENOTES THE LEVEL OF CORRUPTION.

Corruptions Gaussian (10%) Gaussian (30%) RPC (10%) RPC (30%)
Algorithms Accuracy Para. Accuracy Para. Accuracy Para. Accuracy Para.

PCE 95.05±0.63 10.00 93.18±0.87 5.00 90.12±0.98 10.00 83.48±1.04 10.00
Eigenfaces 41.69±2.01 - 30.86±1.44 - 30.35±2.05 - 25.37±1.56 -
LPP 76.94±0.75 2.00 62.64±2.20 3.00 55.86±1.27 2.00 42.76±1.53 2.00
NPE 91.54±0.76 49.00 85.56±0.92 49.00 80.66±0.86 49.00 60.25±1.64 43.00
L1-graph 87.36±0.81 1e-3,1e-4 74.15±1.67 1e-2,1e-3 71.63±0.90 1e-3,1e-4 55.02±2.07 1e-4,1e-4
NMF 67.42±1.41 - 57.21±1.38 - 60.57±1.88 - 46.13±1.41 -
RPCA+PCA 76.26±1.12 0.20 67.80±1.93 0.10 64.56±0.67 0.10 52.12±1.34 0.10

databases have validated that our PCE shows good perfor-
mance with respect to additive noise, non-additive noise, and
partial disguised images.

The work would be extended or improved from the fol-
lowing aspects. First, the paper only considers one category
of image recognition, i.e., image identification. In the future,
PCE can be extended to handle the other category of image
recognition, i.e., image verification. Second, supposing the
entire or limited training data set are labelled, one can develop
supervised or semi-supervised PCE by incorporating the label
information into our model. Third, PCE can be extended to
handle outliers by enforcing `2,1-norm over the errors term.
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TABLE X
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE AR IMAGES DISGUISED BY SUNGLASSES. ALL METHODS EXCEPT PCE

EXTRACT 300 FEATURES FOR CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.

PCE 83.88±1.38 8.73±0.90 90.00 87.80±1.57 0.90±0.10 90.00 68.58±1.96 0.71±0.11 60.00
Eigenfaces 72.87±1.99 45.48±5.18 - 64.77±2.96 1.62±0.40 - 36.42±1.69 0.78±0.19 -
LPP 51.73±2.77 44.20±8.25 95.00 44.88±1.93 1.60±0.57 2.00 37.37±2.19 1.12±0.30 85.00
NPE 78.00±2.27 19.84±0.51 47.00 49.17±3.33 4.30±0.04 47.00 56.83±1.83 4.16±0.04 49.00
L1-graph 52.00±1.42 4340.22±573.64 1e-4,1e-4 48.53±2.06 3899.81±487.89 1e-4,1e-4 49.28±2.68 4189.73±431.98 1e-4,1e-4
NMF 47.87±2.64 108.46±2.98 - 43.05±2.39 24.34±0.81 - 31.35±2.04 8.01±0.01 -
RPCA+PCA 72.07±2.30 1227.08±519.27 0.10 63.70±3.74 1044.46±462.33 0.20 36.93±0.90 965.76±385.19 0.10

TABLE XI
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS USING THE AR IMAGES DISGUISED BY SCARVES. ALL METHODS EXCEPT PCE

EXTRACT 300 FEATURES FOR CLASSIFICATION.

Classifiers SRC SVM NN
Algorithms Accuracy Time (s) Para. Accuracy Time (s) Para. Accuracy Time (s) Para.
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