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Abstract

In this paper, we present a novel registration framework,
HumanReg, that learns a non-rigid transformation between
two human point clouds end-to-end. We introduce body
prior into the registration process to efficiently handle this
type of point cloud. Unlike most exsisting supervised reg-
istration techniques that require expensive point-wise flow
annotations, HumanReg can be trained in a self-supervised
manner benefiting from a set of novel loss functions. To
make our model better converge on real-world data, we also
propose a pretraining strategy, and a synthetic dataset (Hu-
manSyn4D) consists of dynamic, sparse human point clouds
and their auto-generated ground truth annotations. Our ex-
periments shows that HumanReg achieves state-of-the-art
performance on CAPE-512 dataset and gains a qualita-
tive result on another more challenging real-world dataset.
Furthermore, our ablation studies demonstrate the effec-
tiveness of our synthetic dataset and novel loss functions.
Our code and synthetic dataset is available at https :
//github.com/chenyifanthu/HumanReg.

1. Introduction

Point cloud is a crucial data format in the fields of robotics
and autonomous driving, where robots need to capture and
analyze data from the environment dynamically. In indoor
scenes, depth cameras [20], dense IR cameras [16] or a set
of multi-view RGB cameras [35] are commonly used to
record dynamic 3D data of the scene or objects in it. As to
the outdoors, considering the need of large covering, exist-
ing 3D imaging systems [10, 12, 13, 17,22, 23,55, 59] often
use LiDAR to achieve real-time scanning of the surround-
ings. This inevitably brings two problems. First, in each
individual frame, the point cloud of each object is sparse
due to the large distance from scanning device. In addi-
tion, such point clouds often suffer from occlusion, ambi-
guity, and noise. Both issues affect downstream tasks per-
formance such as 3D reconstruction [33, 40], human pose
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Figure 1. HumanReg overview. The proposed HumanReg frame-
work takes a pair of human point clouds as input, simultaneously
estimates the body-part segmentation for each point cloud and the
scene flow between them. HumanReg can be pretrained on our
synthetic dataset using ground-truth annotations, then adapted to
unlabeled real-world data with our proposed self-supervised loss.

estimation [6, 37, 73], and object recognition [46].

A simple idea to densify dynamic object point clouds is
to align the scanned frames at different times. For rigid ob-
jects like cars in the scene, the problem can be formulated
as estimating the rigid transformation matrix between any
two frames. Many recent works have achieved good results
on this problem using traditional [7, 57, 66, 72] or learning-
based methods [4, 15, 54, 65, 69]. As for deformable ob-
jects like human bodies, a feasible method is to estimate the
scene flow [61], which describes the 3D motion for each
point. Most of the existing learning-based methods aims at
minimizing the flow loss under the ground truth supervision
of scene flow [5, 25, 27, 56, 60] or point correspondences
[19, 29, 38, 45]. However, obtaining scene flow annota-
tions for real-world data is quite expensive. Although some
works [34, 42] try to fit a template mesh to human point
cloud and calculate the scene flow, such methods will intro-
duce non-negligible error on sparse cases [37].


https://github.com/chenyifanthu/HumanReg
https://github.com/chenyifanthu/HumanReg

To resolve such problems, we propose HumanReg (Fig.
1), a non-rigid registration framework designed to register
human point clouds captured from the same person at dif-
ferent times. Different from previous works that directly es-
timate the correspondence between two point clouds, we in-
troduce a body-part segmentation head into our framework.
This provides latent pose information for point-wise feature
learning and benefits the registration process.

Registering rigid objects is usually easier than non-rigid
ones because we only need to estimate a 6DoF transforma-
tion matrix. The transformation of human body is a spe-
cial case, which can be regard as a combination of several
rigid parts. This is a valid assumption because each skele-
ton of human body is not deformable. Therefore, we can
use the body-part segmentation results to guide the registra-
tion process. We formulate such rigid constraints as a novel
self-supervised loss function, which can be used to train our
model without the need of expensive ground-truth labels.

To give the model a better initialization and convergence
on real-world data, we propose a multi-person and multi-
view synthetic dataset, HumanSyn4D, to simulate human
point clouds scanned by mechanical LiDARs in a large out-
door scene. Since the ground-truth correspondence and
pose of each person can be generated automatically from
the known template meshes, we use this dataset to pretrain
both heads of our framework. Then we adapt the model
to real-world data using the proposed self-supervised loss.
Our experiments show that the combination of our frame-
work, synthetic dataset, pretraining and finetuning strat-
egy can achieve remarkable results on diffent types of real-
world data. In summary, our contributions are:

* We propose an end-to-end human point cloud registra-
tion framework, HumanReg, that predicts the scene flow
between raw human point clouds. We introduce body-
part segmentation head into our framework to enhance
extracted features.

e We formulate the non-rigid human registration problem
as a part-rigid registration problem and design a novel
self-supervised loss to train our model without the need
of expensive ground-truth labels.

* We propose a multi-person synthetic dataset, Human-
Syn4D, to make our model better converge on real-world
data.

2. Related Work
2.1. Non-rigid Point Cloud Registration

Correspondence-based Method. Finding accurate point
correspondences between point clouds is a useful solution
in both rigid and non-rigid registration task. At scene level,
DynamicFusion [52] finds correspondences by matching
the depth map of adjacent frame based on a coarse warp-
ing field. VolumeDeform [32] computes SIFT [43] matches

of input frames to improve tracking quality. Schmidt et
al. [58] also use an image-based method to extract features
and reconstruct scenes. At object level, traditional methods
[1, 51, 67] aim at minimizing certain type of optimization
functions. Inspired by some rigid registration frameworks
[3, 18, 30] using learned local or global descriptors to ex-
tract point features, 3DCODED [24] learns a global vector
to transform the template into input surface. Lepard [38]
enhances extracted point features with a self-attention and
cross-attention module.

Scene Flow Estimation. Scene flow [61] directly describes
the 3D transition between two point clouds. A few meth-
ods [5, 31] split the scene point cloud into a static back-
ground and rigid objects with different motions to obtain
scene flow. FlowNet3D [41] applies a flow embedding layer
and a set upconv layer to estimate flow end-to-end. FLOT
[56] and PointPWC-Net [63] use network to estimate the
transportation distance and cost volume between two point
clouds. PointPWC-Net also proposes a self-supervised loss
to train the model. Some recent techniques [19, 28, 48] han-
dle this problem by aligning shapes via functional map [53].

2.2. Non-rigid 3D Datasets

Unlike rigid dataset [11, 64, 70] whose point clouds are di-
rectly sampled from the surface of static object or scene,
non-rigid dataset contains deforming objects and their se-
quences of motion.

Real-world Dataset. Most of the real-world collected
datasets focus on reconstructing the surface of human body
[2, 8, 26, 32, 62, 68, 71]. Their original data is mainly col-
lected from RGB-D cameras, and they are relatively small,
and the collection device has to be placed close enough
to the human body to get a dense scan. In auto-driving
field, KITTI [21, 22] collects a wide range of outdoor 3D
scans with LiDARs fixed to a moving car. Based on KITTI,
Menze et al. [49, 50] estimate 2D optical flow and project
it to 3D point cloud to get sparse scene flow.

Synthetic Dataset. Although LiDAR scans can cover
a large area, labeling point-wise scene flow annotations
is always a challenging and error-prone task. Synthetic
method has been used to solve this dilemma in recent work
[9, 38, 39, 47]. Among them, FlyingThing3D [47] uses
Blender to generate random 3D trajectories for everyday
objects. DeformingThings4D [39] introduces a large syn-
thetic dataset, covering a wide variety of deforming things
from humanoids to animal species. As for human body,
SMPL [42] uses a skinned vertex-based model to generate
naked body mesh of different body shapes and poses. Ma
et al. [44] proposes a framework to represent clothed hu-
man body, and uses a high-resolution body scanner to ob-
tain dense scan sequences. However, the form of their point
clouds are quite different from LiDAR data collected in a
real-world large scene.



3. Method
3.1. Problem Definition

Given a pair of human point clouds P € R"*3 and Q €
R™*3, where n, m are the number of points, our goal is to
find a warp function W : R"*3 — R"™*3 that aligns P to
Q. In this work, we solve this problem by estimating per-
point 3D flow F € R”™*3 and the warp functions can be
defined as W(P) := P + F.

Given a human point cloud P and its corresponding
ground truth pose, we can assign a label I; for each point
p: € P, represented the body part it belongs to

l; = arg min d(p;, Bi), (1
kel,....K

where By, represents the k-th segment skeleton of the hu-
man body (from the given 3D joint locations and their topo-
logical connection method), and d(-,-) calculate the dis-
tance from a point to line segment in R? space. In this work,
we use 15 joint points to represent body skeleton, and the
detailed definition is provided in Suppl.

3.2. Architecture of HumanReg

Fig. 2 shows the overview of our proposed method.
Backbone. We utilize the ResUNet backbone [15] to ex-
tract point descriptors of input point clouds. The backbone
is implemented with MinkovskiEngine [14], which defines
standard neural network layers like convolutional and de-
convolutional layer on 3D data, and uses sparse tensor to
speedup inference and minimize memory footprint. In hu-
man registration task, we fix the size of each sparse voxel at
0.01m.

Segmentation Head. The extracted descriptors, denoted
as D;, are passed through a body-part segmentation head
utilized by an MLP and a softmax layer, where the predicted
label for each point can be defined as

I; = Softmax(MLP(D;)). )

In segmentation head, we introduce human body prior
to the custom registration model. This has two advantages:
1) The body-part information can enhance the features ex-
tracted by the backbone and reduce mismatch in the corre-
spondence head. 2) Segmentation and flow estimation will
be combined to compute our self-supervised loss (Sec. 3.4).
Correspondence Head. The extracted descriptors D; are
simultaneously passed through another head to estimate
flow. The descriptors are first updated by an MLP layer:
D, < MLP(D;). We use soft correspondence to describe
the relationship between the inputs. Given the input up-
dated descriptor DP, DQ, the soft correspondence matrix
C € R™*™ can be computed as

1
Cij =~ ||PF -

3)

C;. «+ Softmax(C;.). 4)

Here, a trainable parameter ¢ is used to control the dis-
tance threshold in training process. We set its initial value
to 0.1 and minimum value to 0.02. The softmax function is
applied to each row in C to make C row-stochastic. We can
obtain flow estimation by

F=PY-P=CQ-P, (5)

where P is the warped point cloud of P.

3.3. Supervised Pretraining on Synthetic Data

It’s easy to aquire ground-truth labels and flow of the syn-
thetic dataset (Sec. 4) where the template mesh of each
avatar is known. Therefore, we use supervised learning to
pretrain our model on synthetic data.

In the segmentation head, the human pose is used to gen-
erate ground-truth labels according to Eq. 1. Then, we use
CrossEntropy criterion CE(+, -) to calculate the supervised
loss

Z CE(I;, 1%). (6)

In the correspondence head, we directly measure the
flow loss as the Frobenius norm between ground-truth flow
annotation F& and the estimated flow F':

1
Loow = — [[Fi = FE2 )

Finally, we use weighted parameters o, o to balance
the total pretrain loss

Ept = alﬁseg + a2 Lgow, )]

3.4. Self-supervised Finetuning on Real-world Data

It is unrealistic to manually label scene flow directly on real-
world collected point clouds. In this section, we propose
a self-supervised objective function designed specifically
for HumanReg. It consists of four parts: Chamfer Loss,
Smoothness Loss, Clustering Loss, and Part-Rigid Loss.
Chamfer Loss. Chamfer loss encourages source point
cloud warped close to the target.

1
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Smoothness Loss. Insplred by [63], smoothness loss en-
forces local spatial smoothness, which means close points
in space should have similar flows.

smooth Z |NP ) Z ||Fz _

P7€P P;ENP(Pi)

F,|2, (10)
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Figure 2. Training pipeline of our proposed method. Given the input human point clouds P and Q, the 3D ResUNet backbone extracts
per-point features, which are then processed by a segmentation head and a correspondence head (Sec. 3.2). The two heads simultaneously
output body-part segmentation of each point cloud and the soft correspondence between them. Our model is firstly pretrained on synthetic
dataset with ground-truth labels and flow (Sec. 3.3). Then, a set of self-supervised loss functions (Sec. 3.4) are applied based on the

estimation of both heads when finetuning on real-world data.
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Figure 3. Rigid fitting for body part. We assume that the warp
field of each body part is close to a rigid transformation. This
assumption is used to design our part-rigid loss and refine flow
during test time.

where Np(p;) is the point set of k nearest neighbors of p;.
Clustering Loss. Similar to smoothness loss, clustering
loss assumes that points belonging to the same body-part
should cluster together in space. It can be written as

1 1 A
Letuster = g p;) m Z CE (lz7 ZJ) . (1D

P; ENp(Pi)

Part-Rigid Loss. Solving the non-rigid registration prob-
lem is always more difficult than the rigid one. The rigid
transformation is a 6-DoF matrix, while non-rigid warp
field is composed of per-point 3D flow. However, the hu-
man body is somewhat between rigid and non-rigid. In
SMPL model [42], a local part has different mesh defor-
mations as the pose changes. But for point clouds scanned
in a large scene, the slight inconsistency is ignorable com-
pared to the sensor noise. In this way, we assume that the

warp field of each body part can be approximated by a rigid
transformation.

In our model, we design a segmentation head. It not only
helps to enhance extracted feature during pretraining, but
also divides the original point cloud into several body parts.
Thus, utilizing the output of both head in our model, we for-
mulate the above assumption as a part-rigid loss. As shown
in Fig. 3, for each body part predicted in segmentation head,
we first estimate a rigid transformation for its warp field

Tj = argmin [|[ Ty o Py — (P +Fp)|5 ., (12)
Tk

where Py, F;, € R™*3 represents the point set of the
k-th body part and the estimated flow output by correspon-
dence head. T}, can be decomposed into a rotation matrix
Ry € SE(3) and a translation vector t;, € R3. Our part-
rigid loss describes the fitting error between the rigid trans-
formation and the estimated scene flow of each body part

K
1 2
Liigia = - Z Z IRy —1I)-pi +tp —£5. (13)
k=1p;EPy
The total self-supervised loss is the weighted sum of the
four type of losses

Etotal = Z Btypeﬁtypey (14)

where type € {chamfer, smooth, cluster, rigid}.

During test time, we use the same assumption in Fig. 3 to
refine flow estimation. After computing the rigid transfor-
mation Ry, ty using Eq. 12, the final flow output for each
body part is

F~k =R, -Pp+t,—Py. (15)
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Figure 4. A snapshot of HumanSyn4D. Top Left: Top view of the synthetic scene, A represents simulated LIDAR and green lines are the
boundaries of the field. Bottom Left: Scanned human point clouds in one frame. Top Right: Ground-truth template mesh vertices. Bottom

Right: Ground-truth human pose of each person.

4. HumanSyn4D

Training our network in a supervised manner requires a suf-
ficient amount of human data with pose and flow ground
truth at point level. To provide such data, we propose
HumanSyn4D, a multi-person multi-view synthetic dataset
consisting of sparse point clouds, avatar’s mesh vertices in
any timestamp, and 3D human pose labels. A snapshot of
HumanSyn4D is shown in Fig. 4.

We develop our synthetic system on Unity platform [36]
due to its flexibility and productivity. Specifically, we
download ten different human 3D models from Adobe Mix-
amo' and initially place them randomly in a 30m x 15m
scene. We use action files to drive the deformation of the
human mesh and update each person’s position in the scene.

To collect human point clouds, we place four simulated
LiDARs at the four corners of the scene. The laser beam
is emitted from the center of the LiDAR at a certain an-
gle, falls on a human mesh surface and returns its distance.
This acquisition method effectively simulates occlusion in
the real world. We use non-repetitive sampling of the Livox
Mid-40 LiDAR to emit laser beam, which can be formu-
lated as

r = rg cos(wt + 6p), (16)

where w is the angular velocity of the wedge rotation in
LiDAR, ry is the maximum scanning radius in pixel and
0o is a random initial angle. This equation is defined in
polar coordinates on a virtual imaging plane. We eventually
convert it to Cartesian coordinates and merge the points of
each person.

https://www.mixamo.com

S. Experiments
5.1. Dataset and Settings

Datasets. Our experiments are conducted on two kind of
human point cloud dataset, For all the datasets we keep only
the points from the foreground human body.

* CAPE-512. CAPE dataset [44] contains 3D human body
point clouds scanned with a high-resolution body scanner.
Huang et al. [28] sample from its raw scans and obtain the
ground-truth flow from the fitted template mesh to com-
pose the MPC-CAPE dataset. However, each body scan
in MPC-CAPE has 8192 points, which is much denser
than the point cloud of outdoor scans. Therefore, we ran-
domly sample 512 points (1/16 of the original resolution)
in each scan to form the CAPE-512 dataset. We utilize
the mesh template estimated from dense point clouds to
obtain the ground-truth flow. CAPE-512 is used for quan-
titative comparison with baselines.

* BasketballPlayer is a much more challenging real-world
dataset collected by ourselves. We use four Livox Mid-
100 LiDARs to record a basketball match with ten play-
ers. Due to the fast movement and fierce confrontation of
the players, there are large noises and occlusions in the
data. We first calibrate the external parameters between
four LiDARS, then crop the original scan to remove points
from the surroundings and use a fitted plane to remove the
ground. Points from different people are separated and
tracked throughout the match. The density distribution of
HumanSyn4D and Basketballplayer is shown in Fig. 5.

The comparison of the two datasets and our synthetic

dataset is shown in Table 1.

Baselines and Training Strategy. In our work, we focus

on comparing the performance of different baselines in self-

supervised manner. For fairness, we pretrain all methods
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Figure 5. Histogram of numbers of points in HumanSyn4D and
BasketballPlayer.

Table 1. Comparison of Datasets. Dataset division in experiment
and differences between three datasets.

Dataset ‘ # Train / Val / Test  Label Real Large
Scene
HumanSyn4D 15862 /4532 /2266 v - v
CAPE-512 12060 /3192 / 836 v v -
BaketballPlayer | 13916 /4000 / 2000 - v v

on HumanSyn4D dataset and compare their unsupervised

training performance on CAPE-512 and BasketballPlayer.

We compare the following baselines and formulate different

training strategies for them.

¢ Non-learned: Coherent Point Drift method (CPD) [51].
We directly test it on target datasets.

e Supervised Only: FLOT [56]. We train it on Human-
Syn4D and then test it on target datasets directly.

* Both Supervised and Self-supervised: PointPWC-Net
(PointPWC) [63] where we modify the number of points
in the feature pyramid to accommodate sparse input,
Synorim [28] where we use the full pipeline, and our
method (HumanReg). We pretrain these frameworks on
HumanSyn4D in a supervised manner first, then finetune
them on target datasets with their self-supervised loss.

Evaluation Metrics. We use following metrics to evalu-

ate flow quality: (1) 3D End-Point Error (EPE3D): flow er-

ror ||F& — F||, over all points where F donates the pre-
dicted flow. (2) 3D Accuracy Strict (AccS): the percentage
of points with EPE3D < 0.05m. We removed the relative
error part in [25] because we think this will underestimate
the error when the human displacement is large. (3) 3D Ac-
curacy Relax (AccR): the percentage of points with EPE3D
< 0.1m. (4) Outlier Ratio: the percentage of points with

EPE3D > 0.2m.

Parameters Setting. Following [15, 28], we use a 4-layer

U-Net as our backbone, and the output feature dimension is

64. k is set to 5 when searching for neighbors of a point in

Eq. 10 and 11. In supervised learning, we balance segmen-

tation and flow loss with weights of @ = 0.1, a5 = 0.9.
In self-supervised learning, we balance Chamfer / Smooth-
ness / Clustering / Part-Rigid losses with the weights 1.0 /
1.0/0.1/10.0, respectively. We divide CAPE-512 and Bas-
ketballPlayer into non-consecutive sequences of length 4 at
equal intervals. In the experiment, we register frames 1-3
with frame 4 of each sequence and calculate metrics.

5.2. Quantitative Results on CAPE-512

Since the ground-truth flow is provided in CAPE-512, we
can use it to quantitatively compare the performance of dif-
ferent methods. As shown in Table 2, our method achieves
state-of-the-art performance in EPE3D, accuracy and out-
lier ratio. Even without test refinement, it has 28.2% lower
error compared to the nearest baseline. Our method also
exhibits a much stronger ability to reduce outliers. Notably,
our method obtains a great boost with the help of test refine-
ment, making EPE3D, AccS, AccR and outlier ratio better
by 29.1%, 28.3%, 1.8% and 9.8%, respectively. This proves
that our part-rigid assumption is valid for registering human
point clouds.

Referring to the visualization results in Fig. 6, Human-
Reg can best align the human point clouds, especially for
extremities and large moving parts. This is because our
method introduces body part information, which can jointly
optimize the points of a certain part. The comparison results
on sparse point clouds demonstrate the effectiveness of our
ideas, and it also shows that our method can successfully
densify point clouds by aligning adjacent frames.

Above results show our method can achieve remarkable
performance under the setting of 512 points. Although this
can simulate most real-world scenarios, we continue to re-
duce the number of points to verify the robustness of our
method. Specifically, we continue to sample 256 and 128
points from the original CAPE dataset. The results are
shown in Table 3. Our method has comparable performance
on sparser point clouds with other baselines on CAPE-512.
It’s worth noting that ALL other self-supervised baselines
failed to converge when the number of points dropped be-
low 512. This proves that our method is more robust to
sparse points inputs.

5.3. Qualitative Results on BasketballPlayer

BasketballPlayer is a much more challenging dataset with
multiple people moving quickly in a large scene. The per-
formance on it reflects the alignment ability of the human
point clouds collected in real outdoor scenes. Due to the
lack of ground truth, we only made a qualitative compari-
son as shown in Fig. 7. The results show that our method
can more accurately densify the human point clouds and en-
sure the correctness of human shape.



Table 2. Quantitative comparison on CAPE-512. We report the mean and standard deviation metrics of all sequences. 1 / | means
higher / lower is better. w/o refine is the result without refinement step during test time. The best numbers are highlighted in boldface.

Method Supervised ~ Self-supervised | EPE3D | AccS T AccR 1 Outlier | Time |
Pretraining Fine-tuning (cm) (%) (%) (%) (s)
CPD [51] - - 944+290 1934+10.8 685+193 4.80+7.18 2.28
FLOT [56] flow - 736 +4.87 59.0+24.1 81.5+21.0 7.72+12.07 0.16
PointPWC [63] flow v 6.32+4.02 67.0+202 850+157 7.11+10.53 0.13
Synorim [28] flow v 6.62+332 5524179 848+ 14.1 3.88+6.29 0.63
Ours (w/o refine) | flow + joint v 4544+155 667+10.1 9574+62 0.51+3.36 0.28
Ours flow + joint v 322+173 856+114 974+63 0.46 + 3.65 0.32

Input CPD

FLOT PointPWC

Synorim Ours GT

Figure 6. Visual comparison results on CAPE-512. Left: Input 4 frames of sparse point clouds distinguished by 4 different colors. The
dashed rectangle is the reference frame to which other frames are aligned. Right: Registered point clouds and per-point L2 error are shown

with colormap (Ocm HET 8 20cm).

Table 3. Results on sparser point clouds of CAPE dataset. Be-
sides CAPE-512, we continue to sample 256 and 128 points from
the original CAPE dataset and report the registration results.

#Points EPE3D AccS AccR Outlier

512 3.22 856 974 0.46
256 6.19 47.0 884 1.59
128 8.25 285 731 3.11

6. Ablation Studies

We conducted five sets of experiments on CAPE-512, with
the settings and results are shown in Table 4. Among them,
No.l and No.2 use the data of CAPE-512 to train from
scratch without pretraining process. No.3 uses pretrained
model and tests it on CAPE-512 without further finetuning.
No.4 and No.5 follow the complete process from pretrain-
ing to finetuning.

Ablation on HumanSyn4D Dataset. Comparing the re-
sult of No.2 and No.5, the pretraining process reduces the
EPE3D by 53.4% and improves the strict accuracy rate from



Table 4. Comparison of different training strategies and learning loss of HumanReg. We show the results of five sets of experiments
with different training strategies and losses on CAPE-512 as ablation studies.

Pretrain on Self-supervised Learning Loss Test Test Metrics
No. Hi Syn4D Refinement

umansy Chamfer Smooth Cluster Non-rigid EPE3D AccS AccR  Outlier
1 - v v - - - 8.69 40.1 749 8.08
2 - v v v v v 6.91 574 815 5.50
3 v - - - - v 7.68 615 789  10.83
4 v v v - - - 5.03 586 942 0.57
5 v v v v v v 3.22 856 974 0.46

% 7. Conclusion
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Figure 7. Qualitative comparison results on BasketballPlayer.
Different colors are used to distinguish different frames.

57.4% to 85.6%. This is mainly because learning body-part
segmentation directly on unlabeled data is difficult. Since
we add a sufficient number of human poses to our synthetic
dataset, pretraining can make the model have a good initial
value and converge on new datasets.

Ablation on Finetuning Process. It is not feasible to di-
rectly transfer from the synthetic dataset to the real dataset.
The No.3 experiment shows a large outlier ratio caused by
the difference in data modality between the two datasets. In
CAPE-512, the points are randomly sampled from the raw
scan, while our synthetic dataset simulates points scanned
with mechanical LiDARs. Therefore, a fine-tuning step is
necessary for new data.

Ablation on Clustering and Non-rigid Loss. Comparing
the result of No.4 and No.S, our proposed self-supervised
loss reduces EPE3D and outlier ratio by 34.0% and 19.3%,
while improving AccS and AccR by 46.1% and 3.4%. This
demonstrates the importance of incorporating body part in-
formation for registering human point clouds.

In this work we propose HumanReg, a non-rigid registra-
tion method for sparse human point cloud. HumanReg
combines flow estimation task with body-part segmenta-
tion, which makes correspondence matching based on point
features more robust. We also introduce a novel self-
supervised loss to our framework and make it possible to
learn from unlabeled data. To train our model, we synthe-
size a labeled dataset, HumanSyn4D, and pretrain Human-
Reg on it. Then we finetune it on new unlabeled datasets
in a self-supervised manner. The experiments show that our
framework achieves state-of-the-art performance on CAPE-
512 and gains satisfactory results on BasketballPlayer.
Limitations and Future Work. Despite the state-of-the-art
performance, a few limitations are yet to be addressed: (1)
Our method is based on pair-wise matching when aligning a
sequence of point clouds, which ignores temporal informa-
tion. An optimization method like [28] or temporal feature
extraction module can be added in our framework. (2) Reg-
istration task on sparse point cloud is still particularly chal-
lenging. Our method still suffers from some failures when
faced with real outdoor point clouds due to its sparsity and
motion noise. (3) The improvement of our method to the
performance of downstream tasks has yet to be proved by
further experiments.
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