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Abstract—In this paper, we propose a nonlinear structural
hashing (NSH) approach to learn compact binary codes for
scalable video search. Unlike most existing video hashing methods
which consider image frames within a video separately for binary
code learning, we develop a multi-layer neural network to learn
compact and discriminative binary codes by exploiting both
the structural information between different frames within a
video and the nonlinear relationship between video samples. To
be specific, we learn these binary codes under two different
constraints at the output of our network: 1) the distance between
the learned binary codes for frames within the same scene
is minimized, and 2) the distance between the learned binary
matrices for a video pair with the same label is less than a
threshold and that for a video pair with different labels is larger
than a threshold. To better measure the structural information of
the scenes from videos, we employ a subspace clustering method
to cluster frames into different scenes. Moreover, we design
multiple hierarchical nonlinear transformations to preserve the
nonlinear relationship between videos. Experimental results on
three video datasets show that our method outperforms state-of-
the-art hashing approaches on the scalable video search task.

Index Terms—Hashing, scalable video search, neural network,
structural information.

I. I NTRODUCTION

OVER the past decade, we have witnessed the exponential
growth of the video collections on the Internet. In con-

trast to the rapid growth of video contents, most existing video
search engines still rely on textual keyword based indexing,
which cannot present all pieces of information in a video and
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often misses videos due to the absence of text metadata. To
leverage the rich visual content of a video, content-based video
search uses a set of example videos as queries to retrieve
related videos, in which videos are represented by high-
dimensional feature representations. While many efforts have
been made to improve the accuracy of content based video
search [1]–[7], the development of efficient video retrieval
technique is still under-explored. Furthermore, video retrieval
cannot directly use the text retrieval technique because the
extracted video representations are not text-based [8]. Hence,
both the tremendous video corpus and high-dimensional video
features pose a really important and challenging topic for
researchers to develop new search techniques.

As one of the most efficient retrieval methods, the emerging
hashing based approximate nearest neighbor search approach
has become a popular tool for tackling a variety of large-scale
visual analysis problems and has been extensively studied to
encode documents or images by a set of short binary codes.
Most existing video hashing methods [9]–[12] directly adopt
the existing image hashing algorithm to learn a single linear
projection matrix to generate binary codes with the goal of
preserving similarity between frames. However, different from
the imagery data, video clips not only contain many imagery
frames but also carry specific structure information, which
was ignored in most existing learning-based hashing methods.
Therefore, the consistency between frames within the same
scene is not encoded in the learned binary representations.
Furthermore, such methods can not explicitly encode the
nonlinear relationship between videos in the learned binary
representations.

To address the abovementioned issues, we propose in
this paper a nonlinear structural hashing (NSH) method to
learn an efficient neural network for scalable video search.
Fig. 1 illustrates the basic idea of our NSH. Specifically,
we formulate video hashing as a structure-regularized loss
minimization problem to achieve both the video level and
the frame level similarity preservations. We design a neural
network of multiple hierarchical nonlinear transformations to
learn video representations so that inter-class variations of
video representations are maximized and intra-class variations
of video representations are minimized. Furthermore, we p-
reserve the similarity for binary codes of frames within the
same scene, which is constructed by employing the subspace
clustering method. Specifically, the hashing model is learned
by enforcing two constraints on the neural network: 1) the
distance of each positive video pair is less than a threshold
and that of each negative pair is higher than the threshold, and
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Fig. 1: Illustration of our proposed nonlinear structural hashing
method. Firstly, we develop a multi-layer neural network to
preserve nonlinear relationship between videos. Secondly, we
construct scenesSi,1, Si,2 and Si,3 from the i-th video Vi

through subspace clustering to leverage the statistical knowl-
edge and structural information between frames. Furthermore,
similarity constraint is enforced on the binary codes of frames
within the same scene to exploit the scene consistency.

2) the variations of the learned binary codes for consecutive
frames is minimized. In order to evaluate the performance of
the proposed method, we conduct extensive experiments on
three large video collections. These datasets contain human
activities in unconstrained real-world environments and are
challenging for content-based video retrieval. We show the
effectiveness of the proposed method and demonstrate that our
method achieves significant performance gains compared with
previous representative hashing methods for scalable video
search.

We summarize the main contributions of this paper as
follows:

• We present a hashing learning framework to exploit both
the nonlinear relationship between video samples and the
structural information between different frames.

• We measure the similarity between video samples based
on a set-to-set calculation with frames clustered into
different scenes.

The rest of this paper is organized as follows. Section II
presents the related work on hashing learning and video
retrieval. Section III details our proposed nonlinear structural
hashing approach. Section IV presents the experimental result-
s. Finally, Section V concludes this work.

II. RELATED WORK

In this section, we first review several representative
learning-based hashing methods and then show some recent
progress on video search.

A. Learning-based Hashing

To achieve efficient approximate nearest neighbor search,
hashing methods encode high dimensional data as compact bi-
nary codes while preserving the similarity of the original data.
The hashing methods can be categorized into two classes: data-
independent and data-dependent. Data-independent hashing

methods adopt random projections to map samples into binary
codes. To avoid the recall decrease of long codes for good
precision in randomized hash functions [13], data-dependent
hashing methods generate compact binary codes by leveraging
training sample properties or data label supervision. Existing
data-dependent hashing methods can be mainly categorized
into two classes: unsupervised and supervised. For the first
category, the hashing learning procedure is accomplished
without the label information. The binary codes of data
samples are learned by employing discrete optimization tech-
niques to preserve the similarity relationship between original
high-dimensional features with the goal to be informative.
The recent representative algorithms in this category include
spectral hashing (SH) [14], iterative quantization (ITQ) [15],
Restricted Boltzmann Machines (RBMs) (or semantic hash-
ing) [16], Anchor Graph Hashing (AGH) [17], K-Means
Hashing (KMH) [18], Bilinear Projection-based Binary Codes
(BPBC) [19], Binary Autoencoder (BA) [20], Sparse Binary
Embedding (SBE) [21] and Deep Hashing (DeepH) [22].
While unsupervised hashing is promising to retrieve metric
distance neighbors, e.g.,ℓ2 neighbors, the label information
is helpful to improve accuracy for searching semantically
similar neighbors [23]. In supervised hashing methods, both
label information and data properties are utilized to learn hash
functions. The hashing model is learned with the goal to
minimize the differences between the Hamming affinity over
the binary codes and the similarity over the data items, which
is determined by the real value features and the data labels.
Recent progress in this category has been made in Sequential
Projection Learning for Hashing (SPLH) [24], Discriminative
Binary Codes (DBC) [25], Minimal Loss Hashing (ML-
H) [26], Hamming Distance Metric Learning (HDML) [27],
LDA Hashing [28], Ranking-Based Supervised Hashing [29],
Graph Cuts Coding [30], Kernel-Based Supervised Hash-
ing (KSH) [31], FastHash [32], Supervised Discrete Hash-
ing (SDH) [33], Semisupervised kernel hyperplane learning
(SKHL) [34], Semantics-Preserving Hashing (SePH) [35] and
Deep Semantic Ranking based Hashing (DSRH) [36].

B. Video Search

Recently, the visual search for video contents has attracted
much attention of researchers. The search task can be split
into two main phases: feature extraction and search. Feature
extraction aims to generate effective, efficient and discrimina-
tive representations of videos, and search is to find relevant
videos by utilizing the previously extracted features for a given
query video. While much research have been devoted into
the improvement of search accuracy [1]–[7], [37]–[41], the
efficient search algorithm for video search is less studied in
the literature. To find relevant videos efficiently, approximate
nearest neighbor search is proposed to reduce the complexity
of conventional linear scan. Representative efficient approx-
imate nearest neighbor search algorithms include tree-based
methods [42]–[45] and quantization methods [8], [46], [47].
However, these methods suffer from the high dimensionality
curse and are not suitable for large scale video search. To
address this, several learning-based hashing methods have
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been proposed for scalable video search. For example, Caoet
al. [10] propose to combine feature pooling with hashing for
efficient large scale video retrieval. Liet al. [9] take advantage
of Riemannian Manifold for face video retrieval. Wanget
al. [12] take account of visual saliency for hash generation. Ye
et al. [11] exploit the discriminative local visual commonality
and temporal consistency to design hash functions. Note that
the structure in [11] stands for the spatial structure information
within a video frame, while we emphasize the relationship
between frames of a video by mentioning structure. While
reasonably good performances are demonstrated by these
hashing methods, most of them usually learn a single linear
transform and ignore the video structural information, which
cannot well capture the nonlinear structure of video clips to
produce more effective compact hash codes [33]. To this end,
we propose a nonlinear structural hashing method by utilizing
both the nonlinear relationship between videos and the scene
structure, where multi-layer neural network is learned for
scalable video search.

III. STRUCTURAL V IDEO HASHING

In this section, we present a structural hashing model for
scalable video search. Assume there areN training videos
{Xi}

N
i=1 with category labels{yi}Ni=1 whereyi is the label

information for videoXi. Each videoXi is represented by
a collection ofni sequential frames{xi,1,xi,2, . . . ,xi,ni

} ∈
R

d×ni . Thea-th column ofXi, xi,a ∈ R
d, is thea-th frame

of videoXi with a feature length ofd. The videos are sampled
as representative frames to make the video hashing approach
applicable to long videos. The frame sampling method is
related to the video summarization [48]–[52]. In this work,
we select frames based on uniform sampling. Our goal is to
learn anL-bit binary code for each frame. By denoting the
binary code of the framexi,a asbi,a ∈ {−1, 1}L, a videoXi

with ni frames can be represented as the binary code matrix
Bi ∈ {−1, 1}L×ni.

A. Model

To facilitate efficient video retrieval, the learned binary
codes are expected to maintain the local structure of the
training videos. First, similar videos are expected to have
binary codes with small Hamming distance. We call such
similarity between videos as the inter-video similarity. Second,
rather than considering video frames as images [11] or video-
level feature representation [33], [53], the intra-video similar-
ity is also taken into consideration in the proposed method.
The intra-video similarity characterizes the similarity between
frames within a video. Thus, the learning objective of the
proposed method is to preserve both inter- and intra-video
similarities, which is formulated as,

argmin
{Bi}N

i=1

L = Lv + λ1Lf , (1)

whereLv andLf measure the inter- and intra-video similarity
losses, respectively. The parameterλ1 is the parameter to
balance the effects of two kinds of similarity losses.

Fig. 2: The workflow of the proposed approach. Firstly,
the gallery videos are passed through the learned multilayer
neural network to yield the corresponding binary matrices,
B1, ...Bn, which are stored to constitute the database for the
following retrieval. Given a query video, the corresponding
binary matrix Bquery is generated with the learned model.
Then, the distances between the binary matrix of query video
and those in the database,D1, ...Dn, are computed. Finally,
a ranking list of database videos is constructed for similarity
search.

We define the inter-video similarity loss based on the
discriminative distance metric [54] to pursue efficient binary
code matrices. The specific form is expressed as,

Lv =

N
∑

i=1

N
∑

j=1

ℓi,j(D(Bi,Bj)− τ), (2)

whereD(Bi,Bj) represents the distance between two learned
binary code matricesBi,Bj for videos Xi,Xj , which is
further defined in Section III-C to leverage the video statistical
information. Specifically, (2) aims to seek binary code matrices
such that the distanceD(Bi,Bj) betweenXi and Xj is
smaller than a pre-specified thresholdτ if Xi and Xj are
with the same category (ℓi,j = 1), and larger thanτ if videos
Xi andXj are with different categories (ℓi,j = −1), where
the pairwise labelℓi,j denotes the similarity or dissimilarity
between a video pairXi andXj. Note that the value ofτ does
not influence the minimization of (2) as long asτ is fixed. To
make (2) meaningful,τ is assigned a value related to the bit
length of the binary code.

The intra-video similarity loss term is to embed the scene
consistent constraint between frames of the same scene into
the learning objective, which is defined as follows:

Lf =
1

2

N
∑

i=1

ui
∑

m=1

∑

bi,a1∈Si,m

∑

bi,a2∈Si,m

‖bi,a1 − bi,a2‖
2
2

=
1

2

N
∑

i=1

∥

∥RiB
T
i

∥

∥

2

2
, (3)

whereRi is a constant coefficient matrix related to the scene
structure of videoXi, Si,m represents one scene of video
Xi andui is the number of scenes in videoXi. Each item
‖bi,a1 − bi,a2‖

2
2 is corresponding to a row ofRi with the

a1-th element being 1, thea2-th element being -1 and the
other elements being zeros. Since the scene structure is only
related to the content of each video, it is computed before the
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generation of binary codes as will be stated in Section III-C.
Here ‖·‖2 denotes the matrixL2-norm. (3) aims to pursue
small difference between binary codes for the frames of the
same scene in a video, which enforces the smoothly change of
binary codes of frames in a scene, and thus explicitly embeds
the scene structure into the learned binary codes. This equation
introduces the binary code similarity enforcement between
frames within the same scene and can be combined with any
scene construction method. By combining (2) and (3) together,
the frames of the same scene with the same class label are
more likely to be mapped to close binary codes.

B. Hashing with Multilayer Neural Network

Given a video framexi,a, a set of hash functionsfh(x) =
[h1(x), h2(x), . . . , hL(x)] is learned to produce anL-bit
binary codebi,a ∈ {+1,−1}L. A good form of hash functions
is critical to obtain the desirable binary codes. In this work,
the form of multi-layer neural network is adopted to generate
the compact binary codes through multiple nonlinear transfor-
mations. Compared to most previous works, which only learn
a single linear projection matrix [15], [18], [26], [47], [55],
multi-layer neural network can better capture the nonlinear
manifold of frames. While the kernel trick can project frames
into the kernel space to learn the binary codes, the lack
of explicit nonlinear mapping functions usually leads to the
scalability problem [31], [56].

As shown in Fig. 2, we develop a network withK + 1
stacked layers of nonlinear transformations to compute the
binary representationbi,a for each framexi,a. Let p(k) be the
number of units at thek-th layer, where1 ≤ k ≤ K. The
output of thek-th layer is recurrently computed ash(k)

i,a =

s(W (k)h
(k−1)
i,a + c(k)) ∈ R

p(k)

with h
(1)
i,a = s(W (1)xi,a +

c(1)) ∈ R
p(1)

, wheres(·) is a nonlinear activation function,
e.g., the tanh or sigmoid function.W (k) and c(k) are the
projection matrix and bias vector to be learned at thek-th
layer of the network, respectively. Specifically, the output of
the network is calculated as:

gh(xi,a) = h
(K)
i,a = s(W (K)h

(K−1)
i,a + c(K)) ∈ R

p(K)

, (4)

where the mappinggh : Rd 7→ R
p(K)

is a parametric nonlinear
function determined by parameters{W (k), c(k)}Kk=1. Then,
the binary codes are generated by taking the sign of the output
of the top layer of the network:

bi,a = sgn(h
(K)
i,a ). (5)

The binary vectors of all frames in a video can be rewritten
as the matrix formB ∈ {−1,+1}L×ni. On the base of the
relationships in (4) and (5), both the parameterized network
and a set of binary code matrices of the given training videos
can be learned by solving an optimization problem to minimize
the predefined loss measurement. As shown in (5), the binary
representation of a new video can be obtained by passing each
frame through the learned network.

C. Subspace-based Video Distance

The distance between two videosXi and Xj in the
Hamming space is converted to the distance between two

1101
1001
1101
0101

1101
1001
1101
0101

Mean

0110
1110
1001
1101

1101
1001
1101
0101

Subspace 

clustering

1101
1001
1101
0101

0110
1110
1001
1101

iB

jB

1sD

2sD

3sD

4sD

( , )i jD B B

Fig. 3: The computation of distance between binary code
matrices of videos. Firstly, the binary matrix of each videoBi

is clustered into subspaces to exploit the structural information.
Then, the Hamming distances between subspaces of different
videos Ds1, Ds2, Ds3 and Ds4 are computed. Finally, the
distance between the two binary matrices of videosD(Bi,Bj)
is derived on the base of distances between subspaces.

sets of binary codessbi := {bi,1, bi,2, . . . , bi,ni
} and sbj :=

{bj,1, bj,2, . . . , bj,nj
}. A naive method is to calculate the

difference between the mean values of the two setssbi andsbj .
However, it does not take into consideration the set attribute,
i.e. the distribution of elements within the set. Considering the
scene structure within a video, the frames from a video could
be assumed to be distributed on a nonlinear manifold. Hence,
a more desirable approach is to measure video distance with
the distance between subspaces.

As shown in Fig. 3, to facilitate the computation of the
video to video distance, a subspace clustering method is
applied for each video, where a nonlinear video representation
is decomposed into as a set of linear subspaces. A video
Xi, which is assumed to come from a low-dimensional
manifold, is partitioned into a collection ofui disjoint sub-
spaces{Si,1,Si,2, . . . ,Si,ui

}. Each subspace is a linear space
spanned by a subset of frames,Si,m = span(Xi,m), where
Xi,m = XiTi,m is a matrix consisting of several columns of
Xi. That is,Xi =

⋃ki

m=1 Xi,m andXi,m

⋂

Xi,n = ∅(m 6=
n,m, n = 1, 2, . . . , ui). Each subspace represents a scene in
the video, and the procedure of scene clustering is to construct
the subspaces for videos. To better construct subspaces for
videos we employ the local linear model construction method
in [57] to explicitly guarantee the linear property of each
subspace. In the one-shot clustering method [57], a seed point
is used to generate each new maximal linear patch under the
linearity constraint. The maximal linear patch is defined to
span a maximal linear subspace. The deviation between the
geodesic distances and Euclidean distances in the patch reflects
its linear perturbation.

The video to video distance is represented as the integration
of distances between pair of subspaces. Typically, a video
consists of several clips describing different scenes of an event
and similar videos are with a certain overlap in scenes. To
classify two videos as the same category, one effective solution
is to find the common scenes and measure the similarity of
those scenes. Therefore, we define video to video distance
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by the average distance between subspace pair from the two
clusters of subspaces as follows:

D(Xi,Xj) =
1

uiuj

ui
∑

m=1

uj
∑

n=1

Ds(Si,m,Sj,n), (6)

whereD(Si,m,Sj,n) is the distance between two subspaces
Si,m and Sj,n of videos Xi and Xj , respectively. The
Hamming distance between the hash codes of framesxi,m,a

andxj,n,b of subspacesSi,m andSj,n is adopted to compute
the Hamming distance between two subspaces from different
videos. In particular, it is computed as the average Hamming
distance between frames,

Ds(Si,m,Sj,n) =
1

ki,mkj,n

ki,m
∑

a=1

kj,n
∑

b=1

dH(xi,m,a,xj,n,b), (7)

wheredH is the Hamming distance of two binary codes and
ki,m and kj,n are the numbers of frames in the subspaces
Si,m andSj,n, respectively. The distance is symmetric and is
averaged by the number of frames in subspaces to make the
distance less dependent on the size of subspaces.

D. Optimization

Based on the hashing learning function presented in Section
III-B and the video distance defined in Section III-C, the
objective in (1) can be rewritten as:

argmin
{W (k),c(k)}K

k=1

L = Lv + λ1Lf + λ2Lr

=
1

2

N
∑

i=1

N
∑

j=1

ℓi,j
(

D(Bi,Bj)− τ
)

+
λ1

2

N
∑

i=1

∥

∥RiB
T
i

∥

∥

2

2

+
λ2

2

K
∑

k=1

(

∥

∥

∥
W (k)

∥

∥

∥

2

2
+
∥

∥

∥
c(k)

∥

∥

∥

2

2

)

. (8)

The first two termsLv and Lf enforce inter-/intra-video
similarity constraints and are defined in (2) and (3), respec-
tively. These two terms characterize the nonlinear relationship
between videos and the scene structure within each video.
The last termLr is a regularizer to control the scales of
the parameters.λ1 andλ2 are two parameters to balance the
impact of the corresponding terms.

However, the above objective function is intractable due
to the discrete constraint introduced by thesgn function to
generate binary codes. Following the same signed magnitude
relaxation as in [15], [24], we rewrite the objective function
as:

argmin
{W (k),c(k)}K

k=1

L =
1

2

N
∑

i=1

N
∑

j=1

ℓi,j
(

D(H
(K)
i ,H

(K)
j )− τ

)

+
λ1

2

N
∑

i=1

∥

∥

∥
Ri(H

(K)
i )T

∥

∥

∥

2

2

+
λ2

2

K
∑

k=1

(

∥

∥

∥
W (k)

∥

∥

∥

2

2
+
∥

∥

∥
c(k)

∥

∥

∥

2

2

)

, (9)

by substituting the binary codes with the output of the deep
network H

(K)
i . Simultaneously, the distance measurement

between video subspaces in (7) is redefined as:

Ds(H
(K)
i,m ,H

(K)
j,n )

=
1

ki,mkj,n

ki,m
∑

a=1

kj,n
∑

b=1

(h
(K)
i,m,a − h

(K)
j,n,b)

T (h
(K)
i,m,a − h

(K)
j,n,b)

=
1

ki,mkj,n
tr
(

(Φ
(K)
i,m −Ψ

(K)
j,n )T (Φ

(K)
i,m −Ψ

(K)
j,n )

)

, (10)

where Φ
(K)
i,m and Ψ

(K)
j,n are the hidden representations of

subspacesH(K)
i,m andH(K)

j,n .
To solve the optimization problem in (9), we use the s-

tochastic sub-gradient descent scheme to obtain the parameters
{W (k), c(k)}Kk=1. The gradients of the objective functionL
with respect to the parametersW (k) andc(k) can be computed
as follows:

∂L

∂W (k)
=

N
∑

i=1

N
∑

j=1

ℓi,j

( ui
∑

m=1

uj
∑

n=1

δm,n
i,j

(

∆
(k)
Φ

(Φ
(k−1)
i,m )T

−∆
(k)
Ψ

(Ψ
(k−1)
j,n )T

)

)

+ λ1

N
∑

i=1

F
(k)
i

(

H
(k−1)
i

)T
+ λ2W

(k), (11)

∂L

∂c(k)
=

N
∑

i=1

N
∑

j=1

ℓi,j

(

ui
∑

m=1

uj
∑

n=1

δm,n
i,j

(

∆
(k)
Φ

−∆
(k)
Ψ

)

)

+ λ1

N
∑

i=1

F
(k)
i + λ2c

(k), (12)

where the coefficientδm,n
i,j = 1

uiuj
· 1
ki,mkj,n

for the subspace

pair {H(K)
j,n ,H

(K)
i,m }.

The updating equations are computed as follows:

∆
(K)
Φ

= (Φ
(K)
i,m −Ψ

(K)
j,n )⊙ s′(Z

(K)
Φi,m

)
)

, (13)

∆
(K)
Ψ

= (Φ
(K)
i,m −Ψ

(K)
j,n )⊙ s′(Z

(K)
Ψj,n

)
)

, (14)

F
(K)
i =

(

RT
i Ri(H

(K)
i )T

)T
⊙ s′(Z

(K)
i ), (15)

∆
(k)
Φ

=
(

(W (k+1))T∆
(k+1)
Φ

)

⊙ s′(Z
(k)
Φi,m

), (16)

∆
(k)
Ψ

=
(

(W (k+1))T∆
(k+1)
Ψ

)

⊙ s′(Z
(k)
Ψj,n

), (17)

F
(k)
i =

(

(W (k+1))TF
(k+1)
i

)

⊙ s′
(

Z
(k)
i

)

, (18)

wherek = 1, 2, . . . ,K − 1. Here the operation⊙ denotes the
element-wise multiplication, andZ(k+1)

Φi,m
= W (k+1)

Φ
(k)
i,m +

c(k+1), Z
(k+1)
Ψj,n

= W (k+1)
Ψ

(k)
j,n + c(k+1), Z

(k+1)
i =

W (k+1)H
(k)
i + c(k+1).

The gradient descent algorithm is adopted to update the
parameters of the network until convergence, and the specific
updating rule is as follows:

W (k) = W (k) − η
∂L

∂W (k)
, (19)
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Algorithm 1: NSH
Input : Training videosX and label, iterative numberR,

learning rateη, network layer numberK,
parametersλ1, λ2, and convergence errorε.

Output : Network parameters{W (k), c(k)}Kk=1.
Initialization: Construct subspaces for each video;
initialize {W (k), c(k)}Kk=1 by getting the topp(1)

eigenvectors.
for r = 1, 2, . . . , R do

for i = 1, 2, . . . , N do
Initially settingH(0)(Xi) = Xi .

end
for k = 1, 2, . . . ,K do

for i = 1, 2, . . . , N do
ComputeH(k)(Xi) according to (4).

end
end
for k = K,K − 1, . . . , 1 do

Calculate the gradients with (11) and (12).
end
for k = 1, 2, . . . ,K do

UpdateW (k) and c(k) according to (19) and (20).
end
CalculateL using (9).
If r > 1 and |Lr − Lr−1| < ε, go to Return.

end
Return: {W (k), c(k)}Kk=1.

c(k) = c(k) − η
∂L

∂c(k)
, (20)

whereη is the learning rate.
The step by step description of the proposed NSH approach

is provided inAlgorithm 1 .

E. Implementation Details

To apply our approach for video search, similar videos are
retrieved by the Hamming distance. Specifically, the binary
codes of the database videos are generated along with the
scene clustering offline. Given a query video, all video frames
are firstly used to construct the frame set. These frames
are further processed to generate binary codes by using the
learned hashing model and accomplish scene clustering via
the subspace construction method. With the binary codes and
scene structure of the query video and the database videos, the
distance between query video and every database video can
be computed according to (6) and (7). Then, a ranking list of
database videos can be constructed for similarity search.

F. Discussion

In this subsection, we highlight the difference between our
nonlinear scalable video retrieval approach and some recently
proposed hashing methods.

1) Nonlinear Scalable Hashing [22], [32]: Some recently
proposed hashing approaches harness the nonlinear manifold
structures of data samples and have achieved superior perfor-
mance [22], [32]. Currently, these methods are designed for the

retrieval on imagery datasets. Such methods only consider the
similarity relationship between data samples, i.e., image-to-
image or video-to-video similarity. However, videos contain
rich structure information at each data point compared to
imagery data. Different from these methods, our video hashing
method exploits both the relationship between videos and the
structure information in each video to learn binary codes.

2) Video Hashing for Retrieval [11]: Ye et al. [11] propose
to learn effective hash functions by exploring the structure
learning techniques and have demonstrated promising results.
Their work exploits the common local visual patterns in video
frames with the same class label, together with the temporal
consistency over consecutive frames, to learn hash functions.
In contrast, our hashing learning approach leverages both the
nonlinear relationship between videos and the scene consis-
tency between frames within a video to learn discriminative
binary codes. Hence, both the relationship between videos and
the scene structure are exploited.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed nonlinear
structural hashing (NSH) method, we perform extensive ex-
periments on three large video collections, i.e., Columbia
Consumer Video (CCV) [58], YLI Multimedia Event Detec-
tion (YLI-MED) [59], [60] and ActivityNet [61] datasets, and
compare our method with several state-of-the-art methods.
These datasets are challenging for retrieval due to the presence
of large intra-class variation between videos and the motions in
the wild between frames. The following subsections describe
the details of the experiments and results.

A. Experimental Settings

We compare our NSH with several representative linear
hashing methods. Specifically, we take Iterative Quantization
(ITQ) [15] and Canonical Correlation Analysis Iterative Quan-
tization (CCA-ITQ) [15] as baselines. These methods include
both unsupervised (ITQ) and supervised (CCA-ITQ) hashing
paradigms. Since our NSH method is nonlinear, we also
compare it with four state-of-the-art nonlinear hashing meth-
ods, Deep Hashing (DeepH) [22], Supervised Deep Hashing
(SDeepH) [22], Kernel-Based Supervised Hashing (KSH) [31]
and Supervised Discrete Hashing (SDH) [33]. The source
codes of these baseline methods were kindly provided by the
authors. We use the suggested parameters of these methods
from the corresponding authors. While several video hashing
methods are recently presented in the literature [10], [11],
[62], most of them adopt data-independent techniques, and re-
quire specific settings, such as multiple-feature extraction [62]
or submodular representation [10]. Therefore, they are not
considered as comparable baselines. We followed the widely
used evaluation protocols in [11], [24], i.e., Hamming ranking
and hash lookup, and adopted the following two evaluation
metrics for consistent evaluations across different methods: 1)
mean average precision (mAP), which represents the overall
performance of different hashing methods by the area under
the precision-recall curve; and 2) Hamming look-up result with
the hamming radius set asr, which measures the precision



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2669095, IEEE
Transactions on Circuits and Systems for Video Technology

7

over all retrieved samples that fall into the buckets within a
set hamming radius, i.e.,r = 2. We followed [31] to set zero
precision for conditions failing to find any hash bucket for a
query, different from previous work which computed the mean
hash lookup precision over all queries by ignoring the failed
queries. As stated in [62], mAP has been demonstrated to
have especially good discrimination and stability. The nearest
video sequences are returned by computing and ranking the
Hamming distance between query video and gallery videos
according to (6). For the calculation of Hamming look-up
precision, we followed the protocol in [11]. The ground-truth
relevant instances for a query are defined as those sharing at
least one category label with it.

For our NSH method, we trained our deep model with a 3-
layer model with the dimensions of each layer being 512, 200,
L, to produceL-bit long binary codes. We set the value ofτ
to beL/nC with nC as the number of category of training
samples. We set parametersλ1 and λ2 to 0.1 and 0.001,
respectively, through 5 fold cross validation with one fifth of
the training set as validation set. We optimized our hashing
model with 5 iteration updates. In our models, we adopted
the hyperbolic tangent function as the nonlinear activation
function. In addition, for all the supervised algorithms, we
randomly select a small subset of labeled samples to train
the learned hash functions on all three datasets. For a fair
comparison, we trained NSH and supervised baselines on
the same set of training data. During batch training for the
image-based hashing methods, we randomly selected frames
from different videos to ensure large diversity of the training
samples.

B. Experimental Comparison on CCV

The Columbia Consumer Video (CCV) dataset [58] has
been widely adopted in several recent studies on video hash-
ing. There are 9,317 videos gathered from YouTube, which
covers 20 categories annotated based on Amazon’s MTurk
platform. On average, the video duration is around 80 seconds.
Interested readers are referred to [58] for more details. We
followed the experimental settings in [11] for our experiments.
Specifically, we randomly selected 20, 20 and 100 videos per
category to construct the training, query and gallery sets. We
sampled each video every 2 seconds to extract frames and
ensure a minimum of 30 frames for each video.

1) Results on the Hand-Crafted Feature: The SIFT de-
scriptors over key points on each frame are extracted with
two different key point detectors, i.e., Different of Gaus-
sian [63] and Hessian Affine [64]. The 128-dimensional SIFT
features are then fed into the quantization procedure to derive
5,000-dimensional BoW representation [65] for each frame.
Fig. 4(a) presents the comparison between NSH and other
baseline methods in terms of mAP on the CCV dataset with
respect to different number of bits. We see that our NSH
method outperforms all other methods in all bit numbers,
including the previous state-of-the-art SDeepH and DeepH.
We see that the supervised methods generally perform better
than unsupervised methods. Moreover NSH shows superior
performance compared to SDeepH. This is because both the

video label information and the frame level label information
are important to the learning of binary codes. Furthermore,
the nonlinear hashing methods such as DeepH, SDeepH and
NSH show better performance than other linear methods. The
reason is that the nonlinear relationship between samples is
preserved. However, the KSH method surprisingly delivers
low performance in our results. This may be due to that
the provided kernel model does not fit the video samples
well. We also see that the results of SDH increase with
longer bit length, which is consistent with the importance
of minimization quantization for long binary codes. Fig. 4(b)
presents the comparison on results in terms of the precision of
first 500 retrieved samples. We see that our method is superior
to the best competitor. The precisions of ITQ and CCA-ITQ
increase for longer binary codes, which implies that reducing
the quantization error is a reasonable objective. In Fig. 4(c), we
show the precision recall curves for different methods when
the length of binary codes is 32 bits. We see that our method
presents the best performance. This is because that the video
structure is exploited in our hashing learning model.

2) Results on the CNN Feature: Besides hand-crafted bag-
of-SIFT feature, based on SIFT descriptors, we also evaluated
our NSH with the state-of-the-art deep Convolutional Neural
Network (CNN) features. To extract the representation for each
frame, we adopted the VGG model [66] pretrained on the Ima-
geNet [67], and used the output of the layer ’fc7’ as suggested
in [68]. Fig. 5 and 6 summarize the performance of different
hashing methods. As expected, the overall performances are
higher than those on the hand-crafted features for both the
baseline methods and our NSH. In Fig. 5(a), we see that NSH
outperforms all the competitors by a large margin in terms of
the mAP. Note that the substitution of hand-crafted features
with CNN features enlarges the gaps between different hashing
methods, which indicates a well designed hashing method
is important to capture the similarity structure of original
features. The results in Fig. 5(b) show the precisions of top
500 retrieved samples for different hashing methods. Fig. 5(c)
presents the comparison on precision within Hamming radius
2, where our method is competitive to the remaining hashing
methods. However, the precisions of most methods drop with
longer binary codes. The reason is that longer codes result in
lower probability that samples fall in the same bucket.

Besides the performance, we also compare the testing time
of our NSH method with those of other baseline methods. In
Table I, we report the testing time of all involved methods for
various lengths of binary codes on the CCV dataset. The time
is measured in seconds over all testing videos. The computing
platform is equipped with 4.0GHz Intel CPU and 32GB RAM.
From the table, we can see that the testing time consumed by
our NSH method is comparable to those of existing methods.

C. Experimental Comparison on YLI-MED

The YLI-MED dataset [59] is the video subset of the Yahoo
Flickr Creative Commons 100 Million (YFCC100M) dataset
specialized for Multimedia Event Detection research, which is
similar to the existing TRECVID MED’s HAVIC corpus. In
particular, the 10 current available annotated events in YLI-
MED, such as Birthday, Wedding and Woodworking, were
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Fig. 4: The results of different hashing methods on the CCV dataset with hand-craft features.
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Fig. 5: The comparison of different hashing methods on the CCV dataset with CNN features.
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Fig. 6: The comparison of precision-recall curves for different hashing methods on the CCV dataset with binary codes of
different lengths.

TABLE I: Testing time in seconds of different hashing meth-
ods on the CCV dataset.

Methods
length of binary code

16 32 64 96

ITQ [15] 4.63 5.12 4.94 5.41
DeepH [22] 4.42 4.95 5.53 5.99
CCA-ITQ [15] 19.95 19.99 19.95 19.79
KSH [31] 16.38 17.15 16.52 16.66
SDeepH [22] 32.43 33.65 32.42 32.77
SDH [33] 92.75 97.13 97.49 95.99
NSH 18.71 19.22 19.03 19.18

included in the TRECVID MED 2011 evaluation run by the
National Institute of Standards and Technology (NIST). YLI-
MED is one of the largest public available video collections
with manual annotation. A subset of the videos in the YFC-
C100M is adopted for the MED task in the TRECVID bench-

mark organized by NIST. There are around 2000 annotated
videos in the YLI-MED dataset. The video duration varies
from 2 to 200 seconds with average value around 40 seconds.
Here, we selected frames every second and ensure at least 30
frames for each video. We randomly selected 20 and 20 videos
in each category to construct the training set and query set,
respectively. We selected another 100 videos each category as
gallery set for retrieval.

1) Results on the Hand-Crafted Feature: For each frame,
we followed the same feature extraction procedure as in the
experiments on the CCV dataset. In Fig. 7(a), we show the
mAP results of NSH as well as other representative hashing
methods. We see that out method outperforms other methods
by a large margin. Similar with the results on the CCV dataset,
the performance of NSH is better than those of image-based
supervised methods and linear projection based methods. This
is because that both the video structure and the nonlinear
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Fig. 7: The results of different hashing methods on the YLI dataset with hand-crafted features.
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Fig. 8: The comparison of different hashing methods on the YLI dataset with CNN features.
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Fig. 9: The comparison of precision-recall curves for different hashing methods on the YLI dataset with binary codes of
different lengths.

transformation play an important role to map samples into
binary codes. In Fig. 7(b), we show that our NSH delivers
better performance than the competitors, which is similar to
the results on CCV dataset. Fig. 7(c) shows the precision-recall
curves with binary codes of 32 bits, which is the detailed
presentation of the mAP. The results show that our NSH
method delivers the best retrieval performance.

2) Results on the CNN Feature: Similar to the CCV dataset,
we extracted the CNN feature for each sampled frame in YLI
dataset to test the retrieval performance. Fig. 8(a) and (b)
show the mAP and precision of top 100 retrieved samples
for each hashing method, respectively. We see that the CNN
feature enhances the performance. Nevertheless, our NSH
method is still comparable to the best competitor. Similar to
the results on the CCV dataset, the performance of SDH is
slightly better than our NSH due to the careful optimization
of the quantization loss. In Fig. 8(c), we show the results of

Hamming lookup precision within radius 2. We see that our
method produces comparable precision to other representative
hashing methods. In Fig. 9, we show the precision-recall
curves of different hashing methods for different lengths of
binary codes. These results clearly show the superiority of
our NSH method.

D. Experimental Comparison on ActivityNet

We also evaluate our approach on a large-scale video
benchmark dataset, ActivityNet. The ActivityNet dataset [61]
is recently released for human activity recognition and under-
standing. ActivityNet consists of around 20,000 video clips in
200 classes with 10,024 training, 4,926 validation and 5,044
testing videos, totaling 648 hours of video. Compared to the
above two datasets, ActivityNet is more challenging, since it
contains more videos, more classes of fine-grained actions, has
greater intra-class variance and consists of longer, untrimmed
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Fig. 10: The comparison of different hashing methods on the AcitvityNet dataset with CNN features.
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Fig. 11: The comparison of precision-recall curves for different hashing methods on the ActivityNet dataset with binary codes
of different lengths.
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Fig. 12: Scene structure evaluations on CCV, YLI and ActivityNet datasets.

videos. The experimental setting for this dataset is the same
as that on YLI-MED dataset. Since the authors of ActivityNet
have not released the test set, we use the validation set as
our query set, take 30 videos per categories as the training
set and use the remaining videos as the gallery set. For each
frame, we followed the same feature extraction procedure
as in the experiments on two previous datasets. Because the
performance with hand-crafted feature on this dataset is too
low, we only show the results with CNN feature.

In Fig. 10(a), we show the mAP values for different hashing
methods. We see that the performance is much lower than
those on the CCV and YLI datasets due to the greater intra-
class variation, more videos, more classes and untrimmed
videos. Nevertheless, our method still ranks top compared
with the baseline methods. In Fig. 10(b), we show the pre-
cisions of top 100 retrieved samples, where our method is
competitive to other hashing methods. Fig. 10(c) shows the

TABLE II: MAP comparison of different video hashing meth-
ods on the CCV dataset.

16 32 48 64

SH [10], [14] 7.7 7.8 7.8 7.8
SVH [11] 11.2 13.0 14.6 15.8
NSH 12.7 13.1 15.2 16.1

results of Hamming lookup precision within radius 2. We see
that our NSH achieves the best performance. To provide a
detailed observation of the retrieval performance, we show the
precision-recall curves for 32, 64 and 96 bits binary codes in
Fig. 11.
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E. Comparison with Existing Video Hashing Methods

In order to give a quantitative performance comparison with
existing video hashing methods, we followed the experimental
settings in [11] to evaluate the performance of our NSH. Here,
we compared our NSH with the spectral hashing used in [10],
[14] and the structure learning-based video hashing [11].
In Table II, we show the mAP values of different hashing
methods for different lengths of binary codes. We see that
our NSH achieves competitive results compared to SVH. The
reason is that the learned neural network model encodes
both the nonlinear relationship between videos and the scene
consistency between frames within a video.

F. Effect of Scene Structure

To evaluate the effectiveness of scene structure, we com-
pared the comprehensive mAP metric across different hashing
methods to present an overall measurement of retrieval per-
formance. Fig. 12(a), (b) and (c) present the results on CCV,
YLI and ActivityNet with CNN features. We compared NSH
with NSH-single, which considers the whole video as a single
subspace, and NSH-none, which ignores the scene structure
by setting λ1 in (8) as 0. These comparisions show that
our NSH consistently achieves better retrieval performance.
Note that the scene is related to the video content and is
constructed on the base of the original features. Therefore, the
scene information of each video is precomputed and stored
off-line. Furthermore, the scene clustering and binary codes
computation are performed simultaneously for a query video.
Hence, this reduces the retrieval time.

G. Analysis

Comparing the results in terms of mean average precision,
we can find that the performances are almost similar for CCV
and YLI datasets with the length of bits increasing from 16
to 96. We attribute this to both the dataset and the feature.
First, the performance in terms of mean average precision
may encounter saturation with the specified length of bits
and the number of categories. The numbers of categories in
the CCV and YLI datasets are 20 and 10. Note that the
length of bits shown in the figures is related to a frame.
This means that the length of bits for each video is at least
480 (16*30). Thus, the performance of hashing methods may
encounter saturation with the given length of bits and number
of categories. This is further validated by the results on the
ActivityNet dataset, which contains 200 categories. For such
a dataset with several times of categories against the previous
two datasets, the performance improvement reduces when
increasing the length of bits of 64 to 96 compared against
that from 32 to 64. Second, the saturation of performance
in terms of mean average precision may be related to the
discriminative ability of the original feature. For features with
good discriminative ability, it requires longer binary codes to
preserve the discrimination. Comparing the results with the
CNN features in Figs. 5 and 8 against the results with the hand-
craft features in Figs. 4 and 7, we can observe performance
improvement for some hashing methods with the increase of
bit length when provided with more discriminative features.

To provide more discriminative video representations, it is
promising to combine the proposed hashing learning frame-
work with the motion extraction. With the motion information
captured by the optical flow or RNN feature, we can apply
such feature extraction on the clustered scenes of each video.
And both the motion information and the frame representation
can be utilized to learn hashing codes jointly in a multi-
view hashing way, such as [69]. While the proposed hashing
leaning framework uses the pre-extracted CNN features as
input, the pooling strategies [4], [70] can be combined with it
by applying the pooling on the shots of each video scene. Such
combination can reduce the computation complexity, elimi-
nate irrelevant frames and enhance the discriminative power.
Furthermore, as stated in [71], the semantic representation is
comparable to hand-crafted low-level features in performance
for event detection. Thus, it is also feasible to apply hashing on
the semantic representations to retrieve the semantic neighbor.

V. CONCLUSIONS

In this paper, we have proposed a nonlinear structural
hashing (NSH) approach to map videos as binary codes for
scalable video search. The success of the proposed structure
video hashing is attributed to three primary aspects: 1) the
exploration of structure information between frames in a video,
which is described as the scene in a video and represented by
subspace; 2) the preservation of similar relationship between
frames of the same scene to achieve the similarity of their
binary codes; and 3) the design of multilayer neural network to
preserve the nonlinear relationship between videos. Extensive
experiments on three large scale datasets fully verify the
efficacy of our approach.

There are three interesting directions for future work:

1) How to extend our approach to explore motion infor-
mation, such as optical flow and RNN, to improve the
performance.

2) How to extend our approach to explore more effec-
tive video representations, such as semantic representa-
tion [71] and video representation with complex pooling
strategy [4], [70], to reduce the computation complexity.

3) How to extend our approach to represent videos by more
discriminative image features with the integration of
extra features, such as audio, motion and text, to further
improve the retrieval performance.
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