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Abstract—In this paper, we propose a nonlinear structural often misses videos due to the absence of text metadata. To
hashing (NSH) approach to learn compact binary codes for |everage the rich visual content of a video, content-based video
scalable video search. Unlike most existing video hashing methOdssearch uses a set of example videos as queries to retrieve

which consider image frames within a video separately for binary . . . . .
code learning, we develop a multi-layer neural network to learn '€lat€d videos, in which videos are represented by high-

compact and discriminative binary codes by exploiting both dimensional feature representations. While many efforts have
the structural information between different frames within a been made to improve the accuracy of content based video
video an_d_ the nonlinear relatior]ship between video samp_les. To search [1]-[7], the development of efficient video retrieval

be specific, we learn these binary codes under two different ocpnique s still under-explored. Furthermore, video retrieval

constraints at the output of our network: 1) the distance between . . .
the leamned binary codes for frames within the same scene cannot directly use the text retrieval technique because the

is minimized, and 2) the distance between the learned binary €xtracted video representations are not text-based [8]. Hence,
matrices for a video pair with the same label is less than a both the tremendous video corpus and high-dimensional video

threshold and that for a video pair with different labels is larger  features pose a really important and challenging topic for
than a threshold. To better measure the structural information of Jesearchers to develop new search techniques.

the scenes from videos, we employ a subspace clustering metho As one of the most efficient retrieval methods. the emerdin
to cluster frames into different scenes. Moreover, we design S S ICl Ievi S ging

multiple hierarchical nonlinear transformations to preserve the hashing based approximate nearest neighbor search approach
nonlinear relationship between videos. Experimental results on has become a popular tool for tackling a variety of large-scale

three video datasets show that our method outperforms state-of- yisyal analysis problems and has been extensively studied to
the-art hashing approaches on the scalable video search task. encode documents or images by a set of short binary codes.
Index Terms—Hashing, scalable video search, neural network, Most existing video hashing methods [9]-[12] directly adopt
structural information. the existing image hashing algorithm to learn a single linear
projection matrix to generate binary codes with the goal of
|. INTRODUCTION preserving similarity between frames. However, different from

VER the past decade, we have witnessed the exponenti imagery data, video clips not only contain many imagery
rames but also carry specific structure information, which

growth of the video collections on the Internet. In con- """ di ¢ existing | ing-based hashi thod
trast to the rapid growth of video contents, most existing vid AS 1gnored In most existing learning-based hashing methods.
erefore, the consistency between frames within the same

search engines still rely on textual keyword based indexir:l% . ded in the | d bi .
which cannot present all pieces of information in a video a ene Is not encoded In the learne inary representations.
Furthermore, such methods can not explicitly encode the
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Video set Multilayer neural network Binary codes

methods adopt random projections to map samples into binary
codes. To avoid the recall decrease of long codes for good
precision in randomized hash functions [13], data-dependent
hashing methods generate compact binary codes by leveraging
training sample properties or data label supervision. Existing
data-dependent hashing methods can be mainly categorized
into two classes: unsupervised and supervised. For the first
category, the hashing learning procedure is accomplished
without the label information. The binary codes of data
samples are learned by employing discrete optimization tech-
nigues to preserve the similarity relationship between original
high-dimensional features with the goal to be informative.

method. Firstly, we develop a multi-layer neural network tghe recent representative algorithms in this category include

preserve nonlinear relationship between videos. Secondly, ectral hashing (SH) [14], iterative quantization (ITQ) [15],
construct scenes; 1,52 and S; 3 from the i-th video V; Restricted Boltzmann Machines (RBMs) (or semantic hash-

through subspace clustering to leverage the statistical knoif}9) [16], Anchor Graph Hashing (AGH) [17], K-Means
Fashing (KMH) [18], Bilinear Projection-based Binary Codes
{BPBC) [19], Binary Autoencoder (BA) [20], Sparse Binary
Embedding (SBE) [21] and Deep Hashing (DeepH) [22].
While unsupervised hashing is promising to retrieve metric
distance neighbors, e.¢; neighbors, the label information

2) the variations of the learned binary codes for consecuti(fe hlelpful_t?]bimprc;\ge ?ccuracy _fordsr(]aar(r:]hing seﬂ"na:jnticgllyh
frames is minimized. In order to evaluate the performance Bfnilar neighbors [23]. In supervised hashing methods, bot
the proposed method, we conduct extensive experimentslﬂlﬂel information and data properties are utilized to learn hash

three large video collections. These datasets contain hun@éﬂ?t'qns' r;l’hz_f?ashmg ngodel 'S Iﬁarﬂed W.'th tr}? _goal to
activities in unconstrained real-world environments and ap%mlmlzet e differences between the Hamming afiinity over

challenging for content-based video retrieval. We show tﬁ@e binary codes and the similarity over the data items, which

effectiveness of the proposed method and demonstrate that|(§UQeterm|ned by.the _real value features and the.data Iabel_s.
wRficent progress in this category has been made in Sequential

method achieves significant performance gains compared with~"" " ing f hi 5 R
previous representative hashing methods for scalable vid:é_ré)JeCt'on Learning for Has Ing (SPLH) [24], D|sc_r|m|nat|ve
Binary Codes (DBC) [25], Minimal Loss Hashing (ML-

Fig. 1: lllustration of our proposed nonlinear structuragiiag

similarity constraint is enforced on the binary codes of fram
within the same scene to exploit the scene consistency.

search. _ . . .
We summarize the main contributions of this paper a@ [26], Hamming Distance Metric Learning (HDML) [27],
follows: LDA Hashing [28], Ranking-Based Supervised Hashing [29],

raph Cuts Coding [30], Kernel-Based Supervised Hash-

. We pres.enta hashing Igarning framt_awork to exploit boﬁ (KSH) [31], FastHash [32], Supervised Discrete Hash-
the nonlinear relationship between video samples and t]lﬁ (SDH) [33], Semisupervised kernel hyperplane learning

\s/\t/ructural mforrr]n atl_o n_lbgtwien d|ffere_r(11t frames.l b %S HL) [34], Semantics-Preserving Hashing (SePH) [35] and
- We measure the simi arlt_y etween Video samples ba ep Semantic Ranking based Hashing (DSRH) [36].
on a set-to-set calculation with frames clustered into

different scenes.
The rest of this paper is organized as follows. Section B. Video Search
presents the related work on hashing learning and videorecently, the visual search for video contents has attracted

retrieval. Section Ill details our proposed nonlinear structurgiuch attention of researchers. The search task can be split
hashing approach. Section IV presents the experimental resiito two main phases: feature extraction and search. Feature

s. Finally, Section V concludes this work. extraction aims to generate effective, efficient and discrimina-
tive representations of videos, and search is to find relevant
Il. RELATED WORK videos by utilizing the previously extracted features for a given

In this section, we first review several representati@€ry video. While much research have been devoted into

learning-based hashing methods and then show some redBftimprovement of search accuracy [1]-{7], [37]-{41], the
progress on video search. efficient search algorithm for video search is less studied in

the literature. To find relevant videos efficiently, approximate
) ) nearest neighbor search is proposed to reduce the complexity

A. Learning-based Hashing of conventional linear scan. Representative efficient approx-
To achieve efficient approximate nearest neighbor seara@iate nearest neighbor search algorithms include tree-based

hashing methods encode high dimensional data as compachiéthods [42]-[45] and quantization methods [8], [46], [47].

nary codes while preserving the similarity of the original dat&owever, these methods suffer from the high dimensionality
The hashing methods can be categorized into two classes: datase and are not suitable for large scale video search. To
independent and data-dependent. Data-independent hashidress this, several learning-based hashing methods have
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0001

been proposed for scalable video search. For examplegC ool

al. [10] propose to combine feature pooling with hashing wn . Video-video
.. . . P 4 1101 distance

efficient large scale video retrieval. ki al. [9] take advantage Y it computation

of Riemannian Manifold for face video retrieval. Warg )

al. [12] take account of visual saliency for hash generation.
et al. [11] exploit the discriminative local visual commonali
and temporal consistency to design hash functions. Note
the structure in [11] stands for the spatial structure informa
within a video frame, while we emphasize the relations
between frames of a video by mentioning structure. Wi
reasonably good performances are demonstrated by thEigke 2: The workflow of the proposed approach. Firstly,
hashing methods, most of them usually learn a single lind&e gallery videos are passed through the learned multilayer
transform and ignore the video structural information, whicheural network to yield the corresponding binary matrices,
cannot well capture the nonlinear structure of video clips 81, .--Bn, Which are stored to constitute the database for the
produce more effective compact hash codes [33]. To this ef@llowing retrieval. Given a query video, the corresponding
we propose a nonlinear structural hashing method by utilizifnary matrix Byyer, is generated with the learned model.
both the nonlinear relationship between videos and the sceiften, the distances between the binary matrix of query video
structure, where multi-layer neural network is learned f@nd those in the databasby,...D,, are computed. Finally,
scalable video search. a ranking list of database videos is constructed for similarity
search.

e

T Result

1001 Video#  Rank
1101 v, 3
0101 v, 1

- J Vv, 4

rrrrrrr

1. STRUCTURAL VIDEO HASHING

In this section, we present a structural hashing model forWe define the inter-video similarity loss based on the
scalable video search. Assume there Afetraining videos discriminative distance metric [54] to pursue efficient binary
{X,;}N, with category labelgy;} ¥, wherey; is the label code matrices. The specific form is expressed as,

information for videoX;. Each videoX; is represented by N N
a collection ofn; sequential frame$x; 1,x;2,...,Tin,} € L, = ZZ&J(D(B“ B;) — 1), 2)
R4*"i | The a-th column of X;, z; , € R, is thea-th frame =1 j=1

of video X, W'th afeature length of. The y|deos are sampledw ereD(B;, B;) represents the distance between two learned
as representative frames to make the video hashing approg\ﬁ1ary code matrices3. B. for videos X.. X.. which is

. . . (3] J ) ]
applicable to Io_ng videos. The _frame sampling method Rirther defined in Section I11-C to leverage the video statistical
related to the video summarization [48]-[52]. In this workI

we select frames based on uniform sampling. Our goal is 0format|on. Specifically, (2) aims to seek binary code matrices

learn anL-bit binary code for each frame. By denoting ihSuch that the distancd(B;, B;) betweenX; and X;; is

binary code of the frame; , asb; , € {—1,1}L, a videoX; smaller than a pre-specified threshaldif X, anq X_j are
. ’ ’ . with the same category(; = 1), and larger than if videos
with n; frames can be represented as the binary code mat51<x dx ith diff g ( h
B, € {—1,1}Lxm i and X; are with different categt_)rn_a igj = —1_), where
’ ’ ' the pairwise label; ; denotes the similarity or dissimilarity
between a video paik; and.X ;. Note that the value of does
A. Model not influence the minimization of (2) as long ass fixed. To

. - . . ._make (2) meaningfuly is assigned a value related to the bit
To facilitate efficient video retrieval, the learned binar ength of the binary code.

codes are expected to maintain the local structure of thepye jyra yideo similarity loss term is to embed the scene

training videos. .F'rSt’ similar vu;leos are expected 10 haye,,sitent constraint between frames of the same scene into
binary codes with small Hamming distance. We call su

L7 . . . T e learning objective, which is defined as follows:
similarity between videos as the inter-video similarity. Second,

rather than considering video frames as images [11] or video- 1L W 5
level feature representation [33], [53], the intra-video similar- Ly = 9 Z Z Z Z 105,01 — bi,a I3
ity is also taken into consideration in the proposed method. =1 m=1bi 0, €Si;m bi,ay €Siim
The intra-video similarity characterizes the similarity between 1 9
viceo sim e simiar - =N ||mBT|| (3)
frames within a video. Thus, the learning objective of the D) Z H P24 g
proposed method is to preserve both inter- and intra-video =1
similarities, which is formulated as, where R; is a constant coefficient matrix related to the scene

structure of videoX;, S;,, represents one scene of video
X,; andu; is the number of scenes in vide¥,;. Each item
1650y — bi7a2||§ is corresponding to a row oR; with the
whereL, and£; measure the inter- and intra-video similarityu;-th element being 1, thes-th element being -1 and the
losses, respectively. The parameter is the parameter to other elements being zeros. Since the scene structure is only
balance the effects of two kinds of similarity losses. related to the content of each video, it is computed before the

argmin L = L, + M Ly,
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generation of binary codes as will be stated in Section IlI-C.
Here ||-||, denotes the matrix.o-norm. (3) aims to pursue B
small difference between binary codes for the frames of the
same scene in a video, which enforces the smoothly change of
binary codes of frames in a scene, and thus explicitly embeds
the scene structure into the learned binary codes. This equation
introduces the binary code similarity enforcement betweep
frames within the same scene and can be combined with any
scene construction method. By combining (2) and (3) together,
the frames of the same scene with the same class label are Subspace Mean
more likely to be mapped to close binary codes. clustering

B. Hashing with Multilayer Neural Network Fig. _3: The _computgtion of di_stance bgtween bine_try code
. i ] matrices of videos. Firstly, the binary matrix of each vidBp
Given a video framer; 4, a set of hash functiong,(z) = s clustered into subspaces to exploit the structural information.
[hi(x), ha(x), ..., hi(x)] is leaned to produce am-bit Then the Hamming distances between subspaces of different
binary codeb; , € {+1, —1}. A good form of hash functions videos D1, Dy, Dy3 and Dy, are computed. Finally, the
is critical to obtain the desirable binary codes. In this workyistance between the two binary matrices of vid&4s3;, B;)

the form of multi-layer neural network is adopted to generatg gerived on the base of distances between subspaces.
the compact binary codes through multiple nonlinear transfor-

mations. Compared to most previous works, which only learn
a single linear projection matrix [15], [18], [26], [47], [55],
multi-layer neural network can better capture the nonline E

manifold of frames. While the kernel trick can project frame§. Srence between the mean values of the two setand
into the kernel space to learn the binary codes, the la & 5b;-

of explicit nonlinear mapping functions usually leads to the owever_, I .doe.s not take into cc_)ns_|derat|on the sgt at_trlbute,
scalability problem [31], [56] I.e. the distribution of elements within the set. Considering the
As shown in Fig. 2 ,we develop a network withi + 1 scene structure within a video, the frames from a video could

stacked layers of nonlinear transformations to compute tHg assumeq to be dlstrlbute(_j on a nonlmear_ mann‘_old. Henc_e,
binary representatiob . for each framez; .. Let p*) be the a more desirable approach is to measure video distance with
number of units at the:-th layer, wherel < k < K. The the distance 'F’et""?e” subspa(?gs. .
output of thek-th layer is recurrently computed 3,8512) _ _As show_n in F|_g. 3, to facilitate the compu_tatlon of the_
(k) 3, (k—1) (k) re® with A0 — s(w® wdep to video d_|stance, a subspa_lce cIu_sterlng method_ is
s(W hwm +e) € with by, = s( Tia T applied for each video, where a nonlinear video representation
cM)) € RP, wheres(-) is a nonlinear activation function, js decomposed into as a set of linear subspaces. A video
eg., the tanh or sigmoid function.W ) and c¢(*) are the X, which is assumed to come from a low-dimensional
projection matrix and bias vector to be learned at khth  manifold, is partitioned into a collection af; disjoint sub-
layer of the network, respectively. Specifically, the output &paceq S, ;, S;.2, ..., Si..,}. Each subspace is a linear space
the network is calculated as: spanned by a subset of frames,,,, = span(X;.,), where
gn(®ia) = hﬁ.{f) _ s(W(K>hEI§_1) + c(K)) c Rp(K)7 (4) Xim = XZT”,L is akmatrix consisting of several columns of
/ ) 7K) ) . ) X;. That is,X; = U'rri:l Xi,'rn and Xi,'rn ﬂXi,'rL = @(m 7&
where the mappingy, : R? — RF" is a parametric nonlinear n,m,n = 1,2,...,u;). Each subspace represents a scene in
function determined by paramete{3¥ (%), c(®¥)1K . Then, the video, and the procedure of scene clustering is to construct
the binary codes are generated by taking the sign of the outphé subspaces for videos. To better construct subspaces for
of the top layer of the network: videos we employ the local linear model construction method
by, — Sgn(h(K))' ) in [57] to explicitly guarantee the linear property of each.
’ ha subspace. In the one-shot clustering method [57], a seed point
The binary vectors of all frames in a video can be rewritteig used to generate each new maximal linear patch under the
as the matrix formB € {—1,+1}.*". On the base of the linearity constraint. The maximal linear patch is defined to
relationships in (4) and (5), both the parameterized netwoslsan a maximal linear subspace. The deviation between the
and a set of binary code matrices of the given training videggodesic distances and Euclidean distances in the patch reflects
can be learned by solving an optimization problem to minimizgs linear perturbation.
the predefined loss measurement. As shown in (5), the binaryrhe video to video distance is represented as the integration
representation of a new video can be obtained by passing eg¢hyistances between pair of subspaces. Typically, a video

ts of binary codes;, := {b;1,b;2,...,b;,, } ands,, :=
j1,bj2,...,bj 0, 1. A naive method is to calculate the

frame through the learned network. consists of several clips describing different scenes of an event
. and similar videos are with a certain overlap in scenes. To
C. Subspace-based Video Distance classify two videos as the same category, one effective solution

The distance between two videoX; and X; in the is to find the common scenes and measure the similarity of
Hamming space is converted to the distance between titmse scenes. Therefore, we define video to video distance
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by the average distance between subspace pair from the twosubstituting the binary codes with the output of the deep
clusters of subspaces as follows: network Hi(K). Simultaneously, the distance measurement

] M between video subspaces in (7) is redefined as:
D(X17X> = Ds(Si,m;S',n)a (6) K K

’ Ui mzz:l nzz:l ! D (HL( m)7 HJ( n)>
where D(S; ., S; ) is the distance between two subspaces L (K) (K) (K)
S;.m and S;, of videos X; and X, respectively. The kjn Z Z i m o= Pjn, o) (h; ma = Ping)
Hamming distance between the hash codes of framgs., 1 et o=t
andz; ,, ;, of subspaces, ,, andS; , is adopted to compute = - ((@fIf,Z \Ily,i)) (<I>§If,3 \Ily,i))), (10)

7,m j,rL

the Hamming distance between two subspaces from different

videos. In particular, it is computed as the average HammiQghere <I>( ) and q,

distance between frames,

subspace
1 ki,m Kjn
Ds(si,'rm Sj,n) = Tk Z Z dy (mi,m,av 15j,n,b); (7)
LML g=1 p=1

{w®,

are the hidden representations of
sH( )andH(K).

?,m

To solve the opt|m|zat|on problem in (9), we use the s-
tochastic sub-gradient descent scheme to obtain the parameters

¢} | The gradients of the objective functiof

wheredy is the Hamming distance of two binary codes andith respect to the parametéi® (*) ande(*) can be computed

ki m and k;,, are the numbers of frames in the subspaces follo
S;.m andS; ,,, respectively. The distance is symmetric and is

WS:

N N [
. L i
averaged by the number of frames in subspaces to make — ( o AP q,(k T
distance less dependent on the size of subspaces. oW (*) ;; " mz:l; (
(k) (g (k=T
D. Optimization Ay’ (P, ) )>
Based on the hashing learning function presented in Section N .
II-B and the video distance defined in Section III-C, the + MY EPHEE)Y 0w ®), (11)
objective in (1) can be rewritten as: i=1
argmin L = Ly, + ML+ XL, or N N w
(W) e} _ m,n (A (k) (k)
* s R ) S 9 SN )
=1 j=1 m=1n=1
= §ZZ€1J(D(BZ,B])*T) N
’=]1VJ=1 + Z F® 4 xpe® (12)
)\1 T2 =1
+ 72||R1B1 ||2 .. m,n __ 1 1
=1 where the coefficiend; ;" = DT for the subspace
N & pair {H |\, H7\)}.
+ = Z ([t + ) (8) The updating equations are computed as follows:
2 p q p
- K K K K
The first two terms£, and £; enforce inter-/intra-video ALY = @) - i) os(257))), (13)
similarity constraints and are defined in (2) and (3), respec- (K) (K) (K) (K)
tively. These two terms characterize the nonlinear relationship Ay’ = (P, —¥;,)) 0 SI(Z\I'J-,,L))7 (14)
between videos and the scene structure within each video.
(K) _ T gp(ENT\T 1( 7 (K)
The last term/.,. is a regularizer to control the scales of = (Ri Ri(H;™) ) ©s(Z77), (15)
the parameters\; and \, are two parameters to balance the AFE) _ (DT A B+ (7 %) 16
impact of the corresponding terms. e = (( ) Be ) 08 (Z ), (16)
However, the above objective function is intractable due AF) _ ((W(k+1))TA(k+1)) @S/(Z(k) ), (17)
to the discrete constraint introduced by then function to v v Yim
generate binary codes. Following the same signed magnitude ‘Fi(k) — ((W(kﬂ))TFi(kH)) o s’(Z,f’“)), (18)
relaxation as in [15], [24], we rewrite the objective function
as: wherek =1,2,..., K — 1. Here the operation> denotes the
LN element-wise multlpllcatlon antZ(k,J:) WDk
argmin L 5226 HEK),HJ(K)) —7) kD), Z(k'H) W(k+1)\11(12 + kD), Z(k+1)

(W) e} K 7

=1 j=

W(k+1)H(k) + (k1)

A1 N R(EFO\T 2 The gradlent descent algorithm is adopted to update the
+ ) Z H i(H; ™) H2 parameters of the network until convergence, and the specific
- updating rule is as follows:
)\2 & 2 & 2
+ S (WO ™)), @ " _ o, 9L
2 1 H HQ H HQ w =W —an(k)a (19)
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Algorithm 1: NSH

Input: Training videosX and label, iterative numbeR,
learning raten, network layer numbers,
parameters\;, Ao, and convergence erret

Output: Network parameter§W (%) c(F) 1K

Initialization: Construct subspaces for each video;

initialize {W ), c®}K  py getting the top™)

eigenvectors.

for r=1,2,...,R do

fori=1,2,...,N do

| Initially setting H*)(X;) = X, .

end

for k=1,2,..., K do
fori=1,2,...,N do
| ComputeH *)(X;) according to (4).
end

end

for k=K, K—1,...,1do

| Calculate the gradients with (11) and (12).
end

for k=1,2,...,K do

end

Calculate£ using (9).

If r>1and|L, — L,_1] < &, go toReturn.

end
Return: {W®) (k1K

| UpdateW *) and ¢(*) according to (19) and (20).

c®) =™ oL (20)

T9em
wheren is the learning rate.

retrieval on imagery datasets. Such methods only consider the
similarity relationship between data samples, i.e., image-to-
image or video-to-video similarity. However, videos contain
rich structure information at each data point compared to
imagery data. Different from these methods, our video hashing
method exploits both the relationship between videos and the
structure information in each video to learn binary codes.

2) Video Hashing for Retrieval [11]: Ye et al. [11] propose
to learn effective hash functions by exploring the structure
learning techniques and have demonstrated promising results.
Their work exploits the common local visual patterns in video
frames with the same class label, together with the temporal
consistency over consecutive frames, to learn hash functions.
In contrast, our hashing learning approach leverages both the
nonlinear relationship between videos and the scene consis-
tency between frames within a video to learn discriminative
binary codes. Hence, both the relationship between videos and
the scene structure are exploited.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed nonlinear
structural hashing (NSH) method, we perform extensive ex-
periments on three large video collections, i.e., Columbia
Consumer Video (CCV) [58], YLI Multimedia Event Detec-
tion (YLI-MED) [59], [60] and ActivityNet [61] datasets, and
compare our method with several state-of-the-art methods.
These datasets are challenging for retrieval due to the presence
of large intra-class variation between videos and the motions in
the wild between frames. The following subsections describe
the details of the experiments and results.

A, Experimental Settings

The step by step description of the proposed NSH approach

is provided inAlgorithm 1.

E. Implementation Details

To apply our approach for video search, similar videos a

retrieved by the Hamming distance. Specifically,

We compare our NSH with several representative linear
hashing methods. Specifically, we take Iterative Quantization
(ITQ) [15] and Canonical Correlation Analysis Iterative Quan-
tization (CCA-ITQ) [15] as baselines. These methods include
Hoth unsupervised (ITQ) and supervised (CCA-ITQ) hashing

the binala'aradigms. Since our NSH method is nonlinear, we also

codes of the database videos are generated along with (8,46 it with four state-of-the-art nonlinear hashing meth-

scene clustering offline. Given a query video, all video fram
are firstly used to construct the frame set. These fram
are further processed to generate binary codes by using

Sils, Deep Hashing (DeepH) [22], Supervised Deep Hashing

eepH) [22], Kernel-Based Supervised Hashing (KSH) [31]
d Supervised Discrete Hashing (SDH) [33]. The source

learned hashing model_ and accomph_sh scene clustering UBties of these baseline methods were kindly provided by the
the subspace construction mgthod. With the binary ches aaﬂﬂhors. We use the suggested parameters of these methods
scene structure of the query video and the database videos (i, yhe corresponding authors. While several video hashing
distance between query video and every database video faly,qs are recently presented in the literature [10], [11],
be computed according to (6) and (7). Then, a ranking list f451 "ot of them adopt data-independent techniques, and re-
database videos can be constructed for similarity search. g ire specific settings, such as multiple-feature extraction [62]
_ _ or submodular representation [10]. Therefore, they are not
F. Discussion considered as comparable baselines. We followed the widely
In this subsection, we highlight the difference between oused evaluation protocols in [11], [24], i.e., Hamming ranking
nonlinear scalable video retrieval approach and some recerathyd hash lookup, and adopted the following two evaluation
proposed hashing methods. metrics for consistent evaluations across different methods: 1)
1) Nonlinear Scalable Hashing [22], [32]: Some recently mean average precision (mAP), which represents the overall
proposed hashing approaches harness the nonlinear manif@dormance of different hashing methods by the area under
structures of data samples and have achieved superior perfoe precision-recall curve; and 2) Hamming look-up result with
mance [22], [32]. Currently, these methods are designed for titee hamming radius set as which measures the precision
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over all retrieved samples that fall into the buckets within wideo label information and the frame level label information
set hamming radius, i.er,= 2. We followed [31] to set zero are important to the learning of binary codes. Furthermore,
precision for conditions failing to find any hash bucket for ¢he nonlinear hashing methods such as DeepH, SDeepH and
query, different from previous work which computed the mealSH show better performance than other linear methods. The
hash lookup precision over all queries by ignoring the failegtason is that the nonlinear relationship between samples is
queries. As stated in [62], mAP has been demonstratedpi@served. However, the KSH method surprisingly delivers
have especially good discrimination and stability. The neardstv performance in our results. This may be due to that
video sequences are returned by computing and ranking the provided kernel model does not fit the video samples
Hamming distance between query video and gallery video®ll. We also see that the results of SDH increase with
according to (6). For the calculation of Hamming look-ujonger bit length, which is consistent with the importance
precision, we followed the protocol in [11]. The ground-trutlof minimization quantization for long binary codes. Fig. 4(b)
relevant instances for a query are defined as those sharingrasents the comparison on results in terms of the precision of
least one category label with it. first 500 retrieved samples. We see that our method is superior
For our NSH method, we trained our deep model with a 3o the best competitor. The precisions of ITQ and CCA-ITQ
layer model with the dimensions of each layer being 512, 20@gcrease for longer binary codes, which implies that reducing
L, to produceL-bit long binary codes. We set the valuewof the quantization error is a reasonable objective. In Fig. 4(c), we
to be L/nC with nC as the number of category of trainingshow the precision recall curves for different methods when
samples. We set parameteks and X\ to 0.1 and 0.001, the length of binary codes is 32 bits. We see that our method
respectively, through 5 fold cross validation with one fifth opresents the best performance. This is because that the video
the training set as validation set. We optimized our hashistyucture is exploited in our hashing learning model.
model with 5 iteration updates. In our models, we adopted2) Results on the CNN Feature: Besides hand-crafted bag-
the hyperbolic tangent function as the nonlinear activatio-SIFT feature, based on SIFT descriptors, we also evaluated
function. In addition, for all the supervised algorithms, weur NSH with the state-of-the-art deep Convolutional Neural
randomly select a small subset of labeled samples to traetwork (CNN) features. To extract the representation for each
the learned hash functions on all three datasets. For a fa@me, we adopted the VGG model [66] pretrained on the Ima-
comparison, we trained NSH and supervised baselines @@Net [67], and used the output of the layer 'fc7’ as suggested
the same set of training data. During batch training for tHe [68]. Fig. 5 and 6 summarize the performance of different
image-based hashing methods, we randomly selected frarhashing methods. As expected, the overall performances are
from different videos to ensure large diversity of the trainingigher than those on the hand-crafted features for both the
samples. baseline methods and our NSH. In Fig. 5(a), we see that NSH
outperforms all the competitors by a large margin in terms of
) ) the mAP. Note that the substitution of hand-crafted features
B. Experimental Comparison on CCV with CNN features enlarges the gaps between different hashing
The Columbia Consumer Video (CCV) dataset [58] hawmethods, which indicates a well designed hashing method
been widely adopted in several recent studies on video hagh-important to capture the similarity structure of original
ing. There are 9,317 videos gathered from YouTube, whidbatures. The results in Fig. 5(b) show the precisions of top
covers 20 categories annotated based on Amazon’'s MT&®O retrieved samples for different hashing methods. Fig. 5(c)
platform. On average, the video duration is around 80 secongdeesents the comparison on precision within Hamming radius
Interested readers are referred to [58] for more details. VBe where our method is competitive to the remaining hashing
followed the experimental settings in [11] for our experimentsiethods. However, the precisions of most methods drop with
Specifically, we randomly selected 20, 20 and 100 videos denger binary codes. The reason is that longer codes result in
category to construct the training, query and gallery sets. Wver probability that samples fall in the same bucket.
sampled each video every 2 seconds to extract frames an@esides the performance, we also compare the testing time
ensure a minimum of 30 frames for each video. of our NSH method with those of other baseline methods. In
1) Results on the Hand-Crafted Feature: The SIFT de- Table I, we report the testing time of all involved methods for
scriptors over key points on each frame are extracted wiarious lengths of binary codes on the CCV dataset. The time
two different key point detectors, i.e., Different of Gausis measured in seconds over all testing videos. The computing
sian [63] and Hessian Affine [64]. The 128-dimensional SIFplatform is equipped with 4.0GHz Intel CPU and 32GB RAM.
features are then fed into the quantization procedure to derfw®m the table, we can see that the testing time consumed by
5,000-dimensional BoW representation [65] for each frameur NSH method is comparable to those of existing methods.
Fig. 4(a) presents the comparison between NSH and other
baseline methods in terms of MAP on the CCV dataset with Experimental Comparison on YLI-MED
respect to different number of bits. We see that our NSH The YLI-MED dataset [59] is the video subset of the Yahoo
method outperforms all other methods in all bit number§lickr Creative Commons 100 Million (YFCC100M) dataset
including the previous state-of-the-art SDeepH and Deepspecialized for Multimedia Event Detection research, which is
We see that the supervised methods generally perform bettimnilar to the existing TRECVID MED’s HAVIC corpus. In
than unsupervised methods. Moreover NSH shows supernarticular, the 10 current available annotated events in YLI-
performance compared to SDeepH. This is because both MED, such as Birthday, Wedding and Woodworking, were
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Fig. 4: The results of different hashing methods on the CCV dataset with hand-craft features.
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Fig. 6: The comparison of precision-recall curves for different hashing methods on the CCV dataset with binary codes
different lengths.

TABLE I: Testing time in seconds of different hashing methg, 5,k organized by NIST. There are around 2000 annotated

ods on the CCV dataset. videos in the YLI-MED dataset. The video duration varies

oo length of binary code from 2 to 200 seconds with average value around 40 seconds.
ethoads 16 2 () 96 Here, we selected frames every second and ensure at least 30

ITQ [15] 4.63 512 2.94 5.41 frames for each video. We randomly st_ak_acted 20 and 20 videos

DeepH [22] 4.42 4.95 5.53 5.99 in each category to construct the training set and query set,

CCA-ITQ [15] 19.95 19.99 1995 1979 respectively. We selected another 100 videos each category as

KSH [31] 16.38 17.15 16.52  16.66 I t for retrieval

SDeepH [22] 32.43 33.65 3242 3277  gallery setior retneval.

SDH [33] 92.75 97.13 97.49 95.99 1) Results on the Hand-Crafted Feature: For each frame,
NSH 18.71 1922 19.03 1918 we followed the same feature extraction procedure as in the
experiments on the CCV dataset. In Fig. 7(a), we show the
MAP results of NSH as well as other representative hashing
included in the TRECVID MED 2011 evaluation run by thenethods. We see that out method outperforms other methods
National Institute of Standards and Technology (NIST). YLIby a large margin. Similar with the results on the CCV dataset,
MED is one of the largest public available video collectionghe performance of NSH is better than those of image-based
with manual annotation. A subset of the videos in the YFGupervised methods and linear projection based methods. This
C100M is adopted for the MED task in the TRECVID benchis because that both the video structure and the nonlinear
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Fig. 7: The results of different hashing methods on the YLI dataset with hand-crafted features.
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Fig. 8: The comparison of different hashing methods on the YLI dataset with CNN features.
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Fig. 9: The comparison of precision-recall curves for different hashing methods on the YLI dataset with binary codes ¢
different lengths.

transformation play an important role to map samples intdamming lookup precision within radius 2. We see that our
binary codes. In Fig. 7(b), we show that our NSH delivensiethod produces comparable precision to other representative
better performance than the competitors, which is similar tmshing methods. In Fig. 9, we show the precision-recall
the results on CCV dataset. Fig. 7(c) shows the precision-reaalrves of different hashing methods for different lengths of
curves with binary codes of 32 bits, which is the detailedinary codes. These results clearly show the superiority of
presentation of the mAP. The results show that our NSéur NSH method.

method delivers the best retrieval performance.

2) Resultson the CNN Feature: Similar to the CCV dataset, D- Experimental Comparison on ActivityNet
we extracted the CNN feature for each sampled frame in YLI We also evaluate our approach on a large-scale video
dataset to test the retrieval performance. Fig. 8(a) and @@@nchmark dataset, ActivityNet. The ActivityNet dataset [61]
show the mAP and precision of top 100 retrieved sampléesrecently released for human activity recognition and under-
for each hashing method, respectively. We see that the CNMnding. ActivityNet consists of around 20,000 video clips in
feature enhances the performance. Nevertheless, our N3BD classes with 10,024 training, 4,926 validation and 5,044
method is still comparable to the best competitor. Similar testing videos, totaling 648 hours of video. Compared to the
the results on the CCV dataset, the performance of SDH&above two datasets, ActivityNet is more challenging, since it
slightly better than our NSH due to the careful optimizationontains more videos, more classes of fine-grained actions, has
of the quantization loss. In Fig. 8(c), we show the results gfeater intra-class variance and consists of longer, untrimmed
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Fig. 10: The comparison of different hashing methods on the AcitvityNet dataset with CNN features.
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Fig. 11: The comparison of precision-recall curves for different hashing methods on the ActivityNet dataset with binary code
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Fig. 12: Scene structure evaluations on CCV, YLI and ActivityNet datasets.

videos. The experimental setting for this dataset is the sarféBLE Il: MAP comparison of different video hashing meth-
as that on YLI-MED dataset. Since the authors of ActivityNe?ds on the CCV dataset.

have not released the test set, we use the validation set as 16 22 8 64

our query set, take 30 videos per categories as the training

set and use the remaining videos as the gallery set. For each ch[l[g]i] [14] 17172 173'% 174'% 175'?8

frame, we followed the same feature extraction procedure NSH 127 131 152  16.1

as in the experiments on two previous datasets. Because the

performance with hand-crafted feature on this dataset is too

low, we only show the results with CNN feature.

In Fig. 10(a), we show the mAP values for different hashing

methods. We see that the performance is much lower than

those on the CCV and YLI datasets due to the greater intra-

class variation, more videos, more classes and untrimmedults of Hamming lookup precision within radius 2. We see
videos. Nevertheless, our method still ranks top comparttht our NSH achieves the best performance. To provide a
with the baseline methods. In Fig. 10(b), we show the prdetailed observation of the retrieval performance, we show the
cisions of top 100 retrieved samples, where our method psecision-recall curves for 32, 64 and 96 bits binary codes in
competitive to other hashing methods. Fig. 10(c) shows tkég. 11.
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E. Comparison with Existing Video Hashing Methods To provide more discriminative video representations, it is

In order to give a quantitative performance comparison wifffomising to combine the proposed hashing learmning frame-
existing video hashing methods, we followed the experiment4Prk with the motion extraction. With the motion information
settings in [11] to evaluate the performance of our NSH. Herg2ptured by the optical flow or RNN feature, we can apply
we compared our NSH with the spectral hashing used in [1§}/ch feature extraction on the clustered scenes of each video.
[14] and the structure learning-based video hashing [1£jnd both the motion information and the frame representation
In Table Il, we show the mAP values of different hashingan be utilized to learn hashing codes jointly in a multi-
methods for different lengths of binary codes. We see thdfW hashing way, such as [69]. While the proposed hashing
our NSH achieves competitive results compared to SVH. TIR&nIing framework uses the pre-extracted CNN features as
reason is that the learned neural network model encodBBUt the pooling strategies [4], [70] can be combined with it

both the nonlinear relationship between videos and the scéle@PPlying the pooling on the shots of each video scene. Such
consistency between frames within a video. combination can reduce the computation complexity, elimi-

nate irrelevant frames and enhance the discriminative power.
Furthermore, as stated in [71], the semantic representation is
comparable to hand-crafted low-level features in performance

To evaluate the effectiveness of scene structure, we COffj; o\ ent detection. Thus, it is also feasible to apply hashing on
pared the comprehensive mAP metric across different hashija semantic representations to retrieve the semantic neighbor.
methods to present an overall measurement of retrieval per-

formance. Fig. 12(a), (b) and (c) present the results on CCV,
YLI and ActivityNet with CNN features. We compared NSH
with NSH-single, which considers the whole video as a singleIn this paper, we have proposed a nonlinear structural
subspace, and NSH-none, which ignores the scene structuashing (NSH) approach to map videos as binary codes for
by setting A; in (8) as 0. These comparisions show thatcalable video search. The success of the proposed structure
our NSH consistently achieves better retrieval performanagédeo hashing is attributed to three primary aspects: 1) the
Note that the scene is related to the video content andeisploration of structure information between frames in a video,
constructed on the base of the original features. Therefore, thieich is described as the scene in a video and represented by
scene information of each video is precomputed and storeabspace; 2) the preservation of similar relationship between
off-line. Furthermore, the scene clustering and binary cod#ames of the same scene to achieve the similarity of their
computation are performed simultaneously for a query videloinary codes; and 3) the design of multilayer neural network to
Hence, this reduces the retrieval time. preserve the nonlinear relationship between videos. Extensive
experiments on three large scale datasets fully verify the
efficacy of our approach.

G. Analysis
Comparing the results in terms of mean average precision,There are three interesting directions for future work:

we can find that the performances are almost similar for CCv'1) How to extend our approach to explore motion infor-

and YLI datasets with the length of bits increasing from 16 ~ mation, such as optical flow and RNN, to improve the

to 96. We attribute this to both the dataset and the feature. performance.

First, the performance in terms of mean average precision?) How to extend our approach to explore more effec-

may encounter saturation with the specified length of bits t!VG video repr_esentanons, SU‘{h as lsemantlc repre;enta—

and the number of categories. The numbers of categories in  tion [71] and video representation with complex pooling

the CCV and YLI datasets are 20 and 10. Note that the Strategy [4], [70], to reduce the computation complexity.

length of bits shown in the figures is related to a frame. 3) How to extend our approach to represent videos by more

This means that the length of bits for each video is at least discriminative image features with the integration of

480 (16*30). Thus, the performance of hashing methods may €xtra features, such as audio, motion and text, to further

encounter saturation with the given length of bits and number ~ improve the retrieval performance.

of categories. This is further validated by the results on the

ActivityNet dataset, which contains 200 categories. For such

a dataset with several times of categories against the previogrf

two datasets, the performance improvement reduces When reranking,” IEEE Transactions on Knowledge and Data Engineering,

increasing the length of bits of 64 to 96 compared against vol. 22, no. 8, pp. 1191-1199, 2010.

that from 32 to 64. Second, the saturation of performancil L. Jiang, A. G. Hauptmann, and G. Xiang, “Leveraging high-level and

. ' .. low-level features for multimedia event detection,” ACM Multimedia

in te_rm_s o_f mean average precision may be related to_the Conference, 2012, pp. 449-458.

discriminative ability of the original feature. For features with[3] A. Habibian, T. Mensink, and C. G. M. Snoek, “Videostory: A new

good discriminative ability, it requires longer binary codes to multimedia embedding for few-example recognition and translation of
L : . . events,” INACM Multimedia Conference, 2014, pp. 17-26.

preserve the discrimination. Comparing the results with th

- § ) h ﬁl] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative CNN video
CNN features in Figs. 5 and 8 against the results with the hand- representation for event detection,” IEEE Conference on Computer
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