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Abstract—In this paper, we propose a new deep coupled [ dg, g, (u0) = |1 = 313 }
metric learning (DCML) method for cross-modal matching, ﬁ@ ﬁ@
which aims to match samples captured from two different ) 9
modalities (e.g. texts vs. images, visible vs. near infrared hy e 000 --- @ i,
images). Unlike existing cross-modal matching methods which Wi Wy

learn a linear common space to reduce the modality gap,

our DCML designs two feedforward neural networks which hl
learn two sets of hierarchical nonlinear transformations (one “
set for each modality) to nonlinearly map samples from
different modalities into a shared latent feature subspace,
under which the intra-class variation is minimized and the
inter-class variation is maximized, and the difference of each
data pair captured from two modalities of the same class is
minimized, respectively. Experimental results on four different
cross-modal matching datasets validate the efficacy of the
proposed approach.
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Index Terms—Cross-modal matching, multimedia retrieval,

metric learning, coupled learning, deep model. Fig. 1. Basic idea of the proposed DCML method for cross-modal
matching. For each pair of samples which were captured from two
different modalities (e.g. mod& and modeV’), we first represent them
|. INTRODUCTION as two feature vectors and v. Then, we pass them into the designed
two feed-forward neural networks to nonlinearly map them into a shared
Cross-modal matching has been Widely studied in corfeature subspace, where each network contains a set of hierarchical

.. . . A i 1 2 2
puter vision and multimedia analysis in recent years due ghinear transformations and and v are represented as;, and h

. . . . respectively. Finally, we compute the squared distance betweéﬁ these
the rapid growth of data in the form of images, videos angmples at the top layers of the networks and use the distance for cross-
texts [1]-[9], which has many real-world applications suctmodal matching.
as multimedia retrieval [4], [10]-[13], image annotation and
labeling [6], [11], [14], image classification [15], [16] and

heterogeneous face recognition [17]-{19]. ~which matches the most semantically relevant images for

The objectlv_e of cross-modal matchlng_ is to determlr_mg given text query. This problem is challenging because
whether a pair of samples from two different modalithere is usually an inherent heterogenous gap between two
ties represent the same object or not. One representafiyiferent sets of modalities (e.g. textual features vs image
example of cross-modal matching is image-text retrievadatyres). Another example is the cross-modal face recogni-
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matching (SCM) [4] used a similar idea to reduce theetrieval. Hwangget. al. [29] and Ballanet. al. [6] employed
modality gap by using different statistical techniques andariants of KCCA for automatic image annotation. Gag
formulations. While these cross-modal matching methodsk [8] performed nonlinear kernel embedding followed by a
have achieved encouraging performance, most of thdimear dimensionality reduction and CCA for content-based
employ direct projections from the original feature repretrieval and tag-image search. While these methods may
resentations, which usually cannot truly capture the highrovide representative features, these methods may not be
level semantics from nonlinear real-world data. While thescalable when new training data are available. In addition,
are studies that provide nonlinear transformations basexst kernel-based methods do not exploit label information
on kernels [21], [22], these models are not scalable farhich make them less discriminative. With this in mind, we
new training data. While more recent deep learning modalsvelop a scalable framework using metric learning and
have provided scalable nonlinear hierarchical transforméeep learning techniques which provides strong nonlinear
tions for discriminant feature representations, only few @épresentations for each modality such that the gap between
them have been implemented particularly for cross-modélem is reduced.
matching [23]-[25]. Hence, how to learn a model which can
extract high-level semantic representations efficiently from
nonlinear relationships across different modalities remaifts
a challenging problem in cross-modal matching. In recent years, numerous metric learning methods have
In this paper, we propose a new deep coupled metheen proposed in computer vision and machine learn-
learning (DCML) method for cross-modal matching. Unlikéng [30]. The aim of metric learning is to learn a distance
most existing methods modal-invariant feature learningetric such that the distance between semantically similar
methods such as CCA and PLS which learn a single lingaairs are reduced, and dissimilar pairs are enlarged as much
latent space to reduce the modality gap, our DCML desigas possible. These methods can be mainly categorized into
two neural networks to learn two sets of hierarchical notwo classes: unsupervised and supervised. However, most
linear transformations (one set for each modality) to nomexisting metric learning methods are designed for intra-
linearly map data samples into a shared feature subspavedal matching, which cannot effectively model the rela-
under which the intra-class variation is minimized and th@nship of images captured from different modalities. More
inter-class variation is maximized, and the difference o&cently, several coupled metric learning algorithms have
each sample pair captured from two modalities of the sarheen proposed for cross-modal matching such as cross-
class is minimized, respectively. Fig. 1 illustrates the basmodal metric learning (CMML) [31], maximum-margin
idea of the proposed approach. Experimental results on famaupled mappings (MMCM) [32], and coupled marginal
different cross-modal matching applications demonstrdisher analysis (CMFA) [33]. However, these methods only

Metric Learning

the effectiveness of the proposed method. learn a pair of linear transformations to map cross-modal
samples into a new common feature space, which is not
Il. RELATED WORK effective enough to discover the nonlinear relationship

f samples. Our proposed DCML is a metric learning
proach which learns two sets of nonlinear transformations
to map data samples into common space a such that
the intra-class variation is minimized and the inter-class
_ variation is maximized, and the difference of each sample
A. Cross-Modal Matching pair captured from two modalities of the same class is
Existing cross-modal matching methods [3]-[5], [12]minimized.
[19], [26]-[28] can be categorized into two classes: ho-
mogenous data synthesis and cross-modal invariant feature )
learning. For the first class, data from one modality ar%‘ Deep Learning
synthesized into another modality so that the modality Deep learning aims to build high-level features by learn-
gap is reduced. For the second class, data instances fiiagnhierarchical feature representations from raw data. Over
different modalities are mapped into a common latent spaitee past few years, a number of deep learning algorithms
so that the modality difference is reduced and they cédmave been proposed [34] and some of them have been suc-
be measured directly. Most existing cross-modal matchiregssfully employed in various computer vision applications
methods learn a single latent space through a pair of linearch as image classification [35], object detection [36], and
transformations to reduce the modality gap. Real world dat&sual tracking [37]. Existing deep learning methods can be
are typically nonlinear in nature, hence these methods manainly categorized three classes: unsupervised, supervised,
not be fully effective for reducing the modality gap durand semi-supervised. Representative deep learning models
ing cross-modal matching. There are several kernel-basedluded deep stacked auto-encoder [38], deep convolu-
methods that provide nonlinear feature representations tkiahal neural networks [39], and deep belief network [40].
are invariant for cross-modalities. For example, Hardeton While many attempts have been made on deep learning
al. [21] used kernel canonical correlation analysis (KCCA) the literature, little progress has been made for cross-
to learn a common semantic space for for cross-modabdal matching applications [7], [23]-[25], [41]. Kirt.

In this section, we briefly review three related topics‘?
1) cross-modal matching 2) metric learning and 3) de
learning.
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al. [41] used a deep belief network to learn the represeB- Deep Coupled Metric Learning

tation _of each modality and then perform semantic trans-pjost existing coupled metric learning algorithms only
formation using CCA. More recently, Ngiamt. al. [23] |earn a pair of linear transformation, which are not effective
proposed a multi-modal deep learning framework basgflough to capture the nonlinear manifolds where samples
on an auto-encoder architecture to discover the correlatiggua"y lie on. To address this limitation, several kernel-
across modalities. Feng. al. [24] proposed a deep auto-pased coupled metric learning methods such as kernel CCA
encoder for cross-media retrieval which jointly reconstrucik ccA) [3], [21] and its variants [6], [8], [29] have been
the representation for each modality and maximize thgonosed, which adopt the kernel trick to implicitly map
correlation between modalities. Yat al. [7] implement-  samples into a high-dimensional kernel feature space and
ed the deep canonical correlation analysis (DCCA) [42hen apply coupled metric learning in that high-dimensional
method for image and text matching through maximizingyace. However, these methods suffer from the scalability
the canonical correlation objective Fhrough a deep networ&omem because there is no explicit nonlinear mapping
Wang et. al. [25] proposed a unified deep network tqn these kernel-based methods. To address the limitation
capture the_high—le\_/el semantics and correlations betwesinihese previous coupled metric learning methods, we
two modalities. _Unhke these deep learning methods, OHFopose a deep coupled metric learning (DCML) method
DCML method is a deep framework based on a couplgf geveloping two deep neural networks to learn two sets
metric learning approach to jointly exploit the discriminagt pigrarchical nonlinear transformations (one set for each
tive information among training samples and reduce thgogality) to nonlinearly map cross-modal samples into a
modeality gap. shared feature subspace, so that both the nonlinearity and
scalability problems can be addressed simultaneously.

As shown in Fig. 1, we construct a coupled deep neural
network to compute feature representation for cross-modal
In this section, we first briefly review the coupled met?:ﬁ]’ ;’:i? or}eév;\;?;kinf;;r?cr:ee frrgr?]d?:\'g' msop de;i:::gzl,ly\;veglgzgs
::]Cetlﬁgén:n% izﬁﬁgf;hrhé:?;igrze;:tgléhe proposed DC them into the deep n_etworks which cpnsist of multiple

' stacked layers of nonlinear transformations. Assume there
are L + 1 layers in each of these two networks (denoted
_ ) as ModeU and ModeV), andd!, and d! units for the
A. Coupled Metric Learning network U and networkV in the Ith layer, respectively,

Let U = [up,us,...,uny] € RN and Vv = wherel <[ < L. Fo_r_two dat_a instances; andz_;z- which _

[v1, s, ...,vx] € R2XN be two sets of samples captured® from two modalities, their outputs of the first layer in

from two different modalitiesy:; € R% andv; € R are these two networks are computed E%i = s(Wyui+b,),
the ith corresponding pairl < i < N, andd; andd, Piv = s(Wyvi+b;), whereW, andW, are the projection
are the corresponding feature dimension. Coupled metfatrices to be learned in the first layer of these networks,

. . . . . 1 1 i i i
learning approach aims to seek the following projectiod b, and b, are the bias vectorss is a nonlinear
functions active function which is applied component-wise. Then,

J J J J the outputs of the first layer of these networks, and
g1 :R" = R%  gp : R =R (1) hl, are used as the inputs of the second layer. Hence, the

2 2711 2
whered < min(di,ds) is the feature dimension of theogt@ts ;;2;:119 sbe200nc:] Iay;;QarbauW_Q S(Wﬁhm + bU.)’
learned latent common space, under which the similarity ~ s(Wyhi, +b), whereW; andW, are the projection

. 5 5 .
of these two sets is maximized so that the gap differenI trices, and)_u ?ndsb’.v a_llre lthehblas vector];s of Bt;elsecond
is reduced as much as possible. ayer, respectively. Similarly, the outputs for thth layer

N 13l-1 [ [ lyl—1 l
Most existing coupled metric learning algorithms [3]are.hw = s(Wyhiy +0y), hiy = s(Wyhi,™ +b,), and
[20] assume that; and g, are linear parameterized func-

I1l. PROPOSEDAPPROACH

the outputs for the top layer are:

tions which are usually defined as g(u) = hE=sWEnl=t 4 bk (3)

g1 =W, g2=WaV 2) 92(v) = hy=s(Wyhy" +b;) (4)
where W, € R4 and W, € R4<d are two linear WhereW,” andW ) are the projection matrices, andb;’
projection matrices. are the bias vectors for the top layer.

Many criterions can be employed to measure the simj- 10 ImProve the cross-modal matching accuracy, we have
larity of two setsl/ andV in the learned metric space, andh€ following two objectives:
the most two popular measures are canonical correlatiore It is desirable to exploit more discriminative informa-
maximization and Euclidean distance minimization. For tion from training samples.
the first one, CCA is the most popular method. For the « It is expected to reduce the modality gap of the data
second one, representative methods include CDFE [43], pair captured from different modalities.
CSR [44], CMML [31], MvDA [17], GMLDA [45], and Fig. 2 illustrates the basic idea of our proposed DCML
GMMFA [45]. method. To achieve the first objective, we employ a large
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4
o the training samples, we formulate the following optimiza-
{ ° \ AA tion problem for our proposed DCML model:
| e A }
A\\\ //b /’/ \\\ arg min H = H1 + )\1H2 + )\gHg
S - / PPN \ 91,92
Mode U [ (@) (3\ \ N
T b 00 | 1 2 L ;L
D[/ A VN0 // / = 5 f(l - luq,’Uj (9 - dgl,gg (hiu7 hj'u))
! \\‘ \\ Seeoo- e // ,7,,:1
i o \ N N L1
\ A P N i T T A - . L2
\ /O 1 AA Class1 ! B
S A ' B O Class2 | @0 +7 Z Z 61] ||hzu - hivH2
Mode V i @ O Class 3 i i=1 =1
""""""""" A L
2
Fig. 2. Basic idea of the proposed DCML method. There are eight +—= Z <||W7i||% + ||W1€H%ﬂ
samples captured from two different modalities (e.g. Md@deand V'), 2 -1
and each modality has four samples. All these eight samples come from 12 In2
three classes, denoted as circles, triangles and squares, respectively. In +b;, |5 + ||bUH2) (10)

the original feature space of each modality, the similarity of the samples

from class 1 is smaller than that of the samples from two differenijhere H, exploits the discriminative information using
class (e.g. class 1 and class 3 in Mode and class 1 and class 3 in - P . .
Mode V'), which may reduce the recognition performance. In the Iearne% Iarge-margln criterion and label information to learn

latent feature space by DCML, we expect that the intra-class similarijonlinear projections,H, reduces the modality gap by
is increased and inter-class similarity is reduced, and the similarity pfreserving the similarity between each layer for similar
samples from the same class across different modalities is increased . . P
that discriminative information can be exploited and modality gap ca“%ﬂmng pairs, andH; represents the regularization of the
be reduced, simultaneously. Having matched samples captured from fd@rameters of the developed deep netwoigsand A, are
different modalities into the same sematic space, we can conduct matchipgo parameters to balance the effect of the different terms,
for different applications, respectively. d;; is an indicator where it is 1 ifi; andv; shares some
common label and 0 otherwise, arfdz) is a generalized

L L . - lpgistic loss function to smoothly approximate the hinge
margin criterion to minimize the intra-class variation angf ¢ i, — max(z,0), and is defined as followk
= ,0),

maximize the inter-class variation for feature representation
at the top layer of these two networks, simultaneously. fz) = llog(l + exp(p2)) (11)
Specifically, for each pair of training samples and v; p

which are from two different modalities, we compute theivhere is the sharpness parameter.

squared distancé?  (hf,, h%,) at the top layer of these

two networks as $5i|géwsf§“’ We employ the stochastic sub-gradient descent algorithm
) P I I to solve the optimization problem defined in (10) and obtain
dg17g2 (hiu> h’j'u) = [|hjy, — h’j'u||2 (5) the parameteriWﬁv Wll,, biu bi)}|lL:1_ The gradient of the

We expect thatifhm(hﬁ“hfv) is as small as possible if objective functionH with respect to these parameters can

u; andv; are the same class, and as large as possiblP§ computed as follows:

they are from different class, which are formulated as the OH N N
following constrains: ST = > ob, (N> W, (r T
u 1,7=1 i=1
a2 (hE REY <01, if Ly, =1 6 N
5211,92( j:w iv) =1 _ ivj (6) Jr)\QW,i (12)
dgl,gz (h/zu7h/]fu) Z 927 if Zuin =-1 (7) OH N N
l I—1I\T l I—1\T
wherel,,,;, = 1 means that; andv; are the same class, oWl Z (I)jv(hjv )+ Z)‘l‘l’iv(hw )
andl,,,, = —1 indicates that they are from different class, Y ij=1 l i=1
6, andd, are the small and large thresholds, respectively. To +X2 W, (13)
reduce the number of parameters, we adopt the following 55 N l N . l
large margin optimization objective function to integrate 5 = Z ;i + Z)‘I\Iliu + A2by, (14)
these two constrains: “ i,j=1 i=1
. 2 L L oOH N N
g?lgr; Hy =1 =l (9 — dyg, g, (P, hj'v)) (8) L Z (I)zuy + Z >\1\I’,lw + )\2b,lU (15)
v i,j=1 i=1

wheref; =0 — 1 andfy, = 0 + 1. ) )
To achieve the second objective, we minimize the diffel¥nere® and¥ are the updating functions. For the top layer

ence between each pair of data of the same class captured

from different modalities over all layers.

L—-1 N

min Hy = > ||y, — i, |3 (9) . |
91,92 =1 i=1 1We performed empirical tests and found that our method yielded better
performance when a smooth approximation for the hinge loss function was

By applying the above two criterions for all samples imsed.
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Algorithm 1: DCML

Input: Training setU and V', network layer number
L + 1, thresholdd, learning raten, iterative
numberR, parameter\; and \,, and
convergence erraf.

Output: Parameter§ W/, bl } £ | and {W} bl }L ..

Step 1 (Initialization):

Initialize {W}, b}, and {W} bL}E .

Step 2 (Optimization by back propogation):

for r=1,2,--- R do

Randomly select a sample pdii;, v;; lu,»;) from the

training set.

Seth), = u; andh), = v;, respectively.

fori=1,2,---,L do

| Computeh!, andh’, using the deep networks.
end

fori=L,L—1,---,1do

| Obtain the gradients according to (12)-(15).
end

fori=1,2,---,L do

end
CalculateH,. using (10).
If »>1and|H, — H._1| < &, go toReturn.

end
Return: {W., b\ -, and {W., b\ - .

| Updatew!, Wl, b, and b}, according to (16)-(17).

whenl = L, they can be computed as follows:

oL, = ()i, —h},) 08 yh)
(I)jL'U = fl(’y)(hij - thu) © Sl(ijv)
vl = 6i(hiy, — hiy) © 5 (yh)
\IliL'U = 51](thU - h’ﬁ;) © Sl(yzl;)>
where
v 2 L=y, (0 —d2,,, (hE, BE)
Yo = Wi+,
Vi, & Wohl bl
yl, & WAL 40!

For all other layers] <! < L—1, ® and¥ are computed

as follows:
o, = (W,Hrel o' (v,
(I)ljv = (th)—i_l)T(I)étl @ S/(y_%j'u)
v, = (WY 465k, — hiy)) © 8" (45,)

where the operationc” denotes the element-wise multi-

plication.

wheren is the learning rate in our gradient descent algo-
rithm.

Algorithm 1 summarizes the detailed procedure of the
proposed DCML method.

C. Implementation Details

Our deep network consists of several fully-connected
layers of different dimensions, where the learning rate
parameter\; and )\, were set as 0.0001, 0.01 and 0.0001,
respectively for all experiments. The parameteig, and
W/ of our DCML model were initialized a§ € R%*di—1
(d; is the feature dimension of thah layer), which is
a matrix with ones on the diagonal and zeros elsewhere.
The bias vectorg!, andb! were initialized as zero vectors.
For the activation function, we used tkemh function. We
set the layers tol, = 2 for all experiments to prevent
over-fitting. We performed empirical tests which show that
networks with L > 2 are comparable with, = 2. It
is expected that if more training pairs are used, a deeper
network would be more effective [46].

In the training stage, we randomly choose sample pairs
and iteratively passed through them to the network. For
each epoch, the positive and negative pairs are of equal
qguantity. The training stage converges when the objective
function does not change within a certain threshele:
0.0001 for an epoch.

IV. EXPERIMENTS

We conducted experiments on three different cross-modal
matching applications which includes text-image matching,
tag-image retrieval, and heterogeneous face recognition on
four datasets to demonstrate the effectiveness of the pro-
posed DCML method. The followings describe the details
of the experiments and results.

A. Text-Image Matching on the Wiki Dataset

We applied the Wiki image-text dataset [4] for cross-
modal text-image retrieval. The dataset consists of 2866
image-text pairs where each pair consists of an image and
the corresponding complete text article annotated with a
label from 10 semantic classes (i.e. sport, music, warfare,
etc). We evaluated our DCML using two image descriptors
in our experiments. First, each image is represented by a
128-dimensional SIFT descriptor by following the settings
in [4], [45]. Second, we extracted a deep convolutional neu-
ral network (CNN) feature where the model is pre-trained
in the ImageNet dataset [35] with the deep architecture
in [47] where we extract the features from the fc7 layer and
employed PCA to reduce it into 512 dimensiofor each

Then, we use the the following gradient descent alg@sxt, we represented it as a 10-dimensional feature vector

rithm to update the parametelg!, W

l
u?
deep networks:

OH OH
Url _ Url o Url _ Hrl o
u - u 7] aWéﬂ v v 778W5 (16)
OH OH
! _ l gl

1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4, b, andb), of our \ith the Latent Dirichlet allocation (LDA) model. We

randomly used 1300 pairs in our experiments for training,
130 pairs per class, and used the remaining 1566 pairs for

2We obtained these parameters by using the 10-fold cross-validation
strategy.
Shttp://www.vifeat.org/matconvnet/models/imagenet-vgg-f.mat.
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. oas TABLE Il
e e THE MAP (%) COMPARISON OF OURDCML AND STATE-OF-THE-ART
03 ——GMMFA 03 ——GMMFA CROSSMODAL MATCHING METHODS ON THE WIKI DATASET USING
——GMLDA —+—GMLDA
i MDA i THE CNN FEATURE.
5025 ——SCM 5025 X
8 KCCA 8
< 02 %:;‘éﬁ 2 02 Method Image query| Text query | Average
018 Seaa 018 S PLS [20] 31.28 26.45 28.86
CCA [3] 35.42 32.50 33.96
0 200 400 600 800 1000 010 200 400 600 800 1000 GMMFA [45] 2776 1285 2030
Scope Scope GMLDA [45] 18.01 14.09 16.05
(a) Image— Text (b) Text— Image MvDA [17] 16.17 12.00 14.09
SCM [4] 38.74 37.03 37.88
Fig. 3. Precision-scope curve versus different valued/fofor different KCCA [21] 37.34 34.61 35.98
coupled metric learning methods from the Wiki Experiment using SIFT LCFS [5] 39.39 38.09 38.74
image features, wher&/ is the number of top-retrieved instances. LRBS* [49] 44.41 37.70 41.06
RE-DNN* [25] 34.04 35.26 34.65
TABLE | JFSSLt [48] 42.79 39.57 41.18
THE MAP (%) COMPARISON OF OURDCML AND STATE-OF-THE-ART DCML 55.36 53.81 54.59
CROSSMODAL MATCHING METHODS ON THE WIKI DATASET USING *The results are from the original papers.
THE SIFT FEATURE.
Method Image query| Text query | Average
PLS [20] 21.49 17.07 19.28 . .
CCA [3] 24.60 19.18 21.89 for the image and text when the SIFT feature is used, and
gmygAA [[fg]] ig-gg gg; %-gg 51210050 and 16+100—50 when the CNN feature is
MVDA [17] 15.99 1396 1463 employed, respectively. For experiments W|th_ hand-crafted
SCM [4] 23.84 22.23 23.04 features, we also compared our method with CDL [28]
E((::ESA[E]H gg-gg gi%‘ giég which performed dictionary learning, LGCFL [12] which
CDL* [28] 5776 2311 95 44 used a variant of subspace Iearnlng method to redgce the
LGCFL* [12] 27.90 21.77 24.80 modality gap, and JFSSL [48] which performed linear
JFSSI® [48] 30.63 22.75 26.69 regressions and multimodal graph regularization for feature
DCML 35.04 25.55 30.03

selection. For experiments with the CNN features, we also
compared our method with JFSSL, LRBS [49] and RE-
DNN [25]. LRBS [49] employed bilinear transformation

testing. For a fair comparison, we implemented other cros%r-‘d RE'DNN_ used deep networks for reducing the modallty
modal matching methods with their publicly available coded?P: respec_tlvely. _Here, CDL and RE-DNN are nonfinear
under the same protocol. We repeated our experiments rfgresentanons_. Different ”OT“ our degp network_, RE'DNN
times and took the average as the final matching results[.)erformed multi-modal learning by using a Euclidean dis-

We compared our DCML with eight cross-modal matcht-"’mce criterion with two stages of intra-modal pre-training
ing methods: CCA [3], PLS [20], MvDA [17], GML- and inter-modal full training, while our method performed
DA [45] GMMEA [45] SCM [4] KCCA [21] and Lcg- direct full training with cross-modal specific criterions.

S [5]. CCA and PLS are cross-modal models which reduggbleDSCII\;llt sh?jw :Ee mean av%ralge ptLec(;smn (mAPV)V'I?'f
the modality gap via subspace analysis using pairwig‘.)éjr and other cross-modal methods on the Wik
information. MvDA, GMLDA and GMFA learned a Singlemage—textdataset \_/vhen the hand-crafted and CNN features
common discriminative representations for two modes Byere used, respectively. It can be seen that our DCML stil
using the fisher criterion. KCCA used kernels and fin Chieves the best performance for both CNN and SIFT,

a common space between two modalities based on trrg?gpectively. It is important to note that it is difficult to

pairwise correlation informatidn SCM obtained represen-pfarform an exac'F comparison due to certain experimental
tations for two modalities to maximize their correlation ifflerences. Particularly, LRBS and RE-DNN employed

and transform them in a semantic space. LCFS learne 0 and 20 LDA topics as text features respectively, while

coupled projections to transform each modal to a comm BS. and RE-DNN g_sed different CNN models for their
subspace defined by class labels and low-rank constra periments. In addition, for_ LGCFL, LRBS.’ and Re-
Among these methods, only KCCA performed nonlineaf. N, the number of _the train and test sphts are also
representations while other methods performed linear ffferent from ours which followed [5] experimental set-

gression or projection. The source codes of these compapé)d We see that our DCML outperforms other compared

methods are provided by the authors and we carefu foss-modal matching methods by7d&nd  in average

tuned the parameters of different methods to obtain the b Qen the CNN and S.”.:T features were use_d, respectively.
results for a fair comparison. ig. 3 shows the precision-scope curves of different coupled
In our DCML method, we trained our model using threénetric learning methods with the SIFT feature on the Wiki

layers (L = 2) on the training set and the feature dimensiopinage'text dataset. The scope refers to the number of top-

ranked samples. Similarly, the precision-scope evaluation is
for these layers were set as 1280—20 and 16-50—20 . . .
S€ layers were set as consistent with the mAP for both the image and text query

41n our experiments, we made use of Gaussian Kernels which providSKS Whe_re our DCML outperforms the other compared
the best results among different kernels. methods significantly.

*The results are from the original papers.
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TABLE IlI
THE MAP (%) COMPARISON OF OURDCML AND STATE-OF-THE-ART
CROSSMODAL MATCHING METHODS ON THE PASCAL VOC 2007
DATASET USING THE HAND-CRAFTED IMAGE FEATURE

—+—CCA
——PLS
—+—GMMFA|
—+—GMLDA
—+—MvDA
—+—SCM
KCCA

4
@

o
o & ©
w & n
o
=

o
i
&
Precision
o
w

Precision

Method Image query| Text query | Average 02 w

PLS [20] 17.40 14.01 15.71 015 \‘\K_“ o2

CCA [3] 14.89 14.28 14.59 04 DU SUUS RS SEeS S 01

GMMFA [45] 29.65 26.52 28.08 005200 200 600 800 1000 0

GMLDA [45] 30.58 25.47 28.02 Scope Scope

MvDA [17] 12.30 9.15 10.72 (a) Image— Text (b) Text— Image

SCM [4] 23.08 19.38 21.23

KCCA [21] 29.24 24.66 26.95 Fig. 4. Precision-scope curve versus different valued/ofor different
LCFS [5] 41.37 33.48 37.43 coupled metric learning methods from the PASCAL VOC 2007 Experi-
CDL* [28] 37.41 29.44 33.42 ment using BOVW-GIST-COLOR image features, whéteis the number
LGCFL* [12] 40.10 32.00 36.00 of top-retrieved instances for the Pascal VOC 2007 dataset.

JFSSLt [48] 36.07 28.01 32.04

DCML 44.49 36.26 40.38

*The results are from the original papers. ..
. 'ginat pap ble 1lI-IV show the mean average precision (mAP) of

TABLE IV our DCML and other cross-modal methods on the Pascal
THE MAP (%) COMPARISON OF OURDCML AND STATE-OF-THE-ART  dataset with image and text query, respectively. We see
CROSSMODAL MATCHING METHODS ON THE PASCAL VOC 2007
DATASET USING THE CNN IMAGE FEATURE. that our DCML outperforms ot_her compared cross-modal
matching methods by approximatelfs2and 3% when

Method Image query| Text query | Average the CNN and handcrafted features were used, respectively.
oCA [[23?] B o | e As expected, the CNN features generally achieved better
GMMFA [45] 64.73 68.86 66.80 performance because of its strong representation. Fig. 4
GMLDA [45] 67.19 72.47 69.83 shows the precision-scope curves of different coupled met-
g"é?AA[‘E]”] Z;g'ég géglz gg-g‘l‘ ric learning methods using the handcrafted feature. We
KCCA [21] 67.15 67.66 67.41 see that our DCML still outperforms the other compared
LCFS [5] 70.94 74.74 72.84 methods in both forms of the cross-modal matching tasks.
LRBS* [49] 65.10 68.69 66.90

DCML 73.77 75.01 74.39

*The results are from the original papers. C. Tag-lmage Retrieval on the NUSWIDE Dataset

In this subsection, we conducted another tag-image re-
] trieval experiment on the NUS-WIDE dataset [52]. This
B. Tag-Image Retrieval on the Pascal VOC 2007 Dataset  gataset contains approximately 270000 images with con-
In this subsection, we conducted tag-image retrievaépts of 81 categories. Following the same setting in [24],
experiments on the Pascal VOC 2007 [50]. The dataset cave also selected 10 categories having the largest quantity
tains 5011 image-text pairs for training, and 4952 imagend extracted 1000 image-tag pairs for each category.
text pairs for testing. Each image-text pair is annotatddence, we have a subset of 10000 pairs for experiments. In
from 20 categories (i.e. aeroplane, bottle, horse, sofaur experiments, we randomly split this subset into three
Unlike the Wiki dataset which utilizes text information fromparts: 8000 pairs for training, 1000 pairs for validation, and
articles, the Pascal VOC 2007 dataset only makes use of i@3)0 pairs for testing, where each part contains each equal
information. We also evaluated our DCML using two setumber for samples for each category. We also evaluated
of descriptors to represent the images in our experimentsir DCML with two types of feature descriptors: the com-
The first image feature representation is the concatenatinined local feature provided in [52] which is represented as
of bag of visual words (BOVW), GIST features and coloa 1134-dimension feature vector, and CNN feature which
histograms provided by [51], which is a 776-dimensiois reduced to 512 dimension by PCA. Different from the
feature vector. The second is the CNN feature which BASCAL VOC 2007, tag information provided is more
extracted from a similar setting as the previous experimengpresentative using larger amount of words for each image.
The text feature representation is based on the absolk&ch tag information is represented by a 1000-dimensional
rank feature also provided by [51] and were tagged by thag-of-words model provided in [52]. To evaluate the
Amazon Mechanical Turk. We used the original train angderformance of different methods, we used the mAP and
test split provided but removing image-text pairs that hatep 20% percentage measures as in [24]. In our DCML, we
multiple labels, resulting to 2808 and 2841 train and teperformed PCA to map each sample into a 512-dimensional
set, respectively. feature vector, and trained the model with a three layer deep
In our DCML method, we trained our model using threenodel on the training set. The feature dimension for these
layers on the training set and the feature dimension for thdagers were set as 532200100 for both image and text
layers were set as 776200100 and 399+-200—100 for descriptor.
the image and text when the BOVW-GIST-COLOR feature We compared our DCML with eight state-of-the-art
is used, and 512300—50 and 399-300—50 when the cross-modal retrieval methods. Table V shows the mean
CNN feature is employed, respectively. We also comparesterage precision (mAP) and Top 20% criteria on the
our method with JFSSL, CDL, LGCFL, and LRBS. Taimage-text and text-image query experiments. We see that
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TABLE V
THE MAP (%) AND TOP 20% RESULTS ON THENUS-WIDE-1(K DATASET.

mAP Top 20%
Method Image query| Text query | Average | Image query| Text query | Average
CCA-AE [41] 32.6 26.8 23.4 37.0 33.8 35.4
CCA-Cross-AE [41] 13.7 34.4 27.2 29.0 47.7 38.4
CCA-Full-AE [41] 14.8 24.2 24.2 37.1 38.2 37.7
Bimodal AE [23] 25.0 29.7 27.4 30.2 354 32.8
Bimodal DBN [23] 17.3 20.3 18.8 25.3 27.0 26.2
Corr-AE [24] 31.9 375 34.7 47.1 53.5 50.3
Corr-Cross-AE [24] 34.9 34.8 34.9 53.1 59.7 56.4
Corr-Full-AE [24] 33.1 37.9 355 49.6 56.5 53.5
DCML 38.5 40.5 39.5 61.5 62.5 62.0
CCA-CNN 69.5 67.4 68.4 65.5 64.8 65.2
SCM-CNN 82.7 77.8 80.2 68.2 66.9 67.6
KCCA-CNN 81.7 80.6 81.1 71.1 70.5 70.8
LCFS-CNN 85.1 80.3 82.7 72.7 72.8 72.8
DCML-CNN 85.6 82.6 84.1 76.4 80.4 78.4
TABLE VI

RECOGNITION PERFORMANCE COMPARISON OF OURCML METHOD

AND STATE-OF-THE-ART COUPLED METRIC LEARNING METHODS ON
THE CASIA VIS-NIR (VERSION2.0) DATASET.

70,

——CCA
: / o Method Rankone | VRL | VR2
* / v CCA [3] 76.08+ 1.86 | 43.47 | 64.53

90

807

)

= —CCA
. |—rLs

4
- / —MvDA

- - GMLDA

02} o~ GMMFA|
= KCCA

True Positive Rate
Accurate Recognition Rate (%)

prev “ Zham PLS [20] 33.90+ 2.99 | 9.30 | 30.61

o o 10 e L MvDA [17] 42,904+ 3.60 | 14.99 | 39.30

GMLDA [45] 43.61+ 3.06 | 13.57 | 39.17

(a) ROC curve (b) CMC curve GMMFA [45] | 66.65+ 2.03 | 30.32 | 62.83

KCCA [21] 67.20+ 3.03 | 29.77 | 58.89

Fig. 5. Performance curves of different coupled metric learning methods DCML 82.19+ 1.11 | 46.71 | 66.85
son the CASIA VIS-NIR database (version 2).

TABLE ViII

RECOGNITION PERFORMANCE COMPARISON OF OURCML METHOD
our DCML method outperforms all the other Compared AND STATE-OF-THE-ART HETEROGENEOUS FACE RECOGNITION
methods including some deep models which were proposed METHOPS ON THECASIAVIS-NIR (VERSION2.0) DATASET.

for cross-modal retrieval [23], [24], [41]. Our method with Method Rankone T Year
CNN features is better b9.5% and 2% in the mAP and FaceVACS [55] 5856+ 1.19 | 2012
4% and8% in the top20% evaluation metric for the image PCA+Sym+HCA [53] 23.70+ 1.89 | 2013
d text query. respectivel HOG+LDA+Cosine [56] 73.28+ 1.10 | 2014
query and text query, resp Y. Reconstruction+UDP(DLBP) [57]| 78.46+ 1.67 | 2015
Gabor+RBM+Remove 11PCs [58] 86.164 0.98 | 2015
. CDFL (s=3) [59] 71.50+ 1.40 | 2015

D. Heterogeneous Face Recognition on the CAS A VISNIR DCML 82.19+ 1.11

Dataset

In this subsection, we performed VIS-NIR heterogeneous
face recognition on the CASIA VIS-NIR (version 2.0) [53].0f our model were as the same as those used in the previous
There are 275 subjects in the CASIA VIS-NIR (versiomxperiments.
2.0) dataset. For each subject, there are 1-22 VIS and 5-50able VI shows the recognition performance of different
NIR images. All face images in both the visual and neaoupled metric learning methods on the CASIA VIS-
infrared face sets were aligned and cropped ir#®x 128 NIR (version 2.0) dataset, where three different evalua-
pixels according to the provided eye coordinates. For eattbn measures including the rank-one recognition rate, the
face image, we divided it intd6 x 16 non-overlapped verification rate at 0.1% false acceptance rate (VR1), and
blocks and extracted the SIFT [54] feature from eade verification rate at 1.0% false acceptance rate (VR2)
block. Then, the SIFT features from all blocks within thevere evaluated and compared. Fig. 5 shows the receiver
same image were concatenated into a longer feature vectqrerating characteristic (ROC) curve and the cumulative
Finally, we applied WPCA to learn a project matrix to mapnatch characteristic (CMC) curve of different coupled
each concatenated feature into a 2000-dimensional feataretric learning methods. We clearly see that our DCML
vector. consistently outperforms the current state-of-the-art coupled

We followed the standard protocol of the CASIA VIS-metric learning methods, and the minimal improvement is
NIR (version 2.0) dataset, where VIS images were used @41% in terms of the rank-one recognition rate.
the gallery set and the NIR images were used as the prob&\Ve also compared our DCML with state-of-the-art het-
set. We trained our deep model using three layers on tegeneous face recognition methods, and Table VII shows
“View 1” subset and the dimensions for these layers wetbe performance of different methods. As seen, our method
set as 20001000500, respectively. All other parameterds very competitive and achieved comparable performance
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: . : TABLE VIII
with the state-of-the-arts. While our method is worse thajank -one RECOGNITION RATE ON THECASIA VIS-NIR (VERSION

the method in [58] which yields the best performance, 2.0)DATASET AND AVERAGE MAP ON THE WIKI, PASCAL VOC
it is to note that these methods extracted more powerfuP007: NUS-WIDEDATASET USING DIFFERENTDCML METHODS.

featL!res for_cross-_modal face match_mg besides coupled—g i DCMLT | DEMLZ T DEML
metric learning while ours used basic handcrafted SIFT ["Wwiki 56.99 9.5 30.03
features. It is expected that using stronger features would Wiki (CNN) 45.21 53.14 | 54.59
PASCAL VOC 2007 18.97 39.08 | 40.38
also lead to better performance for our DCML method. PASCAL VOC 2007 (CNN)| 29,39 7297 | 7439
NUS-WIDE 38.66 39.00 | 39.50
NUS-WIDE (CNN) 79.35 82.59 | 84.00
E. Parameter Analysis CASIA VIS-NIR 79.80 81.76 | 82.19
Influence Analysis of Different Components in DCM- TABLE IX

CPU TIME (SECONDS USED BY DIFFERENT COUPLED METRIC
ECASIA VIS-NIR DATABASE (VERSION
2) DATASET.

L: To investigate the contributions of different terms in our
DCML model, we developed two variations of our method-EARNING METHODS ON TH
DCML1 and DCML2. For DCML1, the discriminative part

H; is removed. For DCML2, the correlation paH; is Method Training | Testing
removed. The optimization procedure would be similar CCA T3] 0.30 0.01
our DCML method which performs stochastic gradient FLs 120 208:50 | 0.08

) VDA [17] 0.27 0.03
descent. Table VIII shows the performance of different GMLDA [45] 0.59 0.01
DCML methods on different datasets. We see that both the GMMFA [45] 0.41 0.01
discriminative and correlation terms contribute to the final Keca [21] el

recognition rate. We also see the DCML2 consistently per-

form better than DCML1 which means the discriminative

part H; contributes more to the overall recognition rate o(f;_ Discussion

our DCML method.

Convergence AnalysisWe evaluated the convergence of 1he above experimental results suggest the following

our DCML method. Fig. 6 plots the value of the objectivdree key observations:

function of DCML versus different number of iterations on 1) Our DCML method achieves strong performance and

the CASIA VIS-NIR (version 2.0) dataset. We see that the  beat the state-of-the-art cross-modal methods in three

proposed DCML method converges4f ~ 45 iterations. image-text/tag retrieval experiments (Wiki, PASCAL
VOC 2007, and NUS-WIDE). This is because our
approach trained a deep network to model the non-

F. Computation Time

Lastly, we investigated the computational time of our
DCML and compared it with those of existing coupled
metric learning methods. Our computer is configured with

a 3.40GHz CPU and 24.0 GB RAM. Table IX shows 2

the computational time for training and testing on the

linearity of real-world data by exploiting both the
discriminative and nonlinear information, simultane-
ously. Moreover, our DCML can be also extended for
the tag annotation task.

) For text/tag-image retrieval experiments, we have
used different types of image features in our experi-

ments and observed that the CNN features provided
a boost in the retrieval performance. This also shows
that our DCML method is flexible for feature repre-
sentations with varying dimensions.
) Our DCML method also achieves competitive per-
formance with heterogenous face recognition exper-
iment, which shows that our model can be used for
different cross-modal applications.
We have investigated the contribution of each term in
our DCML and have shown that both the discrimina-
tive and correlation terms contributed to the overall
performance. Particularly, the discriminative part of
our objective formulation have a larger contribution.

CASIA VIS-NIR (version 2.0) dataset. We see that the
computational time of our method for training is generally
larger than other coupled metric learning methods, and the
testing time is comparable to other coupled metric learning
methods. 3

w

N
3]

4)

Objective Function Value
=
= ) N

It
2]

V. CONCLUSION

o

20 40 60

Iteration Number

80 100

In this paper, we have proposed a new deep coupled
metric learning (DCML) method for cross-modal matching.
Fig. 6. Convergence curve of DCML on the CASIA VIS-NIR databas Our method develops two deep neural networks to learn
(version 2) dataset. two sets of hierarchical nonlinear transformations to exploit
both discriminative information and reduce the modality
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gap, which significantly improve the performance of dp7] Q. Liu, X. Tang, H. Jin, H. Lu, and S. Ma, “A nonlinear approach for
ifferent cross-modal matching applications. Experimental
results on four cross-modal datasets have clearly dem%]
strated the effectiveness of the proposed method.
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