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Section	  overview

• Kaiming just	  covered	  inference

• This	  section	  covers
• A	  brief	  review	  of	  the	  slow	  R-‐CNN	  and	  SPP-‐net	  training	  pipelines
• Training	  Fast	  R-‐CNN	  detectors
• Training	  Region	  Proposal	  Networks	  (RPNs)	  and	  Faster	  R-‐CNN	  detectors



Review	  of	  the	  slow	  R-‐CNN	  training	  pipeline

Steps	  for	  training	  a	  slow	  R-‐CNN	  detector

1. [offline]	  M⃪ Pre-‐train	  a	  ConvNet for	  ImageNet classification
2. M’⃪ Fine-‐tuneM for	  object	  detection	  (softmax classifier	  +	  log	  loss)
3. F⃪ Cache feature	  vectors	  to	  disk	  using	  M’
4. Train	  post	  hoc	  linear	  SVMs on	  F (hinge	  loss)
5. Train	  post	  hoc	  linear	  bounding-‐box	  regressors on	  F (squared	  loss)

R	  Girshick,	   J	  Donahue,	   T	  Darrell,	  J	  Malik.	  “Rich	  Feature	  Hierarchies	  for	  Accurate	  Object	  Detection	  and	  Semantic	  Segmentation”.	  CVPR	  2014.



Review	  of	  the	  slow	  R-‐CNN	  training	  pipeline

“Post	  hoc”	  means	  the	  parameters	  are	  learned	  after	  the	  ConvNet is	  fixed

1. [offline]	  M⃪ Pre-‐train	  a	  ConvNet for	  ImageNet classification
2. M’⃪ Fine-‐tuneM for	  object	  detection	  (softmax classifier	  +	  log	  loss)
3. F⃪ Cache	  feature	  vectors	  to	  disk	  using	  M’
4. Train	  post	  hoc	  linear	  SVMs on	  F (hinge	  loss)
5. Train	  post	  hoc	  linear	  bounding-‐box	  regressors on	  F (squared	  loss)

R	  Girshick,	   J	  Donahue,	   T	  Darrell,	  J	  Malik.	  “Rich	  Feature	  Hierarchies	  for	  Accurate	  Object	  Detection	  and	  Semantic	  Segmentation”.	  CVPR	  2014.



Review	  of	  the	  slow	  R-‐CNN	  training	  pipeline

Ignoring	  pre-‐training,	  there	  are	  three	  separate	  training	  stages

1. [offline]	  M⃪ Pre-‐train	  a	  ConvNet for	  ImageNet classification
2. M’⃪ Fine-‐tuneM for	  object	  detection	  (softmax classifier	  +	  log	  loss)
3. F⃪ Cache	  feature	  vectors	  to	  disk	  using	  M’
4. Train	  post	  hoc	  linear	  SVMs on	  F (hinge	  loss)
5. Train	  post	  hoc	  linear	  bounding-‐box	  regressors on	  F (squared	  loss)

R	  Girshick,	   J	  Donahue,	   T	  Darrell,	  J	  Malik.	  “Rich	  Feature	  Hierarchies	  for	  Accurate	  Object	  Detection	  and	  Semantic	  Segmentation”.	  CVPR	  2014.



Review	  of	  the	  SPP-‐net	  training	  pipeline

The	  SPP-‐net	  training	  pipeline	  is	  slightly	  different

1. [offline]	  M⃪ Pre-‐train	  a	  ConvNet for	  ImageNet classification
2. F	  ⃪ Cache	  SPP	  features	  to	  disk	  using	  M
3. M’⃪M.conv +	  Fine-‐tune	  3-‐layer	  network	  fc6-‐fc7-‐fc8	  on	  F (log	  loss)
4. F’	  ⃪ Cache	  features	  on	  disk	  using	  M’
5. Train	  post	  hoc	  linear	  SVMs	  on	  F’ (hinge	  loss)
6. Train	  post	  hoc	  linear	  bounding-‐box	  regressors on	  F’	  (squared	  loss)

Kaiming	  He,	  Xiangyu	  Zhang,	  Shaoqing	  Ren,	  &	  Jian	  Sun.	  “Spatial	  Pyramid	  Pooling	  in	  Deep	  Convolutional	   Networks	  for	  Visual	  Recognition”.	  ECCV	  2014.



Review	  of	  the	  SPP-‐net	  training	  pipeline

Note	  that	  only	  classifier	  layers	  are	  fine-‐tuned,	  the	  conv layers	  are	  fixed

1. [offline]	  M⃪ Pre-‐train	  a	  ConvNet for	  ImageNet classification
2. F	  ⃪ Cache	  SPP	  features	  to	  disk	  using	  M
3. M’⃪M.conv +	  Fine-‐tune	  3-‐layer	  network	  fc6-‐fc7-‐fc8	  on	  F (log	  loss)
4. F’⃪ Cache	  features	  on	  disk	  using	  M’
5. Train	  post	  hoc	  linear	  SVMs	  on	  F’ (hinge	  loss)
6. Train	  post	  hoc	  linear	  bounding-‐box	  regressors on	  F’	  (squared	  loss)

Kaiming	  He,	  Xiangyu	  Zhang,	  Shaoqing	  Ren,	  &	  Jian	  Sun.	  “Spatial	  Pyramid	  Pooling	  in	  Deep	  Convolutional	   Networks	  for	  Visual	  Recognition”.	  ECCV	  2014.



Why	  these	  training	  pipelines	  are	  slow

Example	  timing	  for slow	  R-‐CNN	  /	  SPP-‐net on	  VOC07	  (only	  5k	  training	  
images!)	  using	  VGG16	  and	  a	  K40	  GPU

• Fine-‐tuning	  (backprop,	  SGD):	  18	  hours	  / 16	  hours
• Feature	  extraction:	  63	  hours	  / 5.5	  hours
• Forward	  pass	  time	  (SPP-‐net	  helps	  here)
• Disk	  I/O	  is	  costly	  (it	  dominates	  SPP-‐net	  extraction	  time)

• SVM	  and	  bounding-‐box	  regressor training:	  3	  hours	  / 4	  hours
• Total:	  84	  hours	  / 25.5	  hours



Fast	  R-‐CNN	  objectives

Fix	  most	  of	  what’s	  wrong	  with	  slow	  R-‐CNN	  and	  SPP-‐net

• Train	  the	  detector	  in	  a	  single	  stage,	  end-‐to-‐end
• No	  caching	   features	  to	  disk
• No	  post	  hoc	  training	  steps

• Train	  all	  layers of	  the	  network
• Something	  that	  slow	  R-‐CNN	  can	  do
• But	  is	  lost	  in	  SPP-‐net
• Conjecture:	  training	  the	  conv layers	  is	  important	  for	  very	  deep	  networks
(it	  was	  not	  important	  for	  the	  smaller	  AlexNet and	  ZF)

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.
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How	  to	  train	  Fast	  R-‐CNN	  end-‐to-‐end?

• Define	  one	  network	  with	  two	  loss	  branches
• Branch	  1:	  softmax classifier

+
• Branch	  2:	  linear	  bounding-‐box	   regressors
• Overall	  loss	  is	  the	  sum	  of	  the	  two	  loss	  branches

• Fine-‐tune	  the	  network	  jointly	  with	  SGD
• Optimizes	  features	  for	  both	  tasks

• Back-‐propagate	  errors	  all	  the	  way	  back	  to	  the	  conv layers

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Forward	  /	  backward Log	  loss	  +	  smooth	  L1	  loss

ConvNet
(applied	   to	  entire	  

image)

Linear	  +
softmax

FCs

Linear

Trainable

Multi-‐task	  loss

External	  proposal	  
algorithm
e.g.	  selective	  search

Bounding	  box
regressors

Proposal
classifier

RoI pooling



Benefits	  of	  end-‐to-‐end	  training

• Simpler	  implementation
• Faster	  training
• No	  reading/writing	   features	  from/to	  disk
• No	  training	  post	  hoc	  SVMs	  and	  bounding-‐box	  regressors

• Optimizing	  a	  single	  multi-‐task	  objective may	  work	  better	  than	  
optimizing	  objectives	  independently
• Verified	  empirically	  (see	  later	  slides)

End-‐to-‐end	  training	  requires	  overcoming	  two	  technical	  obstacles

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Obstacle	  #1:	  Differentiable	  RoI pooling

Region	  of	  Interest	  (RoI)	  pooling	  must	  be	  (sub-‐)differentiable	  to	  train	  
conv layers

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Review:	  Spatial	  Pyramid	  Pooling	  (SPP)	  layer

SPP	  
layer

Conv feature	  map

Region	  of	  Interest	  (RoI)

concatenate,
fc	  layers	  …

Kaiming	  He,	  Xiangyu	  Zhang,	  Shaoqing	  Ren,	  &	  Jian	  Sun.	  “Spatial	  Pyramid	  Pooling	  in	  Deep	  Convolutional	   Networks	  for	  Visual	  Recognition”.	  ECCV	  2014.

From	  Kaiming’s slides

Figure	  from
Kaiming He



Review:	  Region	  of	  Interest	  (RoI)	  pooling	  layer

RoI
pooling	  
layer

Conv feature	  map

fc	  layers	  …

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.

Just	  a	  special	  case	  of	  the	  SPP	  layer	  with	  one	  pyramid	  level

Region	  of	  Interest	  (RoI)
Figure	  adapted
from	  Kaiming He



Obstacle	  #1:	  Differentiable	  RoI pooling

RoI pooling	  /	  SPP	  is	  just	  like	  max	  pooling,	  except	  that	  pooling	  regions	  
overlap

𝑟#

𝑟$
Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Obstacle	  #1:	  Differentiable	  RoI pooling

RoI pooling	  /	  SPP	  is	  just	  like	  max	  pooling,	  except	  that	  pooling	  regions	  
overlap

𝑟#

𝑟$
Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.
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Obstacle	  #1:	  Differentiable	  RoI pooling

RoI pooling	  /	  SPP	  is	  just	  like	  max	  pooling,	  except	  that	  pooling	  regions	  
overlap

𝑟#

𝑟$
Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.
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Obstacle	  #1:	  Differentiable	  RoI pooling

RoI pooling	  /	  SPP	  is	  just	  like	  max	  pooling,	  except	  that	  pooling	  regions	  
overlap

RoI pooling

RoI pooling

𝑖∗ 0,2 = 23

𝑖∗ 1,0 = 23
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𝑟$

𝑥-.

𝑦#,-

𝑦$,#

𝑟#

𝑟$

max	  pooling	  “switch”	  (i.e. argmax back-‐pointer)
Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Obstacle	  #1:	  Differentiable	  RoI pooling

RoI pooling	  /	  SPP	  is	  just	  like	  max	  pooling,	  except	  that	  pooling	  regions	  
overlap
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Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Slow	  R-‐CNN	  and	  SPP-‐net	  use	  region-‐wise	  sampling	  to	  make	  mini-‐batches

• Sample	  128	  example	  RoIs uniformly	  at	  random
• Examples	  will	  come	  from	  different	  images	  with	  high	  probability

...	  

SGD	  mini-‐batch

...	  ...	   ...	  



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Note	  the	  receptive	  field	  for	  one	  example	  RoI is	  often	  very	  large

• Worst	  case:	  the	  receptive	  field	  is	  the	  entire	  image

Example	  RoI

RoI’s receptive	  field

Example	  RoI



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Worst	  case	  cost	  per	  mini-‐batch	  (crude	  model	  of	  computational	  complexity)

• 128*600*1000	  /	  (128*224	  *224)	  =	  12x	  > computation	  than	  slow	  R-‐CNN

Example	  RoI

RoI’s receptive	  field

Example	  RoI

input	  size	  for	  Fast	  R-‐CNN input	  size	  for	  slow	  R-‐CNN



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Solution:	  use	  hierarchical	  sampling	  to	  build	  mini-‐batches

...	  

Sample	  images

...	  ...	   ...	  

SGD	  mini-‐batch

• Sample	  a	  small	  number	  
of	  images (2)

• Sample	  many	  examples	  
from	  each	  image (64)	  

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Use	  the	  test-‐time	  trick	  from	  SPP-‐net	  during	  training

• Share	  computation	  between	  overlapping	  examples	  from	  the	  same	  image

Example	  RoI 2

Union	  of	  RoIs’ receptive	  fields
(shared	  computation)

Example	  RoI 1

Example	  RoI 3

Example	  RoI 2

Example	  RoI 1

Example	  RoI 3



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Cost	  per	  mini-‐batch	  compared	  to	  slow	  R-‐CNN	  (same	  crude	  cost	  model)

• 2*600*1000	  /	  (128*224*224)	  =	  0.19x	  <	  computation	  than	  slow	  R-‐CNN

Example	  RoI 2

Union	  of	  RoIs’ receptive	  fields
(shared	  computaiton)

Example	  RoI 1

Example	  RoI 3

Example	  RoI 2

Example	  RoI 1

Example	  RoI 3

input	  size	  for	  Fast	  R-‐CNN input	  size	  for	  slow	  R-‐CNN



Obstacle	  #2:	  Making	  SGD	  steps	  efficient

Are	  the	  examples	  from	  just	  2	  images	  diverse	  enough?

• Concern:	  examples	  from	  the	  sample	  image	  may	  be	  too	  correlated

Example	  RoI 2

Union	  of	  RoIs’ receptive	  fields
(shared	  computation)

Example	  RoI 1

Example	  RoI 3

Example	  RoI 2

Example	  RoI 1

Example	  RoI 3



Fast	  R-‐CNN	  outcome

Better	  training	  time	  and	  testing	  time	  with	  better	  accuracy	  than	  slow	  R-‐
CNN	  or	  SPP-‐net

• Training	  time:	  84	  hours	  /	  25.5	  hours	  /	  8.75	  hours	  (Fast	  R-‐CNN)
• VOC07	  test	  mAP:	  66.0%	  /	  63.1%	  /	  68.1%
• Testing	  time	  per	  image:	  47s	  /	  2.3s	  /	  0.32s
• Plus	  0.2	  to	  >	  2s	  per	  image	  depending	  on	  proposal	  method
• With	  selective	  search: 49s	  /	  4.3s	  /	  2.32s

Updated	  numbers	  from	  the	  ICCV	  paper	  based	  on	  implementation	  improvements

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Experimental	  findings

• End-‐to-‐end	  training	  is	  important	  for	  very	  deep	  networks
• Softmax is	  a	  fine	  replacement	  for	  SVMs
• Multi-‐task	  training	  is	  beneficial
• Single-‐scale	  testing	  is	  a	  good	  tradeoff	  (noted	  by	  Kaiming)
• Fast	  training	  and	  testing	  enables	  new	  experiments
• Comparing	  proposals



The	  benefits	  of	  end-‐to-‐end	  training

• Model	  L =	  VGG16
• Training	  layers	  >=	  conv3_1	  yields	  1.4x	  faster	  SGD	  steps,	  small	  mAP loss

4.4. Training and testing time

Fast training and testing times are our second main re-
sult. Table 4 compares training time (hours), testing rate
(seconds per image), and mAP on VOC07 between Fast R-
CNN, R-CNN, and SPPnet. For VGG16, Fast R-CNN pro-
cesses images 146⇥ faster than R-CNN without truncated
SVD and 213⇥ faster with it. Training time is reduced by
9⇥, from 84 hours to 9.5. Compared to SPPnet, Fast R-
CNN trains VGG16 2.7⇥ faster (in 9.5 vs. 25.5 hours) and
tests 7⇥ faster without truncated SVD or 10⇥ faster with it.
Fast R-CNN also eliminates hundreds of gigabytes of disk
storage, because it does not cache features.

Fast R-CNN R-CNN SPPnet
S M L S M L †L

train time (h) 1.2 2.0 9.5 22 28 84 25
train speedup 18.3⇥ 14.0⇥ 8.8⇥ 1⇥ 1⇥ 1⇥ 3.4⇥
test rate (s/im) 0.10 0.15 0.32 9.8 12.1 47.0 2.3
B with SVD 0.06 0.08 0.22 - - - -

test speedup 98⇥ 80⇥ 146⇥ 1⇥ 1⇥ 1⇥ 20⇥
B with SVD 169⇥ 150⇥ 213⇥ - - - -

VOC07 mAP 57.1 59.2 66.9 58.5 60.2 66.0 63.1
B with SVD 56.5 58.7 66.6 - - - -

Table 4. Runtime comparison between the same models in Fast R-
CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.
SPPnet uses the five scales specified in [11]. †Timing provided by
the authors of [11]. Times were measured on an Nvidia K40 GPU.

Truncated SVD. Truncated SVD can reduce detection
time by more than 30% with only a small (0.3 percent-
age point) drop in mAP and without needing to perform
additional fine-tuning after model compression. Fig. 2 il-
lustrates how using the top 1024 singular values from the
25088⇥ 4096 matrix in VGG16’s fc6 layer and the top 256

singular values from the 4096⇥4096 fc7 layer reduces run-
time with little loss in mAP. Further speed-ups are possi-
ble with smaller drops in mAP if one fine-tunes again after
compression.

Figure 2. Timing for VGG16 before and after truncated SVD. Be-
fore SVD, fully connected layers fc6 and fc7 take 45% of the time.

4.5. Which layers to fine-tune?

For the less deep networks considered in the SPPnet pa-
per [11], fine-tuning only the fully connected layers ap-
peared to be sufficient for good accuracy. We hypothesized
that this result would not hold for very deep networks. To
validate that fine-tuning the conv layers is important for
VGG16, we use Fast R-CNN to fine-tune, but freeze the
thirteen conv layers so that only the fully connected layers
learn. This ablation emulates single-scale SPPnet training
and decreases mAP from 66.9% to 61.4% (Table 5). This
experiment verifies our hypothesis: training through the RoI
pooling layer is important for very deep nets.

layers that are fine-tuned in model L SPPnet L
� fc6 � conv3 1 � conv2 1 � fc6

VOC07 mAP 61.4 66.9 67.2 63.1
test rate (s/im) 0.32 0.32 0.32 2.3

Table 5. Effect of restricting which layers are fine-tuned for
VGG16. Fine-tuning � fc6 emulates the SPPnet training algo-
rithm [11], but using a single scale. SPPnet L results were ob-
tained using five scales, at a significant (7⇥) speed cost.

Does this mean that all conv layers should be fine-tuned?
In short, no. In the smaller networks (S and M) we find
that conv1 is generic and task independent (a well-known
fact [14]). Allowing conv1 to learn, or not, has no mean-
ingful effect on mAP. For VGG16, we found it only nec-
essary to update layers from conv3 1 and up (9 of the 13
conv layers). This observation is pragmatic: (1) updating
from conv2 1 slows training by 1.3⇥ (12.5 vs. 9.5 hours)
compared to learning from conv3 1; and (2) updating from
conv1 1 over-runs GPU memory. The difference in mAP
when learning from conv2 1 up was only +0.3 points (Ta-
ble 5, last column). All Fast R-CNN results in this paper
using VGG16 fine-tune layers conv3 1 and up; all experi-
ments with models S and M fine-tune layers conv2 and up.

5. Design evaluation
We conducted experiments to understand how Fast R-

CNN compares to R-CNN and SPPnet, as well as to eval-
uate design decisions. Following best practices, we per-
formed these experiments on the PASCAL VOC07 dataset.

5.1. Does multi-task training help?

Multi-task training is convenient because it avoids man-
aging a pipeline of sequentially-trained tasks. But it also has
the potential to improve results because the tasks influence
each other through a shared representation (the ConvNet)
[2]. Does multi-task training improve object detection ac-
curacy in Fast R-CNN?

To test this question, we train baseline networks that
use only the classification loss, Lcls, in Eq. 1 (i.e., setting

Using	  5	  scalesUsing	  1 scale

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Softmax is	  a	  good	  SVM	  replacement

• VOC07	  test	  mAP
• L =	  VGG16,	  M =	  VGG_CNN_M_1024,	  S =	  Caffe/AlexNet
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post-hoc, as was done in R-CNN and SPPnet. To under-
stand the impact of this choice, we implemented post-hoc
SVM training with hard negative mining in Fast R-CNN.
We use the same training algorithm and hyper-parameters
as in R-CNN.

method classifier S M L
R-CNN [9, 10] SVM 58.5 60.2 66.0
FRCN [ours] SVM 56.3 58.7 66.8
FRCN [ours] softmax 57.1 59.2 66.9

Table 8. Fast R-CNN with softmax vs. SVM (VOC07 mAP).

Table 8 shows softmax slightly outperforming SVM for
all three networks, by +0.1 to +0.8 mAP points. This ef-
fect is small, but it demonstrates that “one-shot” fine-tuning
is sufficient compared to previous multi-stage training ap-
proaches. We note that softmax, unlike one-vs-rest SVMs,
introduces competition between classes when scoring a RoI.

5.5. Are more proposals always better?

There are (broadly) two types of object detectors: those
that use a sparse set of object proposals (e.g., selective
search [21]) and those that use a dense set (e.g., DPM [8]).
Classifying sparse proposals is a type of cascade [22] in
which the proposal mechanism first rejects a vast number of
candidates leaving the classifier with a small set to evaluate.
This cascade improves detection accuracy when applied to
DPM detections [21]. We find evidence that the proposal-
classifier cascade also improves Fast R-CNN accuracy.

Using selective search’s quality mode, we sweep from 1k
to 10k proposals per image, each time re-training and re-
testing model M. If proposals serve a purely computational
role, increasing the number of proposals per image should
not harm mAP.

Figure 3. VOC07 test mAP and AR for various proposal schemes.

We find that mAP rises and then falls slightly as the pro-
posal count increases (Fig. 3, solid blue line). This exper-
iment shows that swamping the deep classifier with more
proposals does not help, and even slightly hurts, accuracy.

This result is difficult to predict without actually running
the experiment. The state-of-the-art for measuring object
proposal quality is Average Recall (AR) [12]. AR correlates
well with mAP for several proposal methods using R-CNN,
when using a fixed number of proposals per image. Fig. 3
shows that AR (solid red line) does not correlate well with
mAP as the number of proposals per image is varied. AR
must be used with care; higher AR due to more proposals
does not imply that mAP will increase. Fortunately, training
and testing with model M takes less than 2.5 hours. Fast
R-CNN thus enables efficient, direct evaluation of object
proposal mAP, which is preferable to proxy metrics.

We also investigate Fast R-CNN when using densely
generated boxes (over scale, position, and aspect ratio), at
a rate of about 45k boxes / image. This dense set is rich
enough that when each selective search box is replaced by
its closest (in IoU) dense box, mAP drops only 1 point (to
57.7%, Fig. 3, blue triangle).

The statistics of the dense boxes differ from those of
selective search boxes. Starting with 2k selective search
boxes, we test mAP when adding a random sample of
1000⇥ {2, 4, 6, 8, 10, 32, 45} dense boxes. For each exper-
iment we re-train and re-test model M. When these dense
boxes are added, mAP falls more strongly than when adding
more selective search boxes, eventually reaching 53.0%.

We also train and test Fast R-CNN using only dense
boxes (45k / image). This setting yields a mAP of 52.9%
(blue diamond). Finally, we check if SVMs with hard nega-
tive mining are needed to cope with the dense box distribu-
tion. SVMs do even worse: 49.3% (blue circle).

5.6. Preliminary MS COCO results

We applied Fast R-CNN (with VGG16) to the MS
COCO dataset [18] to establish a preliminary baseline. We
trained on the 80k image training set for 240k iterations and
evaluated on the “test-dev” set using the evaluation server.
The PASCAL-style mAP is 35.9%; the new COCO-style
AP, which also averages over IoU thresholds, is 19.7%.

6. Conclusion
This paper proposes Fast R-CNN, a clean and fast update

to R-CNN and SPPnet. In addition to reporting state-of-the-
art detection results, we present detailed experiments that
we hope provide new insights. Of particular note, sparse
object proposals appear to improve detector quality. This
issue was too costly (in time) to probe in the past, but be-
comes practical with Fast R-CNN. Of course, there may ex-
ist yet undiscovered techniques that allow dense boxes to
perform as well as sparse proposals. Such methods, if de-
veloped, may help further accelerate object detection.

Acknowledgements. I thank Kaiming He, Larry Zitnick,
and Piotr Dollár for helpful discussions and encouragement.
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S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

� = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, � = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with L

loc

while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 ⇥ 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ⇡ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s 2 {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1⇥ each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs

S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

� = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, � = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with L

loc

while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 ⇥ 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ⇡ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s 2 {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1⇥ each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs
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S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

� = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, � = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with L

loc

while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 ⇥ 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ⇡ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s 2 {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1⇥ each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs



Direct	  region	  proposal	  evaluation

• VGG_CNN_M_1024
• Training	  takes	  <	  2	  hours
• Fast	  training	  makes	  these
experiments	  possible
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Part	  2:	  Faster	  R-‐CNN	  training

Two	  algorithms	  for	  training	  Faster	  R-‐CNN

• Alternating	  optimization
• Presented	  in	  our	  NIPS	  2015	  paper

• Approximate	  joint	  training
• Unpublished	  work,	  available	  in	  the	  py-‐faster-‐rcnn Python	  implementation
https://github.com/rbgirshick/py-‐faster-‐rcnn
• Discussion	  of	  exact	  joint	  training

Shaoqing Ren,	  Kaiming He,	  Ross	  Girshick,	   Jian	  Sun.	  “Faster	  R-‐CNN:	  Towards	  Real-‐Time	  Object	  Detection	  with	  Region	  Proposal	  Networks”.	  NIPS	  2015.



What	  is	  Faster	  R-‐CNN?

• Presented	  in	  Kaiming’s section

• Review:
Faster	  R-‐CNN	  = Fast	  R-‐CNN	  +	  
Region	  Proposal	  Networks
• Does	  not depend	  on	  an	  external	  
region	  proposal	  algorithm
• Does	  object	  detection	  in	  a	  
single	  forward	  pass
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classifier
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Training goal: Share features
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CNN	  A	  ==	  CNN	  B



Training	  method	  #1:	  Alternating	  optimization

#  Let  M0  be  an  ImageNet pre-‐trained  network

1. train_rpn(M0)  →  M1                            #  Train  an  RPN  initialized  from  M0,  get  M1

2. generate_proposals(M1)  →  P1          #  Generate  training  proposals  P1  using  RPN  M1

3. train_fast_rcnn(M0,  P1)  →  M2        #  Train  Fast  R-‐CNN  M2  on  P1  initialized  from  M0

4. train_rpn_frozen_conv(M2)  →  M3    #  Train  RPN  M3  from  M2  without  changing  conv layers

5. generate_proposals(M3)  →  P2

6. train_fast_rcnn_frozen_conv(M3,  P2)  →  M4    #  Conv layers  are  shared  with  RPN  M3

7. return  add_rpn_layers(M4,  M3.RPN)                  #  Add  M3’s  RPN  layers  to  Fast  R-‐CNN  M4



Training	  method	  #1:	  Alternating	  optimization

Motivation	  behind	  alternating	  optimization

• Not	  based	  on	  any	  fundamental	  principles
• Primarily	  driven	  by	  implementation	  issues	  and	  the	  NIPS	  deadline	  ☺️
• However,	  it	  was	  unclear	  if	  joint	  training	  would	  “just	  work”
• Fast	  R-‐CNN	  was	  always	  trained	  on	  a	  fixed	  set	  of	  proposals
• In	  joint	  training,	  the	  proposal	  distribution	   is	  constantly	  changing



Training	  method	  #2:	  Approx.	  joint	  optimization

Write	  the	  network	  down	  as	  a	  single	  model	  and	  just	  train	  it

• Train	  with	  SGD	  as	  usual
• Even	  though	  the	  proposal	  distribution	  changes	  this	  just	  works
• Implementation	  challenges	  eased	  by	  writing	  various	  modules	  in	  Python



One	  net,	  four	  losses

image

CNN

feature	  map

Region	  Proposal	  Network

proposals

RoI pooling

Classification	  	  
loss

Bounding-‐box	  
regression	  loss

…

Classification	  	  
loss

Bounding-‐box	  
regression	  loss



Training	  method	  #2:	  Approx.	  joint	  optimization

Why	  is	  this	  approach	  approximate?	  	  	  	  	  	  	  	  	  	  	  	  roi_pooling(conv_feat_map,  RoI)

RoI
pooling	  
layer

Conv feature	  map

fc	  layers	  …

Region	  of	  Interest	  (RoI)

Function	  input	  1

Function	  input	  2

In	  Fast	  R-‐CNN function	  input	  2	  (RoI)	  is	  a	  constant,
everything	  is	  OK

𝜕𝐿
𝜕RoI 𝑖 = 0	  

for	  𝑖 = 𝑥$, 𝑦$, 𝑥-, 𝑦-



Training	  method	  #2:	  Approx.	  joint	  optimization

Why	  is	  this	  approach	  approximate?	  	  	  	  	  	  	  	  	  	  	  	  roi_pooling(conv_feat_map,  RoI)

RoI
pooling	  
layer

Conv feature	  map

fc	  layers	  …

Region	  of	  Interest	  (RoI)

Function	  input	  1

Function	  input	  2

In	  Faster	  R-‐CNN function	  input	  2	  (RoI)
depends	  on	  the	  input	  image

𝜕𝐿
𝜕RoI 𝑖 ≠ 0	  in	  general

for	  𝑖 = 𝑥$, 𝑦$, 𝑥-,𝑦-



Training	  method	  #2:	  Approx.	  joint	  optimization

Why	  is	  this	  approach	  approximate?	  	  	  	  	  	  	  	  	  	  	  	  roi_pooling(conv_feat_map,  RoI)

RoI
pooling	  
layer

Conv feature	  map

fc	  layers	  …

Region	  of	  Interest	  (RoI)

Function	  input	  1

Function	  input	  2

However,	  	  	  	  	  	  	  	  	  	  	  	  is	  actually	  undefined,
roi_pooling() is	  not	  differentiable	  w.r.t.	  RoI

𝜕𝐿
𝜕RoI 𝑖 	  does	  not	  even	  exist

for	  𝑖 = 𝑥$, 𝑦$, 𝑥-,𝑦-

𝜕𝐿
𝜕RoI 𝑖



Training	  method	  #2:	  Approx.	  joint	  optimization

What	  happens	  in	  practice?

• We	  ignore the	  undefined	  derivatives	  of	  loss	  w.r.t.	  RoI coordinates
• Run	  SGD	  with	  this	  “surrogate”	  gradient

• This	  just	  works
• Why?
• RPN	  network	  receives	  direct	  supervision
• Error	  propagation	  from	  RoI pooling	  might	  help,	  but	  is	  not	  strictly	  needed



Faster	  R-‐CNN	  exact	  joint	  training

• Modify	  RoI pooling	  so	  that	  it’s	  a	  differentiable	  function	  of	  both	  the	  
input	  conv feature	  map	  and	  input	  RoI coordinates
• One	  option	  (untested,	  theoretical)
• Use	  a	  differentiable	   sampler	  instead	  of	  max	  pooling
• If	  RoI pooling	  uses	  bilinear	  interpolation	  instead	  of	  max	  pooling,	  then	  we	  can	  
compute	  a	  derivatives	  w.r.t.	  the	  RoI coordinates
• See:	  Jaderberg et	  al. “Spatial	  Transformer	  Networks”	  NIPS	  2015.



Experimental	  findings
(py-‐faster-‐rcnn implementation)

• Approximate	  joint	  training	  gives	  similar	  mAP to	  alternating	  
optimization
• VOC07	  test	  mAP
• Alt.	  opt.:	  69.9%
• Approx.	  joint:	  70.0%

• Approximate	  joint	  training	  is	  faster	  and	  simpler
• Alt.	  opt.:	  26.2	  hours
• Approx.	  joint:	  17.2	  hours



Code	  pointers

• Fast	  R-‐CNN	  (Python):	  https://github.com/rbgirshick/fast-‐rcnn
• Faster	  R-‐CNN	  (matlab):	  https://github.com/ShaoqingRen/faster_rcnn
• Faster	  R-‐CNN	  (Python):	  https://github.com/rbgirshick/py-‐faster-‐rcnn
• Now	  includes	  code	  for	  approximate	  joint	  training

Reproducible	  research	  – get	  the	  code!



Extra	  slides	  follow



Fast	  R-‐CNN	  unified	  network
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B full	  images	  input:	  B x	  3	  x	  H x	  W
(e.g.,	  B =	  2, H =	  600, W =	  1000)

Sampled	  class	  labels:	  128	  x	  21

Sampled	  box regression
targets:	  128	  x	  84

Sampled	  RoIs: 128	  x	  5

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.



Fast	  R-‐CNN	  unified	  network
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Sampled	  class	  labels:	  128	  x	  21

Sampled	  RoIs: 128	  x	  5

Classification	  loss
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(“Smooth	  L1”	  /	  Huber)

+

Ross	  Girshick.	  “Fast	  R-‐CNN”.	  ICCV	  2015.


