
2352 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 5, MAY 2017

Deep Hashing for Scalable Image Search
Jiwen Lu, Senior Member, IEEE, Venice Erin Liong, and Jie Zhou, Senior Member, IEEE

Abstract— In this paper, we propose a new deep hashing (DH)
approach to learn compact binary codes for scalable image
search. Unlike most existing binary codes learning methods,
which usually seek a single linear projection to map each
sample into a binary feature vector, we develop a deep neural
network to seek multiple hierarchical non-linear transformations
to learn these binary codes, so that the non-linear relationship
of samples can be well exploited. Our model is learned under
three constraints at the top layer of the developed deep net-
work: 1) the loss between the compact real-valued code and
the learned binary vector is minimized, 2) the binary codes
distribute evenly on each bit, and 3) different bits are as
independent as possible. To further improve the discriminative
power of the learned binary codes, we extend DH into supervised
DH (SDH) and multi-label SDH by including a discriminative
term into the objective function of DH, which simultaneously
maximizes the inter-class variations and minimizes the intra-class
variations of the learned binary codes with the single-label and
multi-label settings, respectively. Extensive experimental results
on eight widely used image search data sets show that our
proposed methods achieve very competitive results with the
state-of-the-arts.

Index Terms— Scalable image search, fast similarity search,
hashing, deep learning, multi-label learning.

I. INTRODUCTION

LARGE scale visual search has attracted great attention in
computer vision in recent years due to the rapid growth

of web data in forms of images and videos. The objective of
large scale visual search aims to retrieve the most relevant
visual content from large datasets in an accurate and efficient
manner. While the conventional similarity search methods
such as the nearest neighbor search and tree-based techniques
have been widely used for low-dimensional data search, they
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are not scalable to high-dimensional data such as images
and videos because they are usually represented as high-
dimensional features. To address this, many hashing based
approximate nearest neighbor (ANN) search methods [13],
[14], [42], [74], [76], [81] have been proposed in recent years.

The basic idea of hashing-based approaches is to construct a
series of hash functions to map each visual object into a binary
feature vector so that visually similar samples are mapped
into similar binary codes. By encoding high-dimensional real-
valued feature vector as low-dimensional compact binary
codes, we can significantly speed up the similarity computation
and save storage space in memory during the search procedure.
Existing hashing-based methods can be mainly classified into
two categories: data-independent [1], [5], [22], [27], [51] and
data-dependent [12], [13], [15], [32], [37], [48], [60], [74]. For
the first category, random projections are usually employed
to map samples into a feature space and then binarization is
performed to compute binary codes. Representative methods
in this category are locality sensitive hashing (LSH) [1] and
its kernelized or discriminative extensions [22], [31], [51]. For
the second category, various statistical learning techniques are
used to learn hashing functions to map samples into binary
codes. State-of-the-art methods include spectral hashing [81],
binary reconstructive embedding (BRE) [32], iterative quan-
tization (ITQ) [13], K -means hashing (KMH) [15], minimal-
loss hashing (MLH) [48], and sequential projection learning
hashing (SPLH) [74]. Recently, several nonlinear hashing
methods have also been proposed to exploit the nonlinear
structure and relationship of visual samples to improve the
search performance [14], [21], [37], [40], [60]. More recently,
there have been some attempts on learning-based hashing
methods with multi-modal data such as images, texts, and
videos [71], [72].

In this paper, we propose a new deep hashing (DH) method
to learn compact binary codes for scalable image search.
Fig. 1 illustrates the basic idea of the proposed approach.
Unlike most existing binary codes learning methods which
usually seek a single linear projection to map each sample
into a binary vector, we develop a deep neural network to
seek multiple hierarchical non-linear transformations to learn
compact binary codes. Our model is learned under three
constraints at the top layer of the deep network: 1) the loss
between the compact real-valued code and the learned binary
vector is minimized, 2) the binary codes distribute evenly on
each bit, and 3) different bits are as independent as possible.
To further improve the discriminative power of the learned
binary codes, we extend DH into supervised DH (SDH) by
including one discriminative term into the objective function of
DH which simultaneously maximizes the inter-class variations
and minimizes the intra-class variations of the learned binary
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Fig. 1. The basic idea of our proposed deep hashing approach for compact
binary codes learning. Given a gallery image set, we develop a deep neural
network and learn the parameters of the network by using three criteria for the
codes obtained at the top layer of the network: 1) minimizing loss between
the compact real-valued code and the learned binary vector; 2) binary codes
distribute evenly on each bit, and 3) each bit is as independent as possible.
The parameters of the networks are updated by back-propagation based on
the optimization objective function at the top layer.

codes. Since images are usually associated with multiple
labels in real worlds, we develop a multi-label supervised
DH (MSDH) by including a discriminative term into DH to
define the between-class and within-class similarity of samples
in the multi-label setting manner. Experimental results on eight
widely used image retrieval datasets are presented to show the
efficacy of the proposed methods.

The contributions of this work are summarized as follows:
1) We propose an unsupervised learning-based hashing

method called deep hashing (DH) to learn multiple
layers of projections to compute compact binary codes,
so that the nonlinear relationship of samples can be well
exploited.

2) We develop a supervised learning-based hashing method
called supervised deep hashing (SDH) to learn discrim-
inative binary codes with a deep network, under which
conceptually similar images are projected as similar
binary codes, which is helpful to scalable visual search.

3) We extend our SDH into the multi-label supervised deep
hashing (MSDH) by computing the image similarity
in a multi-label setting manner, so that scalable image
search can be performed for large-scale multi-label
image objects.

4) We conduct extensive image retrieval experiments on
eight benchmark datasets to demonstrate the efficacy of
our proposed methods. Experimental results show that
our methods outperform most state-of-the-art hashing
methods in both the unsupervised and supervised
settings.

II. BACKGROUND

In this section, we briefly review two related topics: 1) scal-
able image search and 2) deep learning.

A. Scalable Image Search
Efficient approximate nearest neighbor search algorithms

are important to scalable image search. Representative

methods include tree-based methods [3], [20], [46], [47], [57],
[61] and quantization-based methods [6], [8], [12], [25], [49],
[80], [85]. Many hashing-based methods have been proposed
in recent years due to their excellent efficiency in both the
storage and the search speed, which are suitable for large scale
image search. While quantization-based methods provide high
search accuracy gains due to their low quantization error and
the employed table lookups, hashing-based methods provide
faster retrieval speed since the Hamming distance computation
only requires bit-wise operations. Hashing techniques have
been used in many computer vision applications such as object
recognition [68], [69], image retrieval [32], image match-
ing [26], [64] and face recognition [44]. Existing hashing-
based methods can be generally categorized into two classes:
data-independent and data-dependent. Data-independent meth-
ods construct randomized hash functions by using random
projections, where the most representative one is the LSH
method. LSH preserves the cosine similarity of samples by
using random projections obtained from Gaussian distributions
to map samples into binary features [1]. However, it can only
achieve satisfactory performance with longer codes, which is
inefficient in many practical applications. In recent years, LSH
has also been extended with some other similarity measure
metrics. For example, Ji et al. [27] proposed an unbiased
similarity estimation method by performing orthogonal ran-
dom projections in a batch manner. Kulis et al. used the
kernel similarity [31] and the Mahalanobis distance met-
ric [32] with LSH to learn locality sensitive binary codes.
Raginsky and Lazebnik used Gaussian kernels approximated
by random fourier transforms [51], [52] to improve LSH.
While Wang et al. [74] extended it to multiple kernels,
their approach still used data-independent random projec-
tions, which cannot effectively exploit the geometrical and
discriminative information of samples in constructing the hash
functions. Hence, data-dependent hashing methods are more
desirable and many such algorithms have proposed more
recently.

Existing data-dependent hashing methods [13], [14], [42],
[74], [81] can be mainly classified into three categories:
unsupervised, semi-supervised, and supervised. For the first
category, label information of the training set is not required
in the learning procedure. For example, Weiss et al. [81]
presented a spectral hashing method to obtain balanced
binary codes by solving a spectral graph partitioning prob-
lem. This method has been extended to different versions
such as kernel-based [14], hypergraph-based [43], and sparse
PCA-based [58]. Gong and Lazebnik [13] developed an ITQ
method by simultaneously maximizing the variance of each
binary bit and minimizing the binarization loss. Liu et al. [41]
proposed an anchor graph hashing method to preserve the
neighborhood structure of samples to learn hash functions.
He et al. [15] developed a KMH method by minimizing the
hamming distance between the quantized cells and the cluster
centers. Heo et al. [16] proposed a hypersphere-based hashing
method by minimizing the spherical distance between the
original real-valued features and the learned binary features.
For the second category, the pairwise label information is used
to learn hashing functions. For example, Wang et al. [73]
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developed a semi-supervised hashing (SSH) method by min-
imizing the empirical error for pairwise labeled training
samples and maximizing the variance of both labeled and
unlabeled training samples. Kulis et al. [32] presented a BRE
method by minimizing the reconstruction error between the
original Euclidean distance and the learned hamming distance.
Norouzi and Fleet [48] presented a MLH method by minimiz-
ing the loss between the learned Hamming distance and the
quantization error. For the third category, the class label infor-
mation of each sample is used in hashing function learning.
For example, Stretcha et al. [64] developed a LDA hashing by
minimizing the intra-class variations and maximizing the inter-
class variations of binary codes. Rastegari et al. [54] proposed
a discriminative hashing method by learning multiple linear-
SVMs with the large margin criterion.

While these learning-based hashing methods have achieved
reasonably good performance in many applications, most of
them only seek a single linear projection, which may not be
powerful enough to capture the nonlinear structure of samples.
To address this, several non-linear hashing methods have been
proposed recently. For example, Liu et al. [40] employed a
kernel formulation and utilized supervised information through
minimizing the distance of similar pairs and maximizing the
distance of dissimilar pairs. Shen et al. [60] performed a non-
parametric manifold learning to learn the hash functions to
preserve the local structure of the training data. Shen et al. [59]
also proposed a supervised discrete hashing method to learn
binary codes by formulating hashing learning as a linear
classification problem with binary constraints and discrete
optimization. Lin et al. [37] proposed FastHash which per-
formed binary code inference through graph cuts and learned
the hash functions through a greedy boosted decision tree
framework.

Real-world images are usually annotated with multiple
labels due to their complex multilevel semantic structure.
Hence, there also exists some hashing work to exploit
the ranking order based on multiple labels. For example,
Wang et al. [78] proposed a linear order-preserving hash-
ing algorithm which maximizes the alignment between the
order of the original feature representation and binary code.
Lin et al. [37] proposed a StructHash algorithm which uses
a structured SVM framework to directly optimize the rank-
specific evaluation criterions [23]. Wang et al. [75] proposed
a ranking-based supervised hashing using rank triplets to learn
linear hash functions. Similarly, these models mostly perform
linear transformations which is not representative enough
except [86] which performed a deep training to optimize the
multilabel criterions to learn the hash functions.

B. Deep Learning
Deep learning aims to learn hierarchical feature

representations by building high-level features from raw
data. In recent years, a variety of deep learning algorithms
have been proposed in computer vision and machine
learning [2], [17], [28], [34], [36], [53], [67], and some
of them have successfully applied to many visual analysis
applications image classification [30], object detection [65],
action recognition [34], face verification [66], and visual

tracking [79]. Representative deep learning methods include
deep stacked auto-encoder [34], deep convolutional neural
networks [28], and deep belief network [17].

Deep learning has achieved great success in various visual
applications including scalable image search. To our knowl-
edge, Semantic hashing [56] is the first work on using deep
learning techniques to learn hashing functions for scalable
image search. They applied the stacked Restricted Boltzmann
Machine (RBM) learn compact binary codes for document
search. However, their model is complex and requires pre-
training, which is not efficient for practical applications. Sri-
vastava and Salakhutdinov [63] proposed a deep Boltzmann
machine approach for multi-modal retrieval. However, their
method ignored the binary constraints in learning hashing
functions. Recently, Xia et al. [82] proposed a supervised
hashing method by learning image representations via con-
volutional neural networks. Feng et al. [9] presented a deep
learning based hashing method by using stacked restricted
Boltzmann machines, where semantic similarity of samples are
used to fine tune the hash functions. Masci et al. [45] proposed
a coupled siamese neural network to jointly maximize the
intra-similarity and inter-similarity metric for cross-modality
retrieval tasks, however, it is also effective for unimodal tasks.
More recently, Lai et al. [33] and Zhao et al. [86] proposed a
supervised hashing method to jointly learn image representa-
tions and binary codes into one stage with convolutional neural
networks, where the optimization objective functions were
formulated as a single-label learning and a multi-label learning
problem, respectively. Lin et al. [38] learned binary codes by
using a deep architecture which utilizes the hidden layers to
represent the latent concepts dominated by the class labels.
Liu et al. [39] proposed a deep supervised hashing (DSH)
to encode pairwise images and impose regularization on
the real-valued codes to approximate discrete binary values.
Xia et al. [82] proposed a deep convolutional network to learn
the hash codes by exploiting pairwise similarity matrix. In this
work, we present a general framework of neural networks
by seeking multiple hierarchical non-linear transformations to
learn compact binary codes, where the hashing functions can
be learned in unsupervised, supervised and multi-label super-
vised settings, which are desirable for various real applications
where labeled samples are acquired in different ways.

III. PROPOSED APPROACH

In this section, we first present some basic knowledge of the
learning-based hashing methods and then detail our proposed
DH, SDH, and MSDH methods, respectively.

A. Learning-Based Hashing
Let X = [x1, x2, · · · , xN ] ∈ R

d×N be the training set which
contains N samples, where xn ∈ R

d (1 ≤ n ≤ N) is the nth
sample in X. Learning-based hashing methods aim to seek
multiple hash functions to map and quantize each sample into a
compact binary vector. Assume there are K hashing functions
to be learned, which map each xn into a K -bit binary codes
vector bn = [bn1, · · · , bnK ] ∈ {−1, 1}K×1, and the kth binary
bit bnk of xn is computed as follows:

bnk = fk(xn) = sgn (gk(xn)) = sgn(w�
k xn) (1)
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where fk is the kth hashing function, and wk ∈ R
d is the

projection in fk , sgn(v) returns 1 if v > 0 and -1 otherwise.
Let W = [w1, w2, · · · , wK ] ∈ R

d×K be the projection
matrix. Then, the mapping of xn can be computed as: g(xn) =
W�xn , which can be further binarized to obtain the binary
codes as follows:

bn = sgn(W�xn) (2)

B. Deep Hashing
While a variety of learning-based hashing methods have

been proposed in recent years [12], [13], [15], [32], [48],
[74], most of them aim to learn a single projection matrix W,
which cannot effectively capture the nonlinear relationship of
samples. In this work, we propose a deep learning approach
to learn multiple nonlinear transformations to seek compact
binary codes for scalable image search.

As shown in Fig. 1, for a given sample xn , we obtain a
binary vector bn by passing it to a network which contains
multiple stacked layers of nonlinear transformations. Assume
there are M + 1 layers in our deep network, and there are
pm units for the mth layer, where m = 1, 2, · · · , M . For a
given sample xn ∈ R

d , the output of the first layer is: h1
n =

s(W1xn + c1) ∈ R
p1

, where W1 ∈ R
p1×d is the projection

matrix to be learned at the first layer of the network, c1 ∈ R
p1

is the bias, and s(·) is a non-linear activation function. The
output of the first layer is then considered as the input for
the second layer, so that h2

n = s(W2h1
n + c2) ∈ R

p2
, where

W2 ∈ R
p2×p1

and c2 ∈ R
p2

are the projection matrix and bias
vector for the second layer, respectively. Similarly, the output
for the mth layer is: hm

n = s(Wmhm−1
n + cm), and the output

at the top layer of our network is:

gD H(xn) = hM = s(WM hM−1
n + cM ) (3)

where the mapping gD H : R
d → R

pM
is parameterized by

{Wm, cm}M
m=1, 1 ≤ m ≤ M , hM is defined as the compact real-

valued code learned from several nonlinear transformations of
the original feature with specific constraints.

Now, we perform hashing for the output hM at the top layer
of the network to obtain binary codes as follows:

bn = sgn(hM
n ) (4)

Let B = [b1, . . . , bN ] ∈ {−1, 1}K×N and Hm =
[hm

1 , hm
2 , · · · hm

N ] ∈ R
pm×N be the matrix representation of the

binary codes vectors and the output of the mth layer of the
network, we formulate the following optimization problem to
learn the parameters of the network used in our deep hashing
model:

min
W,c

J = J1 − λ1 J2 + λ2 J3 + λ3 J4

= 1

2
‖B − HM‖2

F

− λ1

2N
tr(HM (HM )�)

+ λ2

2

M∑

m=1

‖Wm(Wm)� − I‖2
F

+ λ3

2

M∑

m=1

(‖Wm‖2
F + ‖cm‖2

2) (5)

where λ1, λ2, and λ3 are three parameters to balance the effect
of different terms. In (5), the first term J1 aims to minimize
the quantization loss between the learned binary vectors and
the compact real-valued vectors, so that the energy of the
learned compact features can be well preserved in the binary
codes. The second term J2 aims to maximize the variance
of learned binary vectors to ensure balanced bits, so that
the codes can be enforced as compact as possible. The third
term J3 enforces a relaxed orthogonality constrain on those
projection matrices so that the independence of each transform
is maximized [77], [84]. The last term J4 is the regularization
to control the scales of the parameters.

To solve this optimization problem, we employ the
stochastic gradient descent method to learn parameters
{Wm, cm}M

m=1. The gradient of the objective function in (5)
with respect to different parameters are computed as
follows:

∂ J

∂Wm
= �m(Hm−1)�

+ λ2(Wm(Wm)� − I)Wm + λ3Wm (6)

∂ J

∂cm
= �̄m + λ3cm (7)

where

�M = (−(B − HM ) − λ1HM) � s′(ZM ) (8)

�m = ((Wm+1
1 )��m+1) � s′(Zm) (9)

Here � denotes element-wise multiplication, and
Zm = WmHm−1 + cm , and �̄m ∈ R

pm
represents the

mean of �m . The parameters are updated by using the
following gradient descent algorithm until convergence.

Wm = Wm − η
∂ J

∂Wm
(10)

cm = cm − η
∂ J

∂cm
(11)

where η is the step-size.
Algorithm 1 summarizes the detailed procedure of the

proposed DH method.

C. Supervised Deep Hashing

Since DH is an unsupervised learning approach, it is
desirable to further improve its performance by using the
label information of training samples if such information is
available in the training stage. In this subsection, we propose
a supervised deep hashing (SDH) method which extends DH
into a supervised version to enhance the discriminative power
of DH.

For each pair of training samples (xi , x j ), we know whether
they are from the same class or not. Hence, we can construct
two sets S or D from the training set, which represents the
positive samples pairs and the negative samples pairs in the
training set, respectively. Then, we formulate the following
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Algorithm 1 DH

optimization problem for our SDH method:

min
W,c

J = 1

2
‖B − HM‖2

F

− λ1

2
(tr(

1

N
HM (HM)�) + αtr(�B − �W ))

+ λ2

2

M∑

m=1

‖Wm(Wm)� − I‖2
F

+ λ3

2

M∑

m=1

(‖Wm‖2
F + ‖cm‖2

2) (12)

where

�W = 1

NS

∑

(xi ,x j )∈S
(hM

i − hM
j )(hM

i − hM
j )�

= 1

NS
(HM

s1 − HM
s2)(H

M
s1 − HM

s2)
� (13)

�B = 1

ND

∑

(xi ,x j )∈D
(hM

i − hM
j )(hM

i − hM
j )�

= 1

ND
(HM

d1 − HM
d2)(H

M
d1 − HM

d2)
� (14)

NS and ND are the number of neighbor and non-
neighbor pairs, �W and �B are computed from randomly
selected within-class and between-class training samples,
{Hm

s1, Hm
s2}M

m=1 are the hidden representation of sample pairs
in S and {Hm

d1, Hm
d2}M

m=1 in D. The objective of J2 is to
minimize the intra-class variations and maximize the inter-
class variations, α is the parameter to balance these two parts
in this term. The aims of J1, J3, and J4 are the same as those
of the DH method.

Similar to DH, we also use the stochastic gradient descent
method to learn parameters {Wm, cm}M

m=1 in SDH. The gra-
dient of the objective function in (12) with respect to these

Algorithm 2 SDH

parameters can be computed as follows:

∂ J

∂Wm
= �mHm−1 + αλ1(�

m
s1Hm−1

s1

− �m
s2Hm−1

s2 − �m
d1Hm−1

d1

+ �m
d2Hm−1

d2 )

+ λ2(Wm(Wm)� − I)Wm

+ λ3Wm (15)
∂ J

∂cm
= �̄m + αλ1(�̄

m
s1 − �̄m

s2

− �̄m
d1 + �̄m

d2) + λ3cm (16)

where the � terms for the top layer can be computed as
follows:

�M
s1 = 1

NS
(HM

s1 − HM
s2) � s′(ZM

s1) (17)

�M
s2 = 1

NS
(HM

s1 − HM
s2) � s′(ZM

s1) (18)

�M
d1 = 1

ND
(HM

d1 − HM
d2) � s′(ZM

d1) (19)

�M
d2 = 1

ND
(HM

d1 − HM
d2) � s′(ZM

d1) (20)

For the hidden layer, they can be computed as follows:

�m
s1 = ((Wm+1)��

(m+1)
s1 ) � s′(Zm

s1) (21)

�m
s2 = ((Wm+1)��

(m+1)
s2 ) � s′(Zm

s2) (22)

�m
d1 = ((Wm+1)��

(m+1)
d1 ) � s′(Zm

d1) (23)

�m
d2 = ((Wm+1)��

(m+1)
d2 ) � s′(Zm

d2) (24)

Algorithm 2 summarizes the detailed procedure of the
proposed SDH method.



LU et al.: DEEP HASHING FOR SCALABLE IMAGE SEARCH 2357

D. Supervised Multi-Label Deep Hashing

In this subsection, we present a supervised multi-label deep
hashing method by exploiting the discriminative information
of samples in the multi-label setting. We re-formulate the
between-class and within-class scatter matrix of our SDH for
multi-label samples and as follows [73]:

�(l)
w =

N∑

i=1

δil (hM
i − μl)(hM

i − μl)
� (25)

�
(l)
b =

N∑

i=1

δil (μl − μ)(μl − μ)� (26)

�w =
L∑

l=1

�(l)
w (27)

�b =
L∑

l=1

�
(l)
b (28)

where �w and �b are the within-class and between-class
scatter matrix, respectively, μl is the mean of the output of
the top layer of all training samples belonging to the lth class,
μ is the mean of all the outputs at the top layer, and δil = 1
if the i th sample belongs to the lth class and 0 otherwise.

Since it is difficult to perform backpropagation due to the
existence of μ and μl , we re-write (25)-(26) as follows by
using the pairwise definition of the between-class and within-
class variations of LDA [18]:

�(l)
w =

N∑

i=1

N∑

j=1

Rw(i, j)(hM
i − hM

j )(hM
i − hM

j )� (29)

�
(l)
b =

N∑

i=1

N∑

j=1

Rb(i, j)(hM
i − hM

j )(hM
i − hM

j )� (30)

where

R(l)
w (i, j) =

⎧
⎨

⎩

1

Nl
c(xi) = c(x j ) = l

0 otherwise
(31)

R(l)
b (i, j) =

⎧
⎪⎨

⎪⎩

1

N
− 1

Nl
c(xi ) = c(x j ) = l

1

N
otherwise

(32)

and Rw = ∑
l R(l)

w and Rb = ∑
l R(l)

b are the within-class and
between-class weight matrices, respectively, c(xi) is the label
of xi . To further exploit the relationship of different labels,
we use an affinity matrix A to define a weight obtained for
sample pairs which are semantically similar or not according
to the labels. In this work, we define the affinity matrix as
follows

Aij = 1 − cos(yi , y j ) (33)

yi = [yil ]L
l=1 is the label information if xi where yil is 1 if xi

belongs to the lth class and 0, otherwise. Then, the new within-
class and between weight matrices are defined as follows:

R̃w = Rw · A (34)

R̃b = Rb · A (35)

Lastly, the matrix from of them can be simplified as:

�(l)
w = tr(2HM S(l)

w HM� − 2HM R̃(l)
w (HM)�) (36)

�
(l)
b = tr(2HM S(l)

b HM� − 2HM R̃(l)
b (HM)�) (37)

S(l)
w = diag(

N∑

j=1

R̃(l)
w (·, j)) (38)

S(l)
b = diag(

N∑

j=1

R̃(l)
b (·, j)) (39)

The stochastic gradient descent method is also employed
to update the parameters of the model except �M , which is
modified as follows:

�M =
(
(HM − B) − λ1(HM + αGHM )

)
� s′(ZM ) (40)

where G = ∑L
l=1 2(S(l)

w − R̃(l)
w − S(l)

b + R̃(l)
b ).

IV. EXPERIMENTS

In this section, we first conduct experiments on
six widely used datasets (CIFAR-10, MNIST, SIFT-1M,
GIST-1M, LabelMe-22k, and SUN397) to evaluate our
proposed DH and SDH methods for scalable single-label
image search. Then, we conduct experiments on two datasets
(MIRFLICKR and NUS-WIDE) to evaluate our proposed
MSDH method for scalable multi-label image search. The
following describes the details of the experiments and results.

A. Results on CIFAR-10

The CIFAR-10 dataset [29] contains 60000 color images
from 10 object classes, which are from the Tiny image
dataset [68]. The size of each image is 32 × 32. Following
the same setting in [74], we randomly sampled 1000 samples,
100 per class, as the query samples, and used the remaining
59000 images as the gallery set. From the gallery set, we
randomly select a training set of 10000 samples. Each image
was represented as a 512-D GIST feature vector [50].

For our DH method, we trained our deep model with a
3-layer model by setting M = 2, where the dimensions for
these layers were empirically set as [60 → 30 → 16],
[80 → 50 → 32], and [100 → 80 → 64] for the 16, 32
and 64 bits experiments, respectively. For our SDH method,
we trained our deep model with 4-layer model as [512 →
1000 → 1000 → K ]. The parameters λ1, λ2 and λ3 were
empirically set as 100, 0.001 and 0.001, respectively. We used
the rectified linear unit (relu) as the non-linear activation func-
tion in the hidden layer while a hyperbolic tangent function
(tanh) is used at the last layer to provide a centered value
ranging from {-1,1}. Initialization on the network parameters,
{Wm, cm}M

m=1, are set following the Xavier initialization [11],
and drop-out [62] rate of 0.5 is also implemented to prevent
over-fitting. The parameter α for SDH was empirically set as 1.

1) Comparisons with State-of-the-art Hashing Methods: We
compared our DH and SDH methods with fourteen state-of-
the-art hashing methods, where seven of them are unsuper-
vised and the other seven are supervised. The unsupervised
methods include PCA-ITQ [13], KMH [15], Spherical [16],
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TABLE I

RESULTS ON THE CIFAR-10 DATASET. RESULTS ON THE TOP SECTION ARE FROM UNSUPERVISED METHODS AND THOSE ON THE BOTTOM SECTION
ARE FROM THE SUPERVISED METHODS. THE FIRST TWO COLUMNS SHOW THE HAMMING RANKING RESULTS EVALUATED BY mAP AND

PRECISION@N (WHERE N=500). THE RIGHT COLUMN SHOWS THE HAMMING LOOK-UP RESULTS WHEN THE HAMMING RADIUS r = 2.
HAMMING LOOK-UP FOR K = 64 IS NOT EVALUATED BECAUSE THIS EVALUATION IS IMPRACTICAL FOR LONGER CODES

Fig. 2. Recall vs. precision curve on the CIFAR dataset. The first row shows the results of unsupervised hashing methods at 16, 32 and 64 bits, respectively.
(a) 16 bits. (b) 32 bits. (c) 64 bits.

SH [81], PCAH [74], LSH [1] and AGH [41]. The supervised
methods are SPLH [74], MLH [48], BRE [32],KSH [40],
CCA-ITQ [13], FastHash [37] and SDisH [59]. For all these
compared methods, we used the codes provided by the original
authors and used the default parameters recommended by the
corresponding papers.

We used the following three evaluation metrics to measure
the performance of different methods: 1) mean average pre-
cision (mAP), which computes the area under the precision-
recall curve and evaluates the overall performance of different
hashing algorithms; 2) precision at N samples, which is
the percentage of true neighbors among the top N retrieved
samples. For datasets with label information, true neighbor
corresponds to samples having the same label information as
the query set. Otherwise, the true neighbor corresponds to the
nearest neighbors computed according to the Euclidean metric
in the original feature space; and 3) Hamming look-up result
when the hamming radius is set as r , which measures the
precision over all the points in the buckets that fall within a
hamming radius of r = 2 provided that a failed search has
zero precision.

Table I shows the search results of different hashing meth-
ods on the CIFAR-10 dataset. Fig. 2 shows the recall vs.

precision curves for different methods on 16, 32 and 64 bits,
respectively for the unsupervised methods. As can be seen,
our DH method outperforms the other compared unsupervised
hashing methods with the PCA-ITQ as its closest baseline.
Our SDH outperforms some supervised hashing methods and
are competitive with FastHash and SDisH. Fig. 3 presents
some example query images and the retrieved neighbors on
the CIFAR-10 dataset when 64 bits were used to learn binary
codes for different hashing methods. We see that our DH
and SDH methods show better search performance because
higher semantic relevance can be obtained in the top retrieved
samples.

2) Experiments Using CNN Features: Beside hand-crafted
features, we also show the effectiveness of our methods when
deep features which are extracted by the deep Convolutional
Neural Networks (CNN) are used for scalable image search.1

We conducted experiments on the CIFAR dataset by using the
deep CNN features for various hashing methods. Except the
CNN features, other settings in our experiments are the same

1CNN features have achieved many state-of-the-art performance in various
visual analysis tasks such as image classification [30], object detection [10]
and image matching [77]. Hence, we also demonstrate the performance of our
methods when CNN features are used.
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Fig. 3. Top retrieved 6 images of 4 queries returned by different hashing methods on the CIFAR dataset. Images in the first column are query samples.
From left to right are the retrieved images by DH, ITQ, KMH, Spherical, SDH and SPLH when 64-bit binary codes are used for image search, respectively.

Fig. 4. Ranking performance of different hashing methods using CNN
features on the CIFAR-10 dataset. (a) mAP. (b) Average Precision.

as those used in the above experiments. We followed the same
settings of the CNN model in [70] and used the MatConvNet
toolbox to represent each image as a 4096-dimensional feature
vector. We used the pre-trained model which was learned from
ImageNet and employed the training set of the CIFAR dataset
to finely tune the parameters of the deep model for feature
extraction. In this experiment, we set the parameter of SDH
and DH layers as [4096 → 500 → 200 → K ]. Fig. 4 shows
the results of our DH and SDH methods compared to other
hashing methods. For the KMH method, since it cannot handle
high-dimensional features, we performed PCA first to reduce
each CNN feature into a 512-dimensional feature vector.
As can be seen, the performance of all hashing methods were
improved due to the strong representation power of the CNN
features. Particularly, the performance of our SDH method
has an increase of approximately 0.3 in mAP when using
CNN features and our SDH also outperforms all compared
supervised hashing methods.

3) Comparison With Existing Deep Hashing Models: We
compared our DH with semantic hashing [56], which is the
first work of deep learning in hashing learning for image
search. Semantic hashing learns a deep graphical model to
mapping documents into compact binary codes, where seman-
tically similar documents are mapped as close as possible. The
deep generative model was pre-trained by stacked RBM and

was fine-tuned by back-propagation based on the reconstruc-
tion cost. At the top layer of the network, binary codes are
learned. Unlike our DH, semantic hashing does not consider
other properties in binary codes learning. We followed the
same settings in [69] and tuned the its parameters to obtain the
best possible results on the CIFAR dataset. We also compared
our SDH method with several supervised deep hashing meth-
ods. We particularly conducted experiments and compared our
method with the multi-modal neural network (MM-NN) [45]
method with the authors’ code by using the GIST and CNN
features. Results from other deep hashing methods including
CNNH, DLBHC, DNNH and DSH were directly obtained
from the corresponding papers. To fairly compare our method
with these deep models, our SDH made use of CNN features
and all gallery samples were used as training.

Table II shows the mAP performance of our DH and the
semantic hashing method on the CIFAR-10 dataset. We see
that our DH significantly outperforms the semantic hashing
method on the CIFAR dataset. Table III shows the performance
of our SDH and other compared supervised deep learning
based hashing methods on the CIFAR-10 dataset. We see that
our SDH achieves very competitive performance with DSH,
and outperforms other compared supervised deep learning
based hashing methods.

4) Comparisons of Using Different Layers: We conducted
experiments to examine the performance of our DH method
when different number of layers are used. We used the
following layers: [100 → 64], [100 → 80 → 64], [200 →
100 → 80 → 64], [200 → 150 → 100 → 80 → 64] where
1-4 layers are used, respectively. Table IV shows the results
obtained when different layers are used. We see that our DH
achieves the best performance when the number of layer is set
to 2 and 3. That is because we don’t have extensive training
examples to learn our model and it may be overfitted when the
number of layers is large because there are more parameters
to be trained in such a scenario.
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TABLE II

COMPARISONS OF OUR DH AND THE SEMANTIC HASHING ON THE CIFAR-10 DATASET

TABLE III

COMPARISONS OF OUR SDH AND OTHER DEEP HASHING MODELS ON THE CIFAR-10 DATASET

TABLE IV

COMPARISON OF DH WHEN DIFFERENT NUMBER OF LAYERS ARE USED ON THE CIFAR-10 DATASET

TABLE V

COMPUTATIONAL TIME OF DIFFERENT HASHING

METHODS ON THE CIFAR-10 DATASET

5) Computational Time: We investigated the computational
time of our DH and SDH methods, and compared them with
those of other hashing methods. Our PC is configured with
a 3.20GHz CPU and 32.0 GB RAM. Table V shows the
training and test time of different hashing methods on the
CIFAR-10 dataset when 16, 32 and 64-bit binary codes are
used. The training time corresponds to the time of learning
the hashing functions using the provided training set. This
does not include the feature extraction which is similar across

all hashing functions. The test time corresponds to extracting
the binary codes from the query set using the learned hashing
function. We see that the training time of our DH method is
comparable to other previous unsupervised hashing methods,
and our SDH method is one of the faster one among all
the compared supervised hashing methods. Moreover, the test
time of our methods are comparable to the existing hashing
methods.

6) Influence of Different Constraints: We investigated the
contributions of different terms in our DH model. We defined
the following alternative baselines to study the importance of
different terms in our feature learning model:

1) DH-1: learning the hashing function from J1 and J2.
2) DH-2: learning the hashing function from J1 and J3
3) DH-3: learning the hashing function from J2 and J3.
Table VI shows the mAP and precision performance of DH

and the other three alternative variations on the CIFAR exper-
iment. We see that all three terms our DH model contributes
in the retrieval performance, and J1 and J3 seem to contribute
more than J2 which says the minimizing quantization loss
and ensuring orthogonality gives larger contribution in the cost
function. Moreover, the highest retrieval performance can be
obtained when all the three terms are used together.

7) Evaluation Using the Class-Wise Splitting Protocol [55]:
To further evaluate our hashing methods based on class-
wise labels as nearest neighbor, we followed an alternative
evaluation protocol from [55] which uses disjoint set of classes
for training and testing. This is to show that our method is
still effective in preserving the semantic information of certain
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TABLE VI

RESULTS ON THE CIFAR DATASET OF OUR DH METHOD AND OTHER ALTERNATIVE BASELINES

TABLE VII

RESULTS ON THE CIFAR10 DATASET UNDER THE NEW PROTOCOL [55]

classes implicitly even if these class samples are not included
in the training set. Specifically, we separated the samples
based on class splits such that we used 70% of the classes
for training, and 30% of the classes for testing. The samples
that belong to the 30% of the classes was then separated
into gallery and query set similar to the previous experiment.
We repeated this procedure using 5 class splits and took the
average of the results. Table VII shows the results for this
experiment. Take note that the unsupervised hashing methods
used a different set of class splits which explains the large
difference between supervised and unsupervised results. We
also see that the mAP performance of methods are generally
higher than that of the previous protocol since there is less
variation in the gallery set which consists of only 30% of the
classes and fewer samples to retrieve from. However, our deep
hashing methods still achieved competitive performance with
the methods of comparison.

B. Results on MNIST

The MNIST dataset [35] consists of 70000 handwritten digit
images from 10 classes (labeled from 0 to 9). The size of each
image is 28×28. We randomly sampled 1000 samples, 100 per
class, as the query data, and used the remaining 69000 images
as the gallery set. Each image was represented as
a 784-D gray-scale feature vector by using its intensity [50].
We followed the same settings as those used in the CIFAR-10
dataset and also used the same evaluation metrics to compare
the performance of different hashing methods. Table VIII
shows the search results of different hashing methods on the
MNIST dataset.

1) Comparisons With State-of-the-Art Hashing Methods:
Fig. 5 shows the recall vs. precision curves for different
unsupervised hashing methods on 16, 32 and 64 bits,

respectively. As can be seen, our DH and SDH methods are
competitive with the existing unsupervised and supervised
hashing methods, respectively. It is to be noted that the
MNIST dataset consists of handwritten digit images which
show simpler patterns and are well represented using only
intensity features. Hence, it is relatively easier compared
to other datasets which include complicated visual images.
This leads to a lower requirement on the compared hashing
methods. But, our SDH still shows better or competitive
results than FastHash which shows its flexibility in capturing
the nonlinearity of data samples regardless of its feature
representation.

2) Influence of Different Constraints: We also investigate
the influence of the different terms of the cost function of our
DH model. We implement the alternative baselines similar to
the CIFAR experiment. Table IX shows the performance of
DH compared to the other three alternative variations on the
MNIST experiment. We see that removing each term leads
generally leads to a dip in performance of our DH model
which shows that all three terms is important in the overall
performance of our proposed method.

C. Results on LabelMe22k

The LabelMe dataset [69] contains 22000 object images,
where each image was represented as 512-D GIST feature.
Unlike the CIFAR and MNIST datasets, this dataset only
provided the pairwise labels rather than the actual label,
therefore cannot compare it with the fully supervised methods
such as CCA-ITQ, FastHash and SDisH. For each sample, a
maximum of 50 neighbors were provided as the ground truths
for evaluation. Following the same evaluation protocol in [32],
we randomly sampled 2000 images as the query data and used
the remaining 20000 images are the gallery set. We applied
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TABLE VIII

RESULTS ON THE MNIST DATASET. THE TOP SECTION ARE THE UNSUPERVISED METHODS AND THE BOTTOM SECTION ARE THE SUPERVISED
METHODS. THE FIRST TWO COLUMNS SHOW THE HAMMING RANKING RESULTS EVALUATED BY mAP AND PRECISION@N WHERE N=500,

AND THE LAST COLUMN SHOWS THE HAMMING LOOK-UP RESULTS WHEN THE HAMMING RADIUS r = 2

Fig. 5. Recall vs. precision curve on the MNIST dataset for unsupervised hashing methods at 16, 32 and 64 bits, respectively. (a) 16 bits. (b) 32 bits.
(c) 64 bits.

TABLE IX

RESULTS ON THE MNIST DATASET OF OUR DH METHOD AND OTHER ALTERNATIVE BASELINES

the Recall @ N samples to evaluate different methods, which
is defined as the fraction of retrieved true neighbors to the
total number of true neighbors. Table X shows the search
performance and we see that our DH and SDH achieved very
competitive results with the state-of-the-art hashing methods
with a higher performance gap at 16 and 32 bits..

D. Results on SIFT-1M and GIST1M

We conducted experiments on the SIFT-1M and GIST-1M
dataset to further show the effectiveness of our DH method
on much larger datasets. The SIFT-1M dataset [25] con-
tains 1 million 128-D SIFT features as the database and

1000 independent queries which were extracted from the
INRIA Holiday Images [24]. The GIST-1M dataset [25]
contains 1 million GIST 960-D features as the database and
1000 independent queries. Unlike other datasets which contain
semantic information with the class label information of
samples, we considered the groundtruth of each query as the
K Euclidean nearest neighbor for both SIFT-1M and GIST-1M
dataset, where K was set as 100 in our experiments and
used the Hamming ranking for the search strategy. 100000
and 500000 learning samples were used for training the
models for the SIFT-1M and GIST-1M dataset. Similar to the
LabelMe22k experiment, we used the Recall @ N evaluation
metric. Because the training set for this experiment is larger
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Fig. 6. ANN search performance of five unsupervised hashing methods compared to our deep hashing method on the SIFT-1M and GIST-1M. (a) SIFT-1M
Recall @ 1000. (b) SIFT-1M Recall @ 10000. (c) GIST-1M Recall @ 1000. (d) GIST-1M Recall @ 10000.

TABLE X

RECALL@N RESULTS ON THE LABELME22K DATABASE WHEN N=1000.
ON THE TOP SECTION ARE THE UNSUPERVISED METHODS

AND ON THE BOTTOM SECTION ARE THE SUPERVISED

METHODS, RESPECTIVELY

compared to other datasets, we again explored the performance
of our DH at different layers. We set that our DH to have
2 to 5 layers where each layer would consist of 100 nodes.
Fig 6(a)-6(d) shows the Recall@1000 and Recall@10000 in
varying code length compared with five unsupervised hashing
methods and DH with different number of layers. In general,
the performance of different unsupervised hashing methods in
the SIFT1M dataset is much better since the GIST1M dataset
is more challenging and the larger feature dimension. It can
also be seen that for both datasets, our DH outperforms the
compared methods at a lower retrieval number, N = 10000
and most especially at larger binary code length. Moreover, our
DH with 5 layers shows the best results. This further shows
that using more training samples led to better performance for
our DH method.

E. Results on SUN397

The SUN397 [83] dataset consists of 108K images of
397 scene categories. This dataset is more challenging than
the previous datasets because images captured in this dataset
are more in the wild condition and has a larger number of
classes and gallery samples. In our experiments, we randomly
sampled 8000 query samples and used the remaining images
as gallery set for training. Similar to one of the experiments
on CIFAR, each image in this dataset is also represented as

CNN feature and the MatConvNet toolbox was also used to
extract the features, where the pre-trained model is learned on
the ImageNet [7] dataset. In particular, we extracted the CNN
features on the layer ’fc7’ which results to 4096-dimensional
feature vector for each image. Since this dataset is very
challenging, we only obtain binary codes at the length of 48,
64 and 128, and cannot implement BRE and MLH due to their
requirements of large length of binary codes.

Table XI shows the results of our methods as well as other
popular hashing methods. As can be seen, the performance of
all hashing methods in this dataset are relatively lower than
those obtained on the CIFAR and MNIST datasets because
the SUN397 dataset is more challenging. However, our DH
and SDH methods still achieve very competitive performance
with the other compared hashing methods for the both the
unsupervised and supervised settings.

F. Results on MIRFLICKR-25K

The MIRFLICKR-25K dataset [19] consists of 25k images
from one million images obtained from the Flickr website
as well as the associated tags. These images are annotated
with 24 concepts which includes object categories (bird, tree,
people) and scene categories (indoor, sky, night). An addition
of 14 concepts is also added for stricter labeling in which
each image is annotated with a concept only if the concept is
salient. Therefore, a total of 38 labels are used to annotate each
image and some of them are annotated with several labels.
We randomly selected 2000 images as query samples and
took the remaining as gallery and training samples. Similar
to [63], each image is represented as a concatenation of
Pyramid Histogram of Words (PHOW), GIST and MPEG-7
descriptors, which is finally represented as a 3857-dimensional
feature vector. The common evaluation criteria for multi-label
hashing [23], [86] are the Normalized Discounted Cumulative
Gain (NDCG), and Average Cumulative Gain. The NDCG
evaluates the ranking by penalizing errors in higher ranked
items more strongly, while ACG takes the average of the
similarity levels of data within the retrieved samples.

Fig. 7(a)-(b) show the NDCG and ACG results of different
hashing methods with varying code length when the hand-
crafted feature was used. In this experiment, we focused on
hashing methods which show strong performance and omitted
those which yields poor performance. Therefore, several super-
vised hashing methods such as SPLH, KSH, FastHash, SDisH,
and CCA-ITQ and the unsupervised PCA-ITQ and KMH were
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TABLE XI

RESULTS ON THE SUN397 DATASET. RESULTS ON THE TOP SECTION ARE FROM UNSUPERVISED METHODS AND THOSE ON THE BOTTOM
SECTION ARE FROM THE SEMI-SUPERVISED METHODS. THE FIRST TWO COLUMNS SHOW THE HAMMING RANKING

RESULTS EVALUATED BY mAP AND PRECISION@N (WHERE N=2000)

Fig. 7. Ranking performance of different hashing methods on the MIRFlickr and NUS-WIDE datasets using hand-crafted features. (a) MIRFlickr - NDCG.
(b) MIRFlickr - ACG. (c) NUSWIDE - NDCG. (d) NUSWIDE - ACG.

Fig. 8. Ranking performance of different hashing methods on the MIRFlickr and NUS-WIDE datasets using CNN features. (a) MIRFlickr - NDCG.
(b) MIRFlickr - ACG. (c) NUSWIDE - NDCG. (d) NUSWIDE - ACG.

selected for comparison. It can be seen that our MSDH method
achieves better performance than the other hashing methods.
Unlike other methods such as KSH, SPLH and FastHash which
exploit only the pairwise similarity information to obtain
the affinity matrices, our MSDH exploits a weighted within
and between-class matrix using multi-label information. It is
expected that using pairwise similarity may not fully capture
the order and ranking of different samples during training.
To further improve our performance, we also extracted the
CNN features on the MIRFlickr dataset. We followed the
same procedure which was used on the SUN397 dataset.
Fig. 8(a)-(b) show the results of different hashing methods
when the CNN features were used. As can be seen, the NDCG
and ACG performance generally increased for all methods.

G. Results on NUS-WIDE

The NUS-WIDE dataset [4] contains 269648 images, which
are also collected from the Flickr website and annotated with

81 concepts. Different from the MIRFlickr-25k, this dataset
contains larger number of images and more diverse concepts
which make the retrieval task more difficult. We removed the
images that does not contain any of the 81 concepts, so that
a total of 209347 images were left and used in our experi-
ments. Similar to [86], We randomly selected 5000 images as
query samples and took the remaining as gallery and training
samples. Each image feature is represented as a concatenation
of six different feature descriptors. Specifically, SIFT Bag-
of-words, color histograms, color correlogram, edge direc-
tion histogram, wavelet texture and blockwise color moments
were extracted and combined to represent each image as
a 1134-dimensional feature vector.

Fig. 7(c)-(d) show the results of different hashing methods
on the NUS-WIDE dataset when the hand-crafted feature was
used. The performance is much lower than that of MIRFlickr
due to the larger number of images and increased number
of tags. However, our method still competitive with com-
pared hashing methods. Particularly, our MSDH outperforms
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all methods at lower bit lenghts and is comparable with
SDisH at 48-64 bit length. Similarly, we also investigated the
performance of our method when the CNN feature is used.
Fig. 8(c)-(d) show the results of different hashing methods
when the CNN feature is used. As can be seen, the MDSH’s
performance increased by 0.15 and 0.35 for NDCG and ACG,
respectively. It still follows the same trend in which our MSDH
is competitive with other hashing methods.

V. CONCLUSION

In this paper, we have proposed a deep hashing (DH)
approach for scalable image search. Instead of learning a
single layer of projection in existing hashing methods, our
approach employs a deep neural network to seek multiple
hierarchical non-linear transformations to learn these binary
codes, so that the nonlinear relationship of samples can be well
exploited. We have further extended DH into supervised DH
(SDH) and multi-label supervised DH (MSDH) by exploiting
discriminative information in DH with the single-label and
multi-label settings, respectively. Experimental results on six
benchmark databases have clearly demonstrated the effective-
ness of the proposed approach.

There are two interesting directions for future work:
1) It is interesting to extend our approach to scalable video

search to better exploit the structure in videos to learn
the hashing functions.

2) It is interesting to extend our approach to cross-modal
search to better exploit the relationship of different
modalities for scalable multimedia search.
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