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A B S T R A C T

In this paper, we propose a group-aware deep feature learning (GA-DFL) approach for facial age estimation.
Unlike most existing methods which utilize hand-crafted descriptors for face representation, our GA-DFL
method learns a discriminative feature descriptor per image directly from raw pixels for face representation
under the deep convolutional neural networks framework. Motivated by the fact that age labels are
chronologically correlated and the facial aging datasets are usually lack of labeled data for each person in a
long range of ages, we split ordinal ages into a set of discrete groups and learn deep feature transformations
across age groups to project each face pair into the new feature space, where the intra-group variances of
positive face pairs from the training set are minimized and the inter-group variances of negative face pairs are
maximized, simultaneously. Moreover, we employ an overlapped coupled learning method to exploit the
smoothness for adjacent age groups. To further enhance the discriminative capacity of face representation, we
design a multi-path CNN approach to integrate the complementary information from multi-scale perspectives.
Experimental results show that our approach achieves very competitive performance compared with most state-
of-the-arts on three public face aging datasets that were captured under both controlled and uncontrolled
environments.

1. Introduction

Facial age estimation attempts to predict the real age value or age
group based on facial images, which has widely potential applications
such as facial bio-metrics, human-computer interaction, social media
analysis and entertainments [1–4]. While extensive efforts have been
devoted, facial age estimation still remains a challenging problem due
to two aspects: 1) lack of sufficient training data where each person
should contain multiple images in a wide range of ages, 2) large
variations such as lighting, occlusion and cluttered background of face
images which were usually captured in wild conditions.

Most existing facial age estimation systems usually consist of two
key modules: face representation and age estimation. Representative
face representation approaches include holistic subspace features [5,6],
active appearance model (AAM) [7], Gabor wavelets [7], local binary
pattern (LBP) [8] and bio-inspired feature (BIF) [9]. Having obtained
face representations, age estimation can be addressed as a classification
or regression problem [9–11]. However, the face representations
employed most existing methods are hand-crafted, which requires
strong prior knowledge to engineer it by hand. To address this
problem, learning-based feature representation methods [5,12,13,3]
have been made to learn discriminative feature representation directly

from raw pixels. However, these methods aim to learn linear feature
filters to project face images into another feature space such that they
may not be powerful enough to exploit the nonlinear relationship of
data. To address this nonlinear issue, deep learning-based methods
have been adopted to learn a series of nonlinear mapping functions
between face image and age label [14–16,16–18]. Unfortunately, these
deep models cannot explicitly achieve the ordinal relationship among
the chronological ages, which are still far from the practical satisfactory
in most cases because they usually encounter unbalanced and insuffi-
cient training data for each age label.

Notice that age labels are chronologically correlated, so that it is
desirable to employ nonlinear discriminative methods to exploit the
correlated order information from facing images. Unlike existing deep
learning-based facial age estimation methods that ignored the ordinal
information of face aging data, we proposed a group-aware deep
feature learning method (GA-DFL) under deep convolutional neural
networks (CNN), by learning discriminative face representations
directly from image pixels and exploiting the aging order information.
Since facial aging datasets usually lack of face images from the same
person covering a wide range of ages, our proposed GA-DFL first
separates the chronological aging progress into several overlapped
groups and then learns a series of hierarchical nonlinear mapping
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functions to project raw pixel values into another common feature
space, so that face pairs in the same age groups are projected as close as
possible while those in different age groups are projected as far as
possible. Moreover, we link every discrete groups by overlapping
structures and develop an overlapped coupled learning method, which
aims to smooth the age differences lying on the overlaps of the adjacent
age groups. We also propose a multi-path CNN architecture to enhance
the capacity of feature representation to integrate complementary
information from multiple scales to improve the performance. Fig. 1
illustrates the main procedure of our proposed approach. To evaluate
the effectiveness of our proposed GA-DFL, we conducted experiments
on three widely used facial age estimation datasets that were captured
in both constrained and unconstrained environments. Experimental
results show that our proposed GA-DFL obtains superior performance
compared with most state-of-the-art facial age estimation methods.

The contributions of this work are summarized as follows:

(1) We develop a deep feature learning method to discriminatively
learn a face representation directly from raw pixels. With the
learned nonlinear filters, the chronological age information can be
well exploited with a perspective of age groups in the obtained face
descriptor.

(2) We propose an overlapped coupled learning method to achieve the
smoothness on the neighboring age groups. With this learning
strategy, the age difference information on the age-group specific
overlaps can be well measured.

(3) We employ a multi-path deep CNN architecture to integrate
multiple scale information into the learned face presentation.

The rest of this paper is organized as follows: Section 2 reviews
some backgrounds. Section 3 details the proposed GA-DFL method.
Section 4 provides the experimental results and Section 5 concludes
this paper.

2. Related work

In this section, we briefly review two related topics: facial age
estimation and deep learning.

2.1. Facial age estimation

Numerous facial age estimation methods [19–22,12,23–27] have
been proposed over the past two decades. As one of the earliest studies,
Lanitis et al. [25] applied a quadratic function to predict facial age.
Thereafter, several works [28,23] were proposed to incorporated with

correlated age labels to model practical human aging progress with
different degrees of improvements. In particular, Chang et al. [28]
presented an ordinal hyperplane ranking method (OHRank) which
divided age classification as a series of sub-problems of binary
classification. Geng et al. [23] proposed a label distribution learning
approach to model the relationship between face images and age labels.
Besides, Guo and Mu [29] showed human gender and race are used to
exploit the complementary information for age estimation. However,
most of these methods utilize hand-crafted features, which require
strong prior knowledge by-hand and usually encounters time-consum-
ing. To address this, several studies have been made to learn a
discriminative face representation by using advanced feature learning
approaches [30,24,3]. For example, Guo et al. [30] proposed a holistic
feature learning approach utilizing manifold learning technique. Lu
et al. [3] employed a local binary feature learning method to learn a
face descriptor robust to local illumination, which has achieved
considerable performances on facial age estimation. Nevertheless,
these methods focus on learning linear filters so that they are not
powerful enough to describe the age-informative facial appearances
because there are large variances on collected face data due to scaling,
occlusion and cluttered background especially captured in wild condi-
tions. In contrast to these previous works, we propose a deep learning
method from a perspective of feature learning with a feed-forward
neural networks to exploit the nonlinear relationship of data.

2.2. Deep learning

In the recent literature, deep learning has received much attention
in the research field of machine learning and computer vision due to its
superior performance in learning a series of nonlinear feature mapping
functions directly from raw pixels. A number of deep learning
approaches such as restricted Boltzmann machine (RBM) [31], stacked
denoising auto-encoder (SDAE) [32], deep convolutional neural net-
works (CNN) [33] have been successfully employed in many visual
analysis tasks such as handwritten digit recognition [34], object
detection [35], visual tracking [36] and scene labeling [37]. More
recently, deep learning methods have been applied to face analysis
tasks including face detection [38], face alignment [39] and face
recognition [40,41]. Specifically, Zhang et al. [39] proposed a deep
learning method with stacked auto-encoder networks to estimate facial
landmarks in a coarse-to-fine manner, Sun et al. [40] developed
DeepID2 network to reduce the personalized inter-covariance joint
by identification and verification, and Parkhi et al. [41] employed a
very deep architecture VGG-16 Face Net pre-trained by a large scale
face dataset to perform face recognition.

Fig. 1. The pipeline of the proposed facial age estimation approach. During the offline phase, we enforce two criterions on modeling aging progress to learn face representation: 1) the
inter-group variances are maximized while the intra-group variances are minimized. 2) the separated age groups should be smoothed on the age-group specific overlaps. Then the
parameters of the designed network are optimized by back-propagation. During online phase, we feed face image into the network to obtain face representation and the final age label is
performed by an age ranker.
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Inspired by the aforementioned works which learns task-adaptive
face representation, deep learning has been also used to learn a set of
nonlinear feature transformations for facial age estimation [42,43,14–
16,44]. For example, Yi et al. [45] employed a multi-scale CNN to
predict the age value with additional gender and ethnicity information.
Levi et al. [46] jointly conducted age estimation and gender classifica-
tion with CNN. Yang et al. [47] deployed a deep scattering network to
predict facial age via category-wise rankers. However, these deep
learning-based models usually require a very large face aging dataset
to learn offline feature representation in most cases such that they
usually suffer from insufficient face data because densely collecting face
images in a wide range of ages is difficult and impractical. To address
this problem, Liu et al. [48] and Yang et al. [16] employed their defined
loss functions on the top layer of pretrained deep model. While
significant performances have been obtained, these deep models ignore
the ordinal relationship of age labels. In this work, we present a group-
aware deep feature learning approach, which learns discriminative face
representation for facial age estimation and exploits the aging order
information simultaneously.

3. Proposed approach

In this section, we present the proposed model GA-DFL and multi-
path network architecture.

3.1. Model

Modeling real-world age progress requires sufficient facial data for
the same person covering a widely range of age labels. However,
densely collecting abundant face images per person is difficult and even
impractical because face aging data encounters missing label problem.
Fortunately, face images in short-interval (e.g. age labels covers smaller
than 10 years old) are usually available on existing face aging datasets.
To address this, recent study [4] has proposed a face aging method,
which splits the aging progress into a set of groups and then learned the
corresponding dictionaries to characterize the aging patterns for
different age groups. However, their goal is to reconstruct aging face
sequence by learning a set of age-group specific dictionaries, which
cannot be directly applied to our age estimation problem. Intuitively,
facial images with neighboring age values are generally similar to each
other. For example, the appearance of a person of 50 years old is more
similar to those of 47–52 years old than those bellow 30 years old.
Motivated by this fact, we split the total age process into several
discrete groups and the age-group specific relationships are exploited
as follows: 1) the distance between face pairs from the similar group
should be minimized, 2) the distance between face pairs that come
from different groups should be maximized as far as possible. To
achieve this goal, we propose a group-aware deep feature learning (GA-
DFL) method to learn a new appearance space, where face pairs within
the similar group are as close as possible and those from different age
groups are pushed as far as possible simultaneously.

3.1.1. Group-aware formulation
Let X yx= {( , )}i i i

N
=1 be the training set which contains N samples,

where x ∈i
d denotes i-th face image of d pixels. We first construct age

groups on the wide range of age labels. To be specific, we divide the age
progress into G groups according to the age values, where each age
group consists of α age labels (e.g. α is assigned to 10 and thus each
group distributes as 0–10, 11–20, 21–30, etc.). Sequentially, we
compute feature representation f x( )i for each face image xi based on
VGG-16 architecture [41]. As is illustrated in Fig. 2, our network
architecture consists of M layers including convolution, ReLU non-
linearity, pooling and fully connected layers. We firstly feed the face
image to the convolutional network and obtain the immediate feature
representation as:

f x h W x b( ) = = pool(ReLU( ⊗ + ))i i
m m

i
m( ) ( ) ( ) (1)

where pool(·) denotes the max pooling operation, ReLU(·) denotes the
nonlinear ReLU function and m M= {1, 2,…, − 2}.

To exploit our defined group-aware relationship, we define two-
layer deep neural network, where the output of the most top layer can
be computed as:

f δx h W x b( ) = = ( + )i i
M M

i
M( ) ( ) ( ) (2)

where W M( ) and b M( ) denote the weights and bias of the top layer,
respectively, δ (·) is the nonlinear function tanh function in fully
connected layers. To sum up the total weights, we collect
m M= {1, 2,…, } to train the whole deep neural networks in a globally
tuned manner.

In this paper, our goal is to learn a face representation based on the
similarity or dissimilarity of face pairs of training set. Given each face
pair xi and xj, they can be represented as f x( )i and f x( )j at the top layer
of the designed network, and the Euclidean distance between the face
pair xi and xj can be computed as:

d f fx x x x( , ) = ( ) − ( ) .f i j i j
2

2
2

(3)

In order to preserve the geometric structure of face data, we enforce
the marginal fisher analysis criterion [49] on the outputs of training
points in the nearest neighbour space at the most top level of our deep
architecture. Hence, we formulate our goal to minimize the following
objective function:
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(4)

where J1 denotes the intra-group compactness which aims to minimize
the distance of pairs in the same group, J2 denotes the inter-group
separability which enforces the distance of pairs coming from different
groups, λ1 is employed to balance term J1 and term J2, k1 and k2 are
parameters to define the size of the intra-group and inter-group nearest
neighbours, W m

F
( ) 2 denotes the Frobenius norm of matrix W m( ), Qg

ij

and Sg g
ij

,1 2 are affinity matrices to measure the similarity of pairs, which
are defined as follows:
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(6)

where g and k denote the label of the defined age group and the k
nearest neighbours of xi.

While (4) addresses the group-wise relationship, the smoothness
between the neighboring age groups cannot be implicitly modeled
under the framework of separated age groups, which can degrade the
estimation performance, especially for the images which locate near the
boundary of age group. To address this issue, we present an over-
lapping coupled learning method to exploit the age difference informa-
tion on the overlapping range of adjacent age groups (Fig. 3).

3.1.2. Overlapping coupled learning
Since age labels are continuous in chronological order so that the

defined discrete age groups should be smoothed across adjacent age
groups, illustrated as Fig. 3, we construct overlapping structures, which
cover across every neighboring age groups with the stride of κ.

Assuming that we have a face pair denoted by xp1 and xp2 from a
coupled overlapping regions Og covering both the age groups g and
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g + 1, our goal is to dynamically treat the similarities among face pairs
according to the age gap, which can be formulated to minimize the
following objective function:

∑ ∑ τ d ω y yx xℓ ( − ( , )· ( , )),
p

P

g

G

p p
O

f p p1, 2
2

1 2 1 2
g

(7)

where ℓ p p
O

1, 2
g denotes the indicator that is assigned to 1 in which xp1

and xp2 are from the same overlapping region Og, and assigned to 0 in
other cases (as shown in Fig. 4). y1 and y2 denote the age label of the
face pair, τ is the corresponding margins (basically, assigned to 1),
respectively. ω y y( , )1 2 is the age-sensitive weighting function, where the

distance of the face pair is weighted according to the age-related gap.
For example, the similarity for a face pair with a small age gap should
be weighted smaller than that for a large age gap. We apply the
Gaussian function as the weighting function, which is defined as
follows:

⎧
⎨⎪
⎩⎪

ω y y y y L( , ) = 1 − exp , | − | ≤ .
0, otherwise.

y y

L1 2

−( 1− 2)2
2

1 2

(8)

where L is the age gap in the overlapping region (we set L as 4 years old
and illustrate the influence of the weighting function).

Fig. 2. The network architecture. Our network consists of a series of convolution layers in size of 3×3, ReLU layers and max pooling layers, summing up to M layers, where the model
parameters consists of W b{ , }m m

m
M( ) ( )

=1
−2

. Following the convolutional layers, we discard the fully connected layers employed in VGG and then added two additional two-layer neural

networks consisting fully connections parameterized by W b{ , }m m
m M
M( ) ( )

= −1 and tanh nonlinear functions. We jointly learn the model parameters by back-propagation.

Fig. 3. The basic idea of the proposed overlapping coupled learning. To achieve group overlaps, one age group can be split into three regions: one non-overlap region in the middle
colored in white and two symmetrical overlapping regions adjacent with neighboring age groups colored in yellow. Taken six face samples as an example, we expect the distance of a pair
with a small age gap where one sample in overlap region (red square) and the other in non-overlap region (yellow triangle) should be smaller than that (red square and yellow diamond)
with a large age gap in the learned feature space. (Best view in the color PDF file.). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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There are two key objectives for (7):

(1) The distance between obtained face descriptors with a small age
gap is smaller than that with a large age gap because the estimation
error of a face pair from the overlapping region is less than that
with a larger gap.

(2) With the learned nonlinear feature embedding, different weights
can be assigned to different face pairs in overlapping region with
different age gaps, so that the similarities of face pairs covering
adjacent age groups can be treated dynamically because the
neighboring age labels encounter smoothness in a wide aging
progress.

By combining (4) and (7), we rewrite the objective function as
follow:
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(9)

where λ λ λ, ,1 2 3 are regularization parameters.

3.1.3. Optimization
To optimize (9), we employ the stochastic gradient decent method

to obtain the parameters W b{ , }m m( ) ( ) , where m M= 1, 2,…, . The
gradients of objective function with respect to the parameters
W b{ , }m m( ) ( ) can be computed as follows:
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where the updating equations are computed as follows:
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where m M= 1, 2,…, − 1 and ⊙ denote the element-wise multiplica-
tion. Then, W m( ) and b m( ) can be updated as follows until convergence:
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where ρ is the learning rate, which controls the convergence speed of
objective function J. Algorithm 1 summarizes the detailed procedure of
optimization for GA-DFL.

Algorithm 1. The optimization of GA-DFL

Input: Training set X ; Parameters: λ1, λ2, λ3, γ, learning rate ρ,
total iterative number Γ, and convergence error ε.

Output: Parameters: W b{ , }m m
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=1 according to(13).
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Fig. 4. Illustration of weighting function to define ω y y( , )1 2 . In this figure, we set

y y| − | ≤ 41 2 . According to the function curve, When y1 is close to y2, the weighting value

is small. This is because our goal attempts to enforce the mis-estimation should cost
small between the nearer samples y1 and y2.
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3.2. Multi-path CNN

In this subsection, we define a multi-path CNN, which is fine-tuned
by the proposed loss function (9) to enhance the capacity of the learned
face representation.

Conventional deep learning-based methods deployed the age esti-
mation-specific loss function on the top of one-scale CNN and the
parameters of the networks are optimized by back-propagation.
Moreover, some well-pretrained deep models can be fine-tuned by
limited face aging data, which has gained significant improvements
[48,16]. However, the original scales of face data across different
datasets are largely various, whereas the strong invariance of the model
can be harmful for the singe scale face input. To address this, we
propose a multi-path CNN architecture to capture multi-level semantic
invariance at different scales and deploy the objective loss (9) on the
top of the defined CNN to perform the joint fine-tuning. To be specific,
our network starts with an efficient VGG-16 Face Net [41] and two
shallower CNNs to capture the fine-grain feature representation with
exploiting multiple scale information. Having obtained 4096-hidden
layers from VGG and two subnets, we concatenate them into a long
vector and then take it as feature input into an learned age estimator.
Fig. 5 illuminates the details of the proposed network architecture.
Since our proposed loss is based on the similarity of face pairs on
Euclidean space, we perform the ℓ2 normalization to make the feature
normalized and measurable.

3.3. Implementation details

We normalized face image in size of 224×224 and then downscaled
it in 64×64 and 32×32 as multi-scale input to the defined multi-path
CNN. For the VGG-16 Face Net, we preserved the main architecture
detailed in [41] except for the top loss layer. For subnet-1, the
architecture consists of a series of convolution, max pooling, ReLU
and fully connected functions. The deep structure of subnet-2 is similar
with subnet-1, except for the input size. More details are tabulated in
Table 1.

It is important to initialize the network parameters W m( ) and b m( ),
where m denotes the layer number of the deep network. In our
experiments, we applied the well-initialized parameters of VGG-16
Face Net and employed the normalized random initialization method
to initialize W m( ) and b m( ) for the proposed subnets. To be specific, the
layer-wise weight W m( ) was initialized by the uniform distribution as:

⎡
⎣⎢

⎤
⎦⎥r r r r

W ∼ − 6
+

, 6
+

m
m m m m

( )
( ) ( −1) ( ) ( −1) (13)

where the bias b m( ) in this layer was set as 0, and r m( ) was the size of m-
th input layer.

In terms of the parameter setting employed in our method, we set
α = 10 years to each group and assigned the overlap region to κ = 4 for
overlapping coupled learning method. The balance parameter was
determined as λ λ λ{ = 0.2, = 0.5, = 0.001}1 2 3 by cross-validation. We
assigned the values of the weight decay, moment parameter and
learning rate empirically to 0.0001, 0.9, and 0.01 respectively for
training stage. The whole training procedure of our GA-DFL needed 20
iterations to convergence.

4. Experiments

In this section, we conducted facial age estimation experiments on
the widely used FG-NET [25], MORPH (Album2) [50] and Chalearn
Challenge Dataset [51] to show the effectiveness of the proposed GA-
DFL. The followings describe the details of experimental settings and
results.

4.1. Experimental settings

We resized each face images from training set in 224×224 and fed
them into the defined network. Having obtained the learned face
representation, we employed OHRank [20] as the age estimator to gain
outperformed performances for facial age estimation.

Before the evaluation of our method, we performed a face-proces-
sing for all images. Specifically, we detected the face bounding box and
facial landmarks on the origin image. All the face detection and
alignment were handled by the open source library Dlib [52]. We
utilized three landmarks including two centers of eyes and nose base to
align the detected face into the canonical coordinate system by using
similar transformation.

We utilized the mean absolutely error (MAE) [21,5,1,6,24,27,47] to
measure the error between the predicted age and the ground-truth,
which was normalized and defined as follows:

MAE
y y

N
=

− * 2
(14)

where y and y* denote predicted and ground-truth age value. N
denotes the number of the testing samples.

We also applied the cumulative score (CS) [21,5,1,6,24,27,47]

Fig. 5. The multi-path network architecture. Each face image starts with three scales of 224×224, 64×64, 32×32, respectively. The green box VGG-16 Net is the same as the employed
architecture in [41]. Besides, there are two lower scale paths including convnet1, FC1, convnet2 and FC2. The number on the top of the architecture is the input scales, and 4096 denotes
the output dimension of each subnet. Finally, we normalized the embedded feature also in dimension 4096. More details are listed in Table 1.
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curves that were demonstrated to quantitatively evaluate the perfor-
mance of age estimation methods. We provided the cumulative
prediction accuracy at the error θ, which is defined as:

CS θ
N

n
( ) = × 100%e θ≤

(15)

where Ne θ≤ is the number of images on which the error θ is no less
than e. Basically, θ starts from 0.

4.2. Visualization of the proposed networks

To illustrate what we have learned in our multi-path network, we
visualized the learned filters and the corresponding feature maps.
Having obtained the trained network, we show the first convolution
layers in the triple subnets to see the learned filters, showed in Fig. 7.
To visualize the learned face representation, we fed the network with
normalized face image and figured the feature maps for their corre-
sponding filters. To achieve this, we conducted heat maps for each
maps and showed the visualizations of feature maps are showed Fig. 6.
We have made three observations from the visualizations:

(1) Both the VGG-16 Net and two other SubNets detect the meaningful
representation of facial properties such as eye corners, beard and
nasolabial folds, which clearly shows the age-informative details.

(2) VGG-16 is referred to capture the detailed visual appearance, while
two low-resolution subnets characterize the coarse contours for
age information.

(3) The learned features are robust to the large invariance in such

cases that some face images encounter cluttered environment such
as wearing glasses.

4.3. Experiments on the FG-NET dataset

There are 1002 images from 82 persons in FG-NET Dataset [25]
and there exists averaging 12 samples for each person. The age range in
this dataset covers from 0 to 69. The FG-NET dataset encounters large
variations in pose, illumination and expression.

We employed the leave-one-person-out (LOPO) strategy to conduct
the age estimation experiments. Specifically, we randomly selected face
images from one person as testing images, and the remaining were
used for model training. Thus the whole experiments should be
performed 82 times for cross-validation. Finally, we averaged the 82
folds results as the final age estimation results.

4.3.1. Comparisons with different facial age estimation approaches
Table 2 demonstrates the MAE performance compared with the

state-of-the-art methods. The results were cropped from the original
paper. Fig. 8 shows the CS curves with different facial age estimation.
From the results, without any additional datasets, our GA-DFL out-
performs other methods. This is because our model aims at learning a
series nonlinear mapping functions while considering the age-group
specific relationship. Moreover, the extensive model GA-DFL inte-
grated with multi-path network (described in Section 3.2) obtains
higher MAE and CS performance than GA-DFL, which shows that the
multi-path network has provided complementary scale information to
predict facial age value (Fig. 9).

Table 1
The multi-path network architecture.

SubNet1 1 2 3 4 5 6 7 8 9 10 11

conv relu pool conv relu pool conv relu pool conv conv

filt dim 5 – 3 5 – 3 5 – 3 4 1
num filt 32 – – 64 – – 128 – – 256 512
stride 1 – 2 1 – 2 1 – 2 1 1
pad 2 – 1 2 – 1 2 – 1 0 0

SubNet2 1 2 3 4 5 6 7 8 9 10 11

conv relu pool conv relu pool conv relu pool conv conv

filt dim 5 – 3 5 – 3 5 – 3 2 1
num filt 256 – – 512 – – 512 – – 512 1024
stride 1 – 2 1 – 2 1 – 2 2 1
pad 2 – 1 2 – 1 2 – 1 0 0

Fig. 6. The visualization of learned feature maps on MORPH Dataset. The fist column denotes the face input for deep network, and the remaining are feature maps of the first
convolutional layer in each subnets: VGG-16 Net, subnet-1, subnet-2.
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4.3.2. Comparisons with several deep learning approaches
To evaluate the effectiveness of the proposed deep learning frame-

work, we conducted several comparisons under different deep features
and loss functions. Firstly, we directly extracted features from the
pretrained VGG net and further employed KNN classifier to construct a
baseline method. In terms of unsupervised setting, we fed the extracted
feature descriptors to OHRanker without fine-tuning VGG. For super-
vised setting, we deployed the Softmax loss [63] for age classification
and the linear regression for age regression on the top of VGG-16 Net
and then fine-tuned the whole deep networks. Table 4 shows the MAE
performances. According to the demonstrated results, we have drawn
some conclusions: Our model obtains outperformed performance
compared with different deep learning methods. This is because we
explicitly modeled the age-related information under the deep learning
framework. By employing VGG Net, we have obtained an improved
performance on facial age estimation with carefully tuning the deep
networks by classification and regression specific loss. Unsupervised
VGG feature improved the MAE performance compared with raw pixel,
which shows that the VGG Net could capture the visual appearance for
facial patterns, which provides main cues for age estimation (Fig. 10).

4.3.3. Comparisons with existing feature learning methods
We compared our GA-DFL approach with existing feature learning

approach LQP [60], DFD [61], RICA [62] and CS-LBFL [3]. For RICA
and DFD, we use the released code for experiments. For LQP and CS-
LBFL, we implemented it from the paper details. We also extend CS-
LBFL under a two-layer deep neural networks, which consists of
500 − 256 − 128 multi-layer neural networks followed by a nonlinear
function ReLU [63]. Table 3 shows the MAEs of different feature
learning approaches. According to the performance, we have gained the
highest performance, even outperformed the deep extension of the
feature learning based method CS-LBFL.

To evaluate more fair experiments, we implemented multi-scale
feature learning approach based on LQP, DFD and RICA and CS-
LBMFL. The MAEs of results are also showed in Table 3. As can be
seen, our proposed GA-DFL performs better than the other multi-scale
feature learning approaches. This is because our learned deep features
can represent the nonlinear mapping between face image and age-
informative targets.

4.3.4. Comparisons with different age estimators
We investigated the effectiveness of different facial age estimators

with our learned feature. Specifically, we compared with support vector
regression (SVR) [64] and OHRanker and computed the MAEs for final
performance. We also implemented common losses such as softmax
and regression as age estimator under deep architecture. As the results
are demonstrated in Table 5, we see our model with OHRanker

Fig. 7. The visualization of the first convolutional filters for the corresponding VGG-16 net and the other two subnets. For each filter bank, the selected convolution filter weights are
illustrated in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison of averaged errors with state-of-the-art approaches on FG-NET.

Method Model Description Year MAE

KNN 8.24
SVM 7.25
MLP 6.95
RUN [53] AAM + RUN 2007 5.78
AGES [1] AAM + Aging pattern subspace 2007 6.77
LARR [6] AAM + Locally adjusted robust regression 2008 5.07
PFA [54] AAM + Probabilistic fusion approach 2008 4.97
KAGES [55] AAM + Kernel AGES 2008 6.18
MSA [56] AAM + Multilinear subspace analysis 2009 5.36
SSE [57] AAM + Submanifold embedding 2009 5.21
mKNN [58] AAM + Metric Learning 2009 5.21
MTWGP [27] AAM + Multi-task warped GPR 2010 4.83
RED-SVM [28] AAM + Red SVM 2010 5.21
OHRanker [20] AAM + Ordinal hyperplanes ranker 2011 4.48
PLO [26] Feature selection + OHRanker 2012 4.82
IIS-LLD [23] AAM/BIF + learning from label

distribution
2013 5.77

CPNN [23] AAM/BIF + learning from label
distribution

2013 4.76

CA-SVR [59] AAM + cumulative/joint attribute learning 2013 4.67
CS-LBFL [3] Feature learning + OHRanker 2015 4.43
CS-LBMFL [3] Multiple feature learning + OHRanker 2015 4.36
GA-DFL Deep feature learning + OHRanker 4.16
GA-DFL (MP-CNN) Deep feature learning + OHRanker 3.93
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Fig. 8. The CS curves compared with different facial age estimation methods on FG-
NET.
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performs better than deep learning based age estimators. Moreover,
our model with OHRanker outperforms SVR methods, but the differ-
ence is not large.

4.3.5. Performance analysis of different factors
We conducted experiments on performance analysis of different

factors of our methods, with OHRanker as the age predictor. Table 6 is
demonstrated the MAEs performances. First, we set each age group
covering years of α = {2, 5, 10} and assigned κ = {2, 4} to the over-
lapped stride. According to the results, the MAE under group 5
performs the best. Moreover, we investigated the influences of with
and without overlapped coupled learning strategies. Specifically, we
denotes the without overlap setting by directly setting γ to 0 in (7)
while to 0.3 as with overlapped coupled learning. From the results, we
see that under the same age group number, the overlapped coupled
learning can improve the prediction performance. It is because our
model achieves in exploiting the age-sensitive relationship, while the
age group without overlapped learning degrades the performance due
to the misclassified samples on the bound of the age group.

4.4. Experiments on the MORPH dataset

MORPH (Album 2) dataset [50] contains 55608 face images from

about 13000 subjects. The age range lies from 16 to 77 years old and
there exists averaging 4 samples per person. Since MORPH dataset
contains thousands of persons, LOPO cross-validation is time-consum-
ing. Thus, we performed 10-folds cross-validation for performance
evaluation. Specifically, we first divided the whole dataset into equally
size of 10 folds. We randomly selected one fold as testing set and the
remaining folds as training set. Sequentially, we repeated whole

Fig. 9. The sampled examples of two persons from the FG-NET dataset. Each row represents one person identity and the number below each face image is the age value. The dataset
encounters crowded background and large invariance due to expressions and aspect ratio.

Fig. 10. The sampled examples from the MORPH dataset. The number below face image is the age value for each person.

Table 3
Comparison of MAE with different feature learning based approaches on FG-NET.

Method MAE

LQP [60] 4.70
DFD [61] 4.57
RICA [62] 6.09
CS-LBFL [3] 4.43
Deep-CS-LBFL 4.40
GA-DFL 4.16

MDFD 5.35
MRICA 5.65
CS-LBMFL 4.36
Deep-CS-LBMFL 4.22
GA-DFL (MP-CNN) + OHRanker 3.93
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procedure 10 times and averaged the performances as final result.

4.4.1. Comparisons with different state-of-the-art methods
We compared our model with several different state-of-the-art

facial age estimation approaches. The experimental results are demon-
strated in Table 7. All comparable results are reported from the original
paper. Fig. 11 shows the CS curves with different facial age estimation
methods. As can been seen that the experimental results show that our
DA-DFL outperforms most state-of-the-art methods. In particular, we
compared our method with deep learning based model DeepRank [69]
and OrdinalCNN [44]. According to the results, we inferred that our

model performed a very competitive performance, which shows the
effectiveness of the proposed method.

4.4.2. Timing-cost
Our approach was implemented on the Matlab platform with the

MatConvnet [70] deep learning toolbox. We trained our model with a
speed-up parallel computing technique by one single GPU with Tesla
K40. For large amounts of training data in MORPH Dataset, we
investigated the training timing-cost for different depths of the VGG-
16 Net. Table 8 tabulates the time (frames per second) during training
procedure. From these results, we see that the fine-tuning depths
directly determines the training timing-cost, this is because a set of the
convolution computations can be time-consuming. However, the MAEs
becomes higher while more layers are trained, which shows the
effectiveness of depths of network model depend on the amount of
training data. Lastly, we investigated the testing time with several
different feature learning methods on a PC with a i7-CPU@3.40 GHz
and a 16 Gb RAM in Table 9. We see that our proposed methods
satisfies the real-time requirements.

4.5. Experiments on apparent age estimation dataset

In addition to these four datasets, we presented results of our
proposed method on the ICCV 2015 ‘Looking at People-Age
Estimation’ Challenge Dataset [51] (Chalearn Challenge Dataset),
which is the first dataset on apparent age estimation containing
annotations. There are 4112 images for training and 1500 images for
validation. The age range is from 0 to 100 years old. All the images
were captured in the unconstrained condition with large variance of
pose, aspect ratio and low quality.

We initially evaluated the performance of our proposed method by
utilizing MAE and CS. By following the protocol provided by the
Chalearn Challenge Dataset [51], we also computed the error rate as
follows:

Table 4
Comparison of MAE with different deep learning methods on FG-NET.

Method MAE

Unsupervised pVGG feature + KNN 6.54
VGG feature + Regression 4.88
VGG feature + Softmaxloss 4.72
Unsupervised VGG features + OHRanker 4.44
GA-DFL (VGG only) + OHRanker 4.16
GA-DFL (MP-CNN) + OHRanker 3.93

Table 5
Comparison of MAE with different age estimators on FG-NET.

Method MAE

GA-DFL (VGG only) + SVR 4.32
GA-DFL + SVR 4.47
GA-DFL (VGG only) + OHRanker 4.16
GA-DFL (MP-CNN) + OHRanker 3.93

Table 6
MAEs Comparisons with Different Learning Strategies on the FG-NET Dataset.

Method Overlap-Stride κ Group-Capacity α MAE

GA-DFL without overlap 2 5.22
GA-DFL without overlap 10 5.77
GA-DFL without overlap 5 5.08
GA-DFL 2 5 4.24
GA-DFL 2 10 4.11
GA-DFL 4 10 3.93

Table 7
Comparison of MAEs with different state-of-the-art approaches on MORPH (Album 2).

Method MAE

KNN 9.64
SVM 7.34
AGES [1] 8.83
MTWGP [27] 6.28
OHRanker [20] 6.49
IIS-LLD [23] 5.69
CPNN [23] 5.67
CA-SVR [59] 4.87
MFOR [65] 5.88
BIF+OLPP [66] 4.20
CS-LDA [67] 6.03
CS-FS [68] 6.59
CS-LBFL [3] 4.52
CS-LBMFL [3] 4.37
rKCCA [29] 3.98
rKCCA + SVM [29] 3.91
CPLF [45] 3.63
DeepRank [47] 3.57
DeepRank+ [47] 3.49
OrdinalCNN [44] 3.27
GA-DFL 3.37
GA-DFL (MP-CNN) 3.25
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Fig. 11. The CS curves compared with different facial age estimation methods on
Morph.

Table 8
Training time (fps) performed in MORPH Dataset.

Fine-tuning Depths MAE Time

1 4.29 120
2 3.88 100
5 3.69 80
Total 3.37 40
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eϵ = 1 −
y μ
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− ( − )

2

2

2 (16)

where y denotes the predicted age value, μ is the provided apparent age
label which averaged by about 10 users opinions and σ is the standard
deviation. To address the age recognition as a classification problem,
we floored all the annotated age values to integers to fit on our method.
Since the testing data has not been released publicly, we had to conduct
experiments on the validation set.

To conduct fair experimental comparisons, we implemented two
types of methods to be compared. First, we defined shallow model by
utilizing hand-crafted features such as SIFT, LBP and then we
performed facial age estimation by OHRanker. To better evaluate our
method compared with different deep learning based approaches, we
involved with different loss functions including softmax and linear
regression by fine-tuning VGG Face Net. In addition, we compared our
method with G-LR [19], which aims to predict facial age by jointly
exploiting face identification by facial landmarks. Table 10 tabulates
the MAEs and Gaussian errors, while Fig. 12 shows the CS curves with
different methods. From the results, we can infer that our GA-DFL
performs significant improvements on facial age estimation compared
with the other deep learning based methods with limited training data
(Fig. 13). Furthermore, we illustrated some face images, the CS of
which are below 1 years old (showed in Fig. 14). By looking at the
images, we can infer that our method is robust to the large invariance
in unconstrained environment, especial for extremely pose and resolu-
tion changes to a certain extent. The performance of our method can be
improved considerably if we train using more number of age labeled
data.

4.6. Discussion

We make two observations from the experimental results compared
with existing facial age estimation methods:

(1) Compared with the traditional shallow models [5–9,3], we have
obtained outperformed experimental results with CNN framework
on three public facial age estimation datasets that were captured
under both constrained and unconstrained environments. This is
because our GA-DFL has learned a set of nonlinear hierarchical
feature transformations to capture the nonlinear relationship
between face images and age values, while existing shallow models
and hand-crafted features are not powerful enough to address this
nonlinear problem.

(2) Compared with existing deep learning-based methods [45,47], our
GA-DFL has achieve very competitive performances on three face
aging datasets. These methods and our GA-DFL follow the deep
learning architecture to learn powerful feature representation for
facial age estimation. In contrast to them, the learned face
representations of GA-DFL has discovered the ordinal relationship
from face pair similarity with integrating the aging rank levels and
age difference information.

5. Conclusions and future work

In this paper, we have proposed a group-aware deep feature
learning (GA-DFL) for facial age estimation. Since the real-world age

Table 9
Computation time (Second) comparison of different feature learning methods in MORPH
Dataset.

Method Time

DFD 0.60
LQP 0.10
RICA 0.35
CS-LBFL 0.06
CS-LBMFL 0.18
GA-DFL 0.32
GA-DFL (MP-CNN) 0.38
GA-DFL with GPU 0.02
GA-DFL (MP-CNN) with GPU 0.04

Table 10
Comparison of MAEs and Gaussian errors with different feature learning based
approaches on Chalearn challenge dataset.

Method Model Description MAE Gaussian
Error

G-LR [19] Age estimation by facial
landmarks

7.09 0.620

OHRanker-SIFT SIFT + OHRanker 7.18 0.582
OHRanker-LBP LBP + OHRanker 7.00 0.563
OHRanker-

UnsupVGG
Unsupervised VGG feature +
OHRanker

7.24 0.593

Deep Regression VGG Face Net fine-tuned by
Linear Regression

5.05 0.456

Deep Softmax VGG Face Net fine-tuned by
Softmaxloss

4.58 0.423

GA-DFL(vgg only) GA-DFL(vgg only) +
OHRanker

4.39 0.393

GA-DFL GA-DFL(MP-CNN) +
OHRanker

4.21 0.369
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Fig. 12. The CS curves compared with different facial age estimation methods on
Chalearn Challenge Dataset.

Fig. 13. The sampled examples from the apparent age estimation dataset. The number below each face image is the corresponding apparent age.
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labels are correlated and hand-crafted face descriptors are not powerful
to model the relationship between face images and age values, we have
defined a set of age groups to describe the aging order relationship of
face data and implicitly achieved the ordinal age-group relationship.
Moreover, we developed an overlapped coupled learning to smooth the
adjacent age groups. To further improve the performance, we designed
a multi-path CNN to capture age-informative appearances from
different scale information. Experimental results on three released
datasets have evaluated the effectiveness of the proposed GA-DFL
compared with the state-of-the-art. How to learn personalized face
descriptors for age estimation is an interesting future work.
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