
Training	 R-‐CNNs	 of	 various	 velocities
Slow,	 fast,	 and	 faster

Ross	 Girshick
Facebook	 AI	 Research	 (FAIR)

Tools	 for	 Efficient	 Object	 Detection,	 ICCV	 2015	 Tutorial

Section	 overview

• Kaiming just	 covered	 inference

• This	 section	 covers
• A	 brief	 review	 of	 the	 slow	 R-‐CNN	 and	 SPP-‐net	 training	 pipelines
• Training	 Fast	 R-‐CNN	 detectors
• Training	 Region	 Proposal	 Networks	 (RPNs)	 and	 Faster	 R-‐CNN	 detectors

Review	 of	 the	 slow	 R-‐CNN	 training	 pipeline

Steps	 for	 training	 a	 slow	 R-‐CNN	 detector

1. [offline]	 M⃪ Pre-‐train	 a	 ConvNet for	 ImageNet classification
2. M’⃪ Fine-‐tuneM for	 object	 detection	 (softmax classifier	 +	 log	 loss)
3. F⃪ Cache feature	 vectors	 to	 disk	 using	 M’
4. Train	 post	 hoc	 linear	 SVMs on	 F (hinge	 loss)
5. Train	 post	 hoc	 linear	 bounding-‐box	 regressors on	 F (squared	 loss)

R	 Girshick,	 J	 Donahue,	 T	 Darrell,	 J	 Malik.	 “Rich	 Feature	 Hierarchies	 for	 Accurate	 Object	 Detection	 and	 Semantic	 Segmentation”.	 CVPR	 2014.

Review	 of	 the	 slow	 R-‐CNN	 training	 pipeline

“Post	 hoc”	 means	 the	 parameters	 are	 learned	 after	 the	 ConvNet is	 fixed

1. [offline]	 M⃪ Pre-‐train	 a	 ConvNet for	 ImageNet classification
2. M’⃪ Fine-‐tuneM for	 object	 detection	 (softmax classifier	 +	 log	 loss)
3. F⃪ Cache	 feature	 vectors	 to	 disk	 using	 M’
4. Train	 post	 hoc	 linear	 SVMs on	 F (hinge	 loss)
5. Train	 post	 hoc	 linear	 bounding-‐box	 regressors on	 F (squared	 loss)

R	 Girshick,	 J	 Donahue,	 T	 Darrell,	 J	 Malik.	 “Rich	 Feature	 Hierarchies	 for	 Accurate	 Object	 Detection	 and	 Semantic	 Segmentation”.	 CVPR	 2014.

Review	 of	 the	 slow	 R-‐CNN	 training	 pipeline

Ignoring	 pre-‐training,	 there	 are	 three	 separate	 training	 stages

1. [offline]	 M⃪ Pre-‐train	 a	 ConvNet for	 ImageNet classification
2. M’⃪ Fine-‐tuneM for	 object	 detection	 (softmax classifier	 +	 log	 loss)
3. F⃪ Cache	 feature	 vectors	 to	 disk	 using	 M’
4. Train	 post	 hoc	 linear	 SVMs on	 F (hinge	 loss)
5. Train	 post	 hoc	 linear	 bounding-‐box	 regressors on	 F (squared	 loss)

R	 Girshick,	 J	 Donahue,	 T	 Darrell,	 J	 Malik.	 “Rich	 Feature	 Hierarchies	 for	 Accurate	 Object	 Detection	 and	 Semantic	 Segmentation”.	 CVPR	 2014.

Review	 of	 the	 SPP-‐net	 training	 pipeline

The	 SPP-‐net	 training	 pipeline	 is	 slightly	 different

1. [offline]	 M⃪ Pre-‐train	 a	 ConvNet for	 ImageNet classification
2. F	 ⃪ Cache	 SPP	 features	 to	 disk	 using	 M
3. M’⃪M.conv +	 Fine-‐tune	 3-‐layer	 network	 fc6-‐fc7-‐fc8	 on	 F (log	 loss)
4. F’	 ⃪ Cache	 features	 on	 disk	 using	 M’
5. Train	 post	 hoc	 linear	 SVMs	 on	 F’ (hinge	 loss)
6. Train	 post	 hoc	 linear	 bounding-‐box	 regressors on	 F’	 (squared	 loss)

Kaiming	 He,	 Xiangyu	 Zhang,	 Shaoqing	 Ren,	 &	 Jian	 Sun.	 “Spatial	 Pyramid	 Pooling	 in	 Deep	 Convolutional	 Networks	 for	 Visual	 Recognition”.	 ECCV	 2014.

Review	 of	 the	 SPP-‐net	 training	 pipeline

Note	 that	 only	 classifier	 layers	 are	 fine-‐tuned,	 the	 conv layers	 are	 fixed

1. [offline]	 M⃪ Pre-‐train	 a	 ConvNet for	 ImageNet classification
2. F	 ⃪ Cache	 SPP	 features	 to	 disk	 using	 M
3. M’⃪M.conv +	 Fine-‐tune	 3-‐layer	 network	 fc6-‐fc7-‐fc8	 on	 F (log	 loss)
4. F’⃪ Cache	 features	 on	 disk	 using	 M’
5. Train	 post	 hoc	 linear	 SVMs	 on	 F’ (hinge	 loss)
6. Train	 post	 hoc	 linear	 bounding-‐box	 regressors on	 F’	 (squared	 loss)

Kaiming	 He,	 Xiangyu	 Zhang,	 Shaoqing	 Ren,	 &	 Jian	 Sun.	 “Spatial	 Pyramid	 Pooling	 in	 Deep	 Convolutional	 Networks	 for	 Visual	 Recognition”.	 ECCV	 2014.

Why	 these	 training	 pipelines	 are	 slow

Example	 timing	 for slow	 R-‐CNN	 /	 SPP-‐net on	 VOC07	 (only	 5k	 training	
images!)	 using	 VGG16	 and	 a	 K40	 GPU

• Fine-‐tuning	 (backprop,	 SGD):	 18	 hours	 / 16	 hours
• Feature	 extraction:	 63	 hours	 / 5.5	 hours
• Forward	 pass	 time	 (SPP-‐net	 helps	 here)
• Disk	 I/O	 is	 costly	 (it	 dominates	 SPP-‐net	 extraction	 time)

• SVM	 and	 bounding-‐box	 regressor training:	 3	 hours	 / 4	 hours
• Total:	 84	 hours	 / 25.5	 hours

Fast	 R-‐CNN	 objectives

Fix	 most	 of	 what’s	 wrong	 with	 slow	 R-‐CNN	 and	 SPP-‐net

• Train	 the	 detector	 in	 a	 single	 stage,	 end-‐to-‐end
• No	 caching	 features	 to	 disk
• No	 post	 hoc	 training	 steps

• Train	 all	 layers of	 the	 network
• Something	 that	 slow	 R-‐CNN	 can	 do
• But	 is	 lost	 in	 SPP-‐net
• Conjecture:	 training	 the	 conv layers	 is	 important	 for	 very	 deep	 networks
(it	 was	 not	 important	 for	 the	 smaller	 AlexNet and	 ZF)

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

data
(Python)

data

labels

bbox_targets

bbox_loss_weights

rois

conv1
(Convolution)
kernel size: 7

stride: 2
pad: 0

pool2

conv3
(Convolution)
kernel size: 3

stride: 1
pad: 1

relu7
(ReLU)

fc7

conv5
(Convolution)
kernel size: 3

stride: 1
pad: 1

conv5512 relu5
(ReLU)

pool5

fc6
(InnerProduct)

pool2
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

conv196

bbox_pred
(InnerProduct)

drop7
(Dropout)

cls_score
(InnerProduct)

norm1
(LRN)

norm1

conv4

relu4
(ReLU)

relu2
(ReLU)conv2

norm2
fc7

(InnerProduct)
1024

norm2
(LRN)

roi_pool5
(ROIPooling)

relu1
(ReLU)

conv3
relu3

(ReLU)

conv4
(Convolution)
kernel size: 3

stride: 1
pad: 1

loss_clsloss_cls
(SoftmaxWithLoss)

loss_bbox

pool1

conv2
(Convolution)
kernel size: 5

stride: 2
pad: 1

drop6
(Dropout)

fc6
relu6

(ReLU)

cls_score

4096

loss_bbox
(SmoothL1Loss)

bbox_pred

256

pool1
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

84

512

21
512

How	 to	 train	 Fast	 R-‐CNN	 end-‐to-‐end?

• Define	 one	 network	 with	 two	 loss	 branches
• Branch	 1:	 softmax classifier

+
• Branch	 2:	 linear	 bounding-‐box	 regressors
• Overall	 loss	 is	 the	 sum	 of	 the	 two	 loss	 branches

• Fine-‐tune	 the	 network	 jointly	 with	 SGD
• Optimizes	 features	 for	 both	 tasks

• Back-‐propagate	 errors	 all	 the	 way	 back	 to	 the	 conv layers

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Forward	 /	 backward Log	 loss	 +	 smooth	 L1	 loss

ConvNet
(applied	 to	 entire	

image)

Linear	 +
softmax

FCs

Linear

Trainable

Multi-‐task	 loss

External	 proposal	
algorithm
e.g.	 selective	 search

Bounding	 box
regressors

Proposal
classifier

RoI pooling

Benefits	 of	 end-‐to-‐end	 training

• Simpler	 implementation
• Faster	 training
• No	 reading/writing	 features	 from/to	 disk
• No	 training	 post	 hoc	 SVMs	 and	 bounding-‐box	 regressors

• Optimizing	 a	 single	 multi-‐task	 objective may	 work	 better	 than	
optimizing	 objectives	 independently
• Verified	 empirically	 (see	 later	 slides)

End-‐to-‐end	 training	 requires	 overcoming	 two	 technical	 obstacles

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Obstacle	 #1:	 Differentiable	 RoI pooling

Region	 of	 Interest	 (RoI)	 pooling	 must	 be	 (sub-‐)differentiable	 to	 train	
conv layers

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Review:	 Spatial	 Pyramid	 Pooling	 (SPP)	 layer

SPP	
layer

Conv feature	 map

Region	 of	 Interest	 (RoI)

concatenate,
fc	 layers	 …

Kaiming	 He,	 Xiangyu	 Zhang,	 Shaoqing	 Ren,	 &	 Jian	 Sun.	 “Spatial	 Pyramid	 Pooling	 in	 Deep	 Convolutional	 Networks	 for	 Visual	 Recognition”.	 ECCV	 2014.

From	 Kaiming’s slides

Figure	 from
Kaiming He

Review:	 Region	 of	 Interest	 (RoI)	 pooling	 layer

RoI
pooling	
layer

Conv feature	 map

fc	 layers	 …

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Just	 a	 special	 case	 of	 the	 SPP	 layer	 with	 one	 pyramid	 level

Region	 of	 Interest	 (RoI)
Figure	 adapted
from	 Kaiming He

Obstacle	 #1:	 Differentiable	 RoI pooling

RoI pooling	 /	 SPP	 is	 just	 like	 max	 pooling,	 except	 that	 pooling	 regions	
overlap

𝑟#

𝑟$
Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Obstacle	 #1:	 Differentiable	 RoI pooling

RoI pooling	 /	 SPP	 is	 just	 like	 max	 pooling,	 except	 that	 pooling	 regions	
overlap

𝑟#

𝑟$
Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

RoI pooling

max	 of	 input
activations

𝑟#

Obstacle	 #1:	 Differentiable	 RoI pooling

RoI pooling	 /	 SPP	 is	 just	 like	 max	 pooling,	 except	 that	 pooling	 regions	
overlap

𝑟#

𝑟$
Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

RoI pooling

max	 of	 input
activations

𝑖∗ 0,2 = 23

𝑥-.

𝑦#,-

𝑟#

max	 pooling	 “switch”	 (i.e. argmax back-‐pointer)

Obstacle	 #1:	 Differentiable	 RoI pooling

RoI pooling	 /	 SPP	 is	 just	 like	 max	 pooling,	 except	 that	 pooling	 regions	
overlap

RoI pooling

RoI pooling

𝑖∗ 0,2 = 23

𝑖∗ 1,0 = 23

𝑟#

𝑟$

𝑥-.

𝑦#,-

𝑦$,#

𝑟#

𝑟$

max	 pooling	 “switch”	 (i.e. argmax back-‐pointer)
Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Obstacle	 #1:	 Differentiable	 RoI pooling

RoI pooling	 /	 SPP	 is	 just	 like	 max	 pooling,	 except	 that	 pooling	 regions	
overlap

RoI pooling

RoI pooling

𝑖∗ 0,2 = 23

𝑖∗ 1,0 = 23

Over	 regions	 𝑟,
locations	 𝑗

Partial
for	 𝑥7

1	 if	 𝑟, 𝑗 “pooled”
input	 𝑖;	 0	 o/w

Partial	 from
next	 layer

𝜕𝐿
𝜕𝑥7

=:: 𝑖 = 𝑖∗ 𝑟, 𝑗
𝜕𝐿
𝜕𝑦;<<;

𝑟#

𝑟$

𝑥-.

𝑦#,-

𝑦$,#

𝑟#

𝑟$

max	 pooling	 “switch”	 (i.e. argmax back-‐pointer)
Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Slow	 R-‐CNN	 and	 SPP-‐net	 use	 region-‐wise	 sampling	 to	 make	 mini-‐batches

• Sample	 128	 example	 RoIs uniformly	 at	 random
• Examples	 will	 come	 from	 different	 images	 with	 high	 probability

...	

SGD	 mini-‐batch

...	 	

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Note	 the	 receptive	 field	 for	 one	 example	 RoI is	 often	 very	 large

• Worst	 case:	 the	 receptive	 field	 is	 the	 entire	 image

Example	 RoI

RoI’s receptive	 field

Example	 RoI

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Worst	 case	 cost	 per	 mini-‐batch	 (crude	 model	 of	 computational	 complexity)

• 128*600*1000	 /	 (128*224	 *224)	 =	 12x	 > computation	 than	 slow	 R-‐CNN

Example	 RoI

RoI’s receptive	 field

Example	 RoI

input	 size	 for	 Fast	 R-‐CNN input	 size	 for	 slow	 R-‐CNN

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Solution:	 use	 hierarchical	 sampling	 to	 build	 mini-‐batches

...	

Sample	 images

...	 	

SGD	 mini-‐batch

• Sample	 a	 small	 number	
of	 images (2)

• Sample	 many	 examples	
from	 each	 image (64)	

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Use	 the	 test-‐time	 trick	 from	 SPP-‐net	 during	 training

• Share	 computation	 between	 overlapping	 examples	 from	 the	 same	 image

Example	 RoI 2

Union	 of	 RoIs’ receptive	 fields
(shared	 computation)

Example	 RoI 1

Example	 RoI 3

Example	 RoI 2

Example	 RoI 1

Example	 RoI 3

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Cost	 per	 mini-‐batch	 compared	 to	 slow	 R-‐CNN	 (same	 crude	 cost	 model)

• 2*600*1000	 /	 (128*224*224)	 =	 0.19x	 <	 computation	 than	 slow	 R-‐CNN

Example	 RoI 2

Union	 of	 RoIs’ receptive	 fields
(shared	 computaiton)

Example	 RoI 1

Example	 RoI 3

Example	 RoI 2

Example	 RoI 1

Example	 RoI 3

input	 size	 for	 Fast	 R-‐CNN input	 size	 for	 slow	 R-‐CNN

Obstacle	 #2:	 Making	 SGD	 steps	 efficient

Are	 the	 examples	 from	 just	 2	 images	 diverse	 enough?

• Concern:	 examples	 from	 the	 sample	 image	 may	 be	 too	 correlated

Example	 RoI 2

Union	 of	 RoIs’ receptive	 fields
(shared	 computation)

Example	 RoI 1

Example	 RoI 3

Example	 RoI 2

Example	 RoI 1

Example	 RoI 3

Fast	 R-‐CNN	 outcome

Better	 training	 time	 and	 testing	 time	 with	 better	 accuracy	 than	 slow	 R-‐
CNN	 or	 SPP-‐net

• Training	 time:	 84	 hours	 /	 25.5	 hours	 /	 8.75	 hours	 (Fast	 R-‐CNN)
• VOC07	 test	 mAP:	 66.0%	 /	 63.1%	 /	 68.1%
• Testing	 time	 per	 image:	 47s	 /	 2.3s	 /	 0.32s
• Plus	 0.2	 to	 >	 2s	 per	 image	 depending	 on	 proposal	 method
• With	 selective	 search: 49s	 /	 4.3s	 /	 2.32s

Updated	 numbers	 from	 the	 ICCV	 paper	 based	 on	 implementation	 improvements

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Experimental	 findings

• End-‐to-‐end	 training	 is	 important	 for	 very	 deep	 networks
• Softmax is	 a	 fine	 replacement	 for	 SVMs
• Multi-‐task	 training	 is	 beneficial
• Single-‐scale	 testing	 is	 a	 good	 tradeoff	 (noted	 by	 Kaiming)
• Fast	 training	 and	 testing	 enables	 new	 experiments
• Comparing	 proposals

The	 benefits	 of	 end-‐to-‐end	 training

• Model	 L =	 VGG16
• Training	 layers	 >=	 conv3_1	 yields	 1.4x	 faster	 SGD	 steps,	 small	 mAP loss

4.4. Training and testing time

Fast training and testing times are our second main re-
sult. Table 4 compares training time (hours), testing rate
(seconds per image), and mAP on VOC07 between Fast R-
CNN, R-CNN, and SPPnet. For VGG16, Fast R-CNN pro-
cesses images 146⇥ faster than R-CNN without truncated
SVD and 213⇥ faster with it. Training time is reduced by
9⇥, from 84 hours to 9.5. Compared to SPPnet, Fast R-
CNN trains VGG16 2.7⇥ faster (in 9.5 vs. 25.5 hours) and
tests 7⇥ faster without truncated SVD or 10⇥ faster with it.
Fast R-CNN also eliminates hundreds of gigabytes of disk
storage, because it does not cache features.

Fast R-CNN R-CNN SPPnet
S M L S M L †L

train time (h) 1.2 2.0 9.5 22 28 84 25
train speedup 18.3⇥ 14.0⇥ 8.8⇥ 1⇥ 1⇥ 1⇥ 3.4⇥
test rate (s/im) 0.10 0.15 0.32 9.8 12.1 47.0 2.3
B with SVD 0.06 0.08 0.22 - - - -

test speedup 98⇥ 80⇥ 146⇥ 1⇥ 1⇥ 1⇥ 20⇥
B with SVD 169⇥ 150⇥ 213⇥ - - - -

VOC07 mAP 57.1 59.2 66.9 58.5 60.2 66.0 63.1
B with SVD 56.5 58.7 66.6 - - - -

Table 4. Runtime comparison between the same models in Fast R-
CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.
SPPnet uses the five scales specified in [11]. †Timing provided by
the authors of [11]. Times were measured on an Nvidia K40 GPU.

Truncated SVD. Truncated SVD can reduce detection
time by more than 30% with only a small (0.3 percent-
age point) drop in mAP and without needing to perform
additional fine-tuning after model compression. Fig. 2 il-
lustrates how using the top 1024 singular values from the
25088⇥ 4096 matrix in VGG16’s fc6 layer and the top 256

singular values from the 4096⇥4096 fc7 layer reduces run-
time with little loss in mAP. Further speed-ups are possi-
ble with smaller drops in mAP if one fine-tunes again after
compression.

Figure 2. Timing for VGG16 before and after truncated SVD. Be-
fore SVD, fully connected layers fc6 and fc7 take 45% of the time.

4.5. Which layers to fine-tune?

For the less deep networks considered in the SPPnet pa-
per [11], fine-tuning only the fully connected layers ap-
peared to be sufficient for good accuracy. We hypothesized
that this result would not hold for very deep networks. To
validate that fine-tuning the conv layers is important for
VGG16, we use Fast R-CNN to fine-tune, but freeze the
thirteen conv layers so that only the fully connected layers
learn. This ablation emulates single-scale SPPnet training
and decreases mAP from 66.9% to 61.4% (Table 5). This
experiment verifies our hypothesis: training through the RoI
pooling layer is important for very deep nets.

layers that are fine-tuned in model L SPPnet L
� fc6 � conv3 1 � conv2 1 � fc6

VOC07 mAP 61.4 66.9 67.2 63.1
test rate (s/im) 0.32 0.32 0.32 2.3

Table 5. Effect of restricting which layers are fine-tuned for
VGG16. Fine-tuning � fc6 emulates the SPPnet training algo-
rithm [11], but using a single scale. SPPnet L results were ob-
tained using five scales, at a significant (7⇥) speed cost.

Does this mean that all conv layers should be fine-tuned?
In short, no. In the smaller networks (S and M) we find
that conv1 is generic and task independent (a well-known
fact [14]). Allowing conv1 to learn, or not, has no mean-
ingful effect on mAP. For VGG16, we found it only nec-
essary to update layers from conv3 1 and up (9 of the 13
conv layers). This observation is pragmatic: (1) updating
from conv2 1 slows training by 1.3⇥ (12.5 vs. 9.5 hours)
compared to learning from conv3 1; and (2) updating from
conv1 1 over-runs GPU memory. The difference in mAP
when learning from conv2 1 up was only +0.3 points (Ta-
ble 5, last column). All Fast R-CNN results in this paper
using VGG16 fine-tune layers conv3 1 and up; all experi-
ments with models S and M fine-tune layers conv2 and up.

5. Design evaluation
We conducted experiments to understand how Fast R-

CNN compares to R-CNN and SPPnet, as well as to eval-
uate design decisions. Following best practices, we per-
formed these experiments on the PASCAL VOC07 dataset.

5.1. Does multi-task training help?

Multi-task training is convenient because it avoids man-
aging a pipeline of sequentially-trained tasks. But it also has
the potential to improve results because the tasks influence
each other through a shared representation (the ConvNet)
[2]. Does multi-task training improve object detection ac-
curacy in Fast R-CNN?

To test this question, we train baseline networks that
use only the classification loss, Lcls, in Eq. 1 (i.e., setting

Using	 5	 scalesUsing	 1 scale

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Softmax is	 a	 good	 SVM	 replacement

• VOC07	 test	 mAP
• L =	 VGG16,	 M =	 VGG_CNN_M_1024,	 S =	 Caffe/AlexNet

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

post-hoc, as was done in R-CNN and SPPnet. To under-
stand the impact of this choice, we implemented post-hoc
SVM training with hard negative mining in Fast R-CNN.
We use the same training algorithm and hyper-parameters
as in R-CNN.

method classifier S M L
R-CNN [9, 10] SVM 58.5 60.2 66.0
FRCN [ours] SVM 56.3 58.7 66.8
FRCN [ours] softmax 57.1 59.2 66.9

Table 8. Fast R-CNN with softmax vs. SVM (VOC07 mAP).

Table 8 shows softmax slightly outperforming SVM for
all three networks, by +0.1 to +0.8 mAP points. This ef-
fect is small, but it demonstrates that “one-shot” fine-tuning
is sufficient compared to previous multi-stage training ap-
proaches. We note that softmax, unlike one-vs-rest SVMs,
introduces competition between classes when scoring a RoI.

5.5. Are more proposals always better?

There are (broadly) two types of object detectors: those
that use a sparse set of object proposals (e.g., selective
search [21]) and those that use a dense set (e.g., DPM [8]).
Classifying sparse proposals is a type of cascade [22] in
which the proposal mechanism first rejects a vast number of
candidates leaving the classifier with a small set to evaluate.
This cascade improves detection accuracy when applied to
DPM detections [21]. We find evidence that the proposal-
classifier cascade also improves Fast R-CNN accuracy.

Using selective search’s quality mode, we sweep from 1k
to 10k proposals per image, each time re-training and re-
testing model M. If proposals serve a purely computational
role, increasing the number of proposals per image should
not harm mAP.

Figure 3. VOC07 test mAP and AR for various proposal schemes.

We find that mAP rises and then falls slightly as the pro-
posal count increases (Fig. 3, solid blue line). This exper-
iment shows that swamping the deep classifier with more
proposals does not help, and even slightly hurts, accuracy.

This result is difficult to predict without actually running
the experiment. The state-of-the-art for measuring object
proposal quality is Average Recall (AR) [12]. AR correlates
well with mAP for several proposal methods using R-CNN,
when using a fixed number of proposals per image. Fig. 3
shows that AR (solid red line) does not correlate well with
mAP as the number of proposals per image is varied. AR
must be used with care; higher AR due to more proposals
does not imply that mAP will increase. Fortunately, training
and testing with model M takes less than 2.5 hours. Fast
R-CNN thus enables efficient, direct evaluation of object
proposal mAP, which is preferable to proxy metrics.

We also investigate Fast R-CNN when using densely
generated boxes (over scale, position, and aspect ratio), at
a rate of about 45k boxes / image. This dense set is rich
enough that when each selective search box is replaced by
its closest (in IoU) dense box, mAP drops only 1 point (to
57.7%, Fig. 3, blue triangle).

The statistics of the dense boxes differ from those of
selective search boxes. Starting with 2k selective search
boxes, we test mAP when adding a random sample of
1000⇥ {2, 4, 6, 8, 10, 32, 45} dense boxes. For each exper-
iment we re-train and re-test model M. When these dense
boxes are added, mAP falls more strongly than when adding
more selective search boxes, eventually reaching 53.0%.

We also train and test Fast R-CNN using only dense
boxes (45k / image). This setting yields a mAP of 52.9%
(blue diamond). Finally, we check if SVMs with hard nega-
tive mining are needed to cope with the dense box distribu-
tion. SVMs do even worse: 49.3% (blue circle).

5.6. Preliminary MS COCO results

We applied Fast R-CNN (with VGG16) to the MS
COCO dataset [18] to establish a preliminary baseline. We
trained on the 80k image training set for 240k iterations and
evaluated on the “test-dev” set using the evaluation server.
The PASCAL-style mAP is 35.9%; the new COCO-style
AP, which also averages over IoU thresholds, is 19.7%.

6. Conclusion
This paper proposes Fast R-CNN, a clean and fast update

to R-CNN and SPPnet. In addition to reporting state-of-the-
art detection results, we present detailed experiments that
we hope provide new insights. Of particular note, sparse
object proposals appear to improve detector quality. This
issue was too costly (in time) to probe in the past, but be-
comes practical with Fast R-CNN. Of course, there may ex-
ist yet undiscovered techniques that allow dense boxes to
perform as well as sparse proposals. Such methods, if de-
veloped, may help further accelerate object detection.

Acknowledgements. I thank Kaiming He, Larry Zitnick,
and Piotr Dollár for helpful discussions and encouragement.

Multi-‐task	 training	 is	 beneficial

• L =	 VGG16

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

� = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, � = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with L

loc

while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 ⇥ 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ⇡ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s 2 {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1⇥ each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs

S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

� = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, � = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with L

loc

while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 ⇥ 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ⇡ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s 2 {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1⇥ each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs

Single-‐scale	 testing	 a	 good	 tradeoff

• L =	 VGG16,	 M =	 VGG_CNN_M_1024,	 S =	 Caffe/AlexNet

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

� = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, � = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with L

loc

while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 ⇥ 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ⇡ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s 2 {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1⇥ each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs

Direct	 region	 proposal	 evaluation

• VGG_CNN_M_1024
• Training	 takes	 <	 2	 hours
• Fast	 training	 makes	 these
experiments	 possible

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Part	 2:	 Faster	 R-‐CNN	 training

Two	 algorithms	 for	 training	 Faster	 R-‐CNN

• Alternating	 optimization
• Presented	 in	 our	 NIPS	 2015	 paper

• Approximate	 joint	 training
• Unpublished	 work,	 available	 in	 the	 py-‐faster-‐rcnn Python	 implementation
https://github.com/rbgirshick/py-‐faster-‐rcnn
• Discussion	 of	 exact	 joint	 training

Shaoqing Ren,	 Kaiming He,	 Ross	 Girshick,	 Jian	 Sun.	 “Faster	 R-‐CNN:	 Towards	 Real-‐Time	 Object	 Detection	 with	 Region	 Proposal	 Networks”.	 NIPS	 2015.

What	 is	 Faster	 R-‐CNN?

• Presented	 in	 Kaiming’s section

• Review:
Faster	 R-‐CNN	 = Fast	 R-‐CNN	 +	
Region	 Proposal	 Networks
• Does	 not depend	 on	 an	 external	
region	 proposal	 algorithm
• Does	 object	 detection	 in	 a	
single	 forward	 pass

image

CNN

feature	 map

Region	 Proposal	 Network

proposals

classifier

RoI pooling

Training goal: Share features

image

CNN	 B

feature	 map

proposals
from	 any	 algorithm

classifier

RoI pooling

image

CNN	 A

feature	 map

Region	 Proposal	 Network

RPN
proposals

CNN	 A	 +	 RPN CNN	 B	 +	 detector

Goal:	 share	 so
CNN	 A	 ==	 CNN	 B

Training	 method	 #1:	 Alternating	 optimization

Let M0 be an ImageNet pre-‐trained network

1. train_rpn(M0) → M1 # Train an RPN initialized from M0, get M1

2. generate_proposals(M1) → P1 # Generate training proposals P1 using RPN M1

3. train_fast_rcnn(M0, P1) → M2 # Train Fast R-‐CNN M2 on P1 initialized from M0

4. train_rpn_frozen_conv(M2) → M3 # Train RPN M3 from M2 without changing conv layers

5. generate_proposals(M3) → P2

6. train_fast_rcnn_frozen_conv(M3, P2) → M4 # Conv layers are shared with RPN M3

7. return add_rpn_layers(M4, M3.RPN) # Add M3’s RPN layers to Fast R-‐CNN M4

Training	 method	 #1:	 Alternating	 optimization

Motivation	 behind	 alternating	 optimization

• Not	 based	 on	 any	 fundamental	 principles
• Primarily	 driven	 by	 implementation	 issues	 and	 the	 NIPS	 deadline	 ☺️
• However,	 it	 was	 unclear	 if	 joint	 training	 would	 “just	 work”
• Fast	 R-‐CNN	 was	 always	 trained	 on	 a	 fixed	 set	 of	 proposals
• In	 joint	 training,	 the	 proposal	 distribution	 is	 constantly	 changing

Training	 method	 #2:	 Approx.	 joint	 optimization

Write	 the	 network	 down	 as	 a	 single	 model	 and	 just	 train	 it

• Train	 with	 SGD	 as	 usual
• Even	 though	 the	 proposal	 distribution	 changes	 this	 just	 works
• Implementation	 challenges	 eased	 by	 writing	 various	 modules	 in	 Python

One	 net,	 four	 losses

image

CNN

feature	 map

Region	 Proposal	 Network

proposals

RoI pooling

Classification	 	
loss

Bounding-‐box	
regression	 loss

…

Classification	 	
loss

Bounding-‐box	
regression	 loss

Training	 method	 #2:	 Approx.	 joint	 optimization

Why	 is	 this	 approach	 approximate?	 	 	 	 	 	 	 	 	 	 	 	 roi_pooling(conv_feat_map, RoI)

RoI
pooling	
layer

Conv feature	 map

fc	 layers	 …

Region	 of	 Interest	 (RoI)

Function	 input	 1

Function	 input	 2

In	 Fast	 R-‐CNN function	 input	 2	 (RoI)	 is	 a	 constant,
everything	 is	 OK

𝜕𝐿
𝜕RoI 𝑖 = 0	

for	 𝑖 = 𝑥$, 𝑦$, 𝑥-, 𝑦-

Training	 method	 #2:	 Approx.	 joint	 optimization

Why	 is	 this	 approach	 approximate?	 	 	 	 	 	 	 	 	 	 	 	 roi_pooling(conv_feat_map, RoI)

RoI
pooling	
layer

Conv feature	 map

fc	 layers	 …

Region	 of	 Interest	 (RoI)

Function	 input	 1

Function	 input	 2

In	 Faster	 R-‐CNN function	 input	 2	 (RoI)
depends	 on	 the	 input	 image

𝜕𝐿
𝜕RoI 𝑖 ≠ 0	 in	 general

for	 𝑖 = 𝑥$, 𝑦$, 𝑥-,𝑦-

Training	 method	 #2:	 Approx.	 joint	 optimization

Why	 is	 this	 approach	 approximate?	 	 	 	 	 	 	 	 	 	 	 	 roi_pooling(conv_feat_map, RoI)

RoI
pooling	
layer

Conv feature	 map

fc	 layers	 …

Region	 of	 Interest	 (RoI)

Function	 input	 1

Function	 input	 2

However,	 	 	 	 	 	 	 	 	 	 	 	 is	 actually	 undefined,
roi_pooling() is	 not	 differentiable	 w.r.t.	 RoI

𝜕𝐿
𝜕RoI 𝑖 	 does	 not	 even	 exist

for	 𝑖 = 𝑥$, 𝑦$, 𝑥-,𝑦-

𝜕𝐿
𝜕RoI 𝑖

Training	 method	 #2:	 Approx.	 joint	 optimization

What	 happens	 in	 practice?

• We	 ignore the	 undefined	 derivatives	 of	 loss	 w.r.t.	 RoI coordinates
• Run	 SGD	 with	 this	 “surrogate”	 gradient

• This	 just	 works
• Why?
• RPN	 network	 receives	 direct	 supervision
• Error	 propagation	 from	 RoI pooling	 might	 help,	 but	 is	 not	 strictly	 needed

Faster	 R-‐CNN	 exact	 joint	 training

• Modify	 RoI pooling	 so	 that	 it’s	 a	 differentiable	 function	 of	 both	 the	
input	 conv feature	 map	 and	 input	 RoI coordinates
• One	 option	 (untested,	 theoretical)
• Use	 a	 differentiable	 sampler	 instead	 of	 max	 pooling
• If	 RoI pooling	 uses	 bilinear	 interpolation	 instead	 of	 max	 pooling,	 then	 we	 can	
compute	 a	 derivatives	 w.r.t.	 the	 RoI coordinates
• See:	 Jaderberg et	 al. “Spatial	 Transformer	 Networks”	 NIPS	 2015.

Experimental	 findings
(py-‐faster-‐rcnn implementation)

• Approximate	 joint	 training	 gives	 similar	 mAP to	 alternating	
optimization
• VOC07	 test	 mAP
• Alt.	 opt.:	 69.9%
• Approx.	 joint:	 70.0%

• Approximate	 joint	 training	 is	 faster	 and	 simpler
• Alt.	 opt.:	 26.2	 hours
• Approx.	 joint:	 17.2	 hours

Code	 pointers

• Fast	 R-‐CNN	 (Python):	 https://github.com/rbgirshick/fast-‐rcnn
• Faster	 R-‐CNN	 (matlab):	 https://github.com/ShaoqingRen/faster_rcnn
• Faster	 R-‐CNN	 (Python):	 https://github.com/rbgirshick/py-‐faster-‐rcnn
• Now	 includes	 code	 for	 approximate	 joint	 training

Reproducible	 research	 – get	 the	 code!

Extra	 slides	 follow

Fast	 R-‐CNN	 unified	 network

data
(Python)

data

labels

bbox_targets

bbox_loss_weights

rois

conv1
(Convolution)
kernel size: 7

stride: 2
pad: 0

pool2

conv3
(Convolution)
kernel size: 3

stride: 1
pad: 1

relu7
(ReLU)

fc7

conv5
(Convolution)
kernel size: 3

stride: 1
pad: 1

conv5512 relu5
(ReLU)

pool5

fc6
(InnerProduct)

pool2
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

conv196

bbox_pred
(InnerProduct)

drop7
(Dropout)

cls_score
(InnerProduct)

norm1
(LRN)

norm1

conv4

relu4
(ReLU)

relu2
(ReLU)conv2

norm2
fc7

(InnerProduct)
1024

norm2
(LRN)

roi_pool5
(ROIPooling)

relu1
(ReLU)

conv3
relu3

(ReLU)

conv4
(Convolution)
kernel size: 3

stride: 1
pad: 1

loss_clsloss_cls
(SoftmaxWithLoss)

loss_bbox

pool1

conv2
(Convolution)
kernel size: 5

stride: 2
pad: 1

drop6
(Dropout)

fc6
relu6

(ReLU)

cls_score

4096

loss_bbox
(SmoothL1Loss)

bbox_pred

256

pool1
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

84

512

21
512

data
(Python)

data

labels

bbox_targets

bbox_loss_weights

rois

conv1
(Convolution)
kernel size: 7

stride: 2
pad: 0

pool2

conv3
(Convolution)
kernel size: 3

stride: 1
pad: 1

relu7
(ReLU)

fc7

conv5
(Convolution)
kernel size: 3

stride: 1
pad: 1

conv5512 relu5
(ReLU)

pool5

fc6
(InnerProduct)

pool2
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

conv196

bbox_pred
(InnerProduct)

drop7
(Dropout)

cls_score
(InnerProduct)

norm1
(LRN)

norm1

conv4

relu4
(ReLU)

relu2
(ReLU)conv2

norm2
fc7

(InnerProduct)
1024

norm2
(LRN)

roi_pool5
(ROIPooling)

relu1
(ReLU)

conv3
relu3

(ReLU)

conv4
(Convolution)
kernel size: 3

stride: 1
pad: 1

loss_clsloss_cls
(SoftmaxWithLoss)

loss_bbox

pool1

conv2
(Convolution)
kernel size: 5

stride: 2
pad: 1

drop6
(Dropout)

fc6
relu6

(ReLU)

cls_score

4096

loss_bbox
(SmoothL1Loss)

bbox_pred

256

pool1
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

84

512

21
512

B full	 images	 input:	 B x	 3	 x	 H x	 W
(e.g.,	 B =	 2, H =	 600, W =	 1000)

Sampled	 class	 labels:	 128	 x	 21

Sampled	 box regression
targets:	 128	 x	 84

Sampled	 RoIs: 128	 x	 5

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

Fast	 R-‐CNN	 unified	 network

data
(Python)

data

labels

bbox_targets

bbox_loss_weights

rois

conv1
(Convolution)
kernel size: 7

stride: 2
pad: 0

pool2

conv3
(Convolution)
kernel size: 3

stride: 1
pad: 1

relu7
(ReLU)

fc7

conv5
(Convolution)
kernel size: 3

stride: 1
pad: 1

conv5512 relu5
(ReLU)

pool5

fc6
(InnerProduct)

pool2
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

conv196

bbox_pred
(InnerProduct)

drop7
(Dropout)

cls_score
(InnerProduct)

norm1
(LRN)

norm1

conv4

relu4
(ReLU)

relu2
(ReLU)conv2

norm2
fc7

(InnerProduct)
1024

norm2
(LRN)

roi_pool5
(ROIPooling)

relu1
(ReLU)

conv3
relu3

(ReLU)

conv4
(Convolution)
kernel size: 3

stride: 1
pad: 1

loss_clsloss_cls
(SoftmaxWithLoss)

loss_bbox

pool1

conv2
(Convolution)
kernel size: 5

stride: 2
pad: 1

drop6
(Dropout)

fc6
relu6

(ReLU)

cls_score

4096

loss_bbox
(SmoothL1Loss)

bbox_pred

256

pool1
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

84

512

21
512

data
(Python)

data

labels

bbox_targets

bbox_loss_weights

rois

conv1
(Convolution)
kernel size: 7

stride: 2
pad: 0

pool2

conv3
(Convolution)
kernel size: 3

stride: 1
pad: 1

relu7
(ReLU)

fc7

conv5
(Convolution)
kernel size: 3

stride: 1
pad: 1

conv5512 relu5
(ReLU)

pool5

fc6
(InnerProduct)

pool2
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

conv196

bbox_pred
(InnerProduct)

drop7
(Dropout)

cls_score
(InnerProduct)

norm1
(LRN)

norm1

conv4

relu4
(ReLU)

relu2
(ReLU)conv2

norm2
fc7

(InnerProduct)
1024

norm2
(LRN)

roi_pool5
(ROIPooling)

relu1
(ReLU)

conv3
relu3

(ReLU)

conv4
(Convolution)
kernel size: 3

stride: 1
pad: 1

loss_clsloss_cls
(SoftmaxWithLoss)

loss_bbox

pool1

conv2
(Convolution)
kernel size: 5

stride: 2
pad: 1

drop6
(Dropout)

fc6
relu6

(ReLU)

cls_score

4096

loss_bbox
(SmoothL1Loss)

bbox_pred

256

pool1
(MAX Pooling)

kernel size: 3
stride: 2
pad: 0

84

512

21
512

Sampled	 class	 labels:	 128	 x	 21

Sampled	 RoIs: 128	 x	 5

Classification	 loss
(log	 loss)

Bounding-‐box	 regression	 loss
(“Smooth	 L1”	 /	 Huber)

+

Ross	 Girshick.	 “Fast	 R-‐CNN”.	 ICCV	 2015.

