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ABSTRACT

Imbalanced and even long-tail distribution of different cate-
gories is a challenge for multi-class classification problem,
especially for medical image diagnose whose data distribu-
tion is usually imbalanced. Toward this issue, we proposed
an end-to-end multi-agent classification network called Tria-
geNet, which is combined of multiple selectors and diagnostic
agents. All categories are guided to different agents by selec-
tors, and every agent is an expert in a specific group of cat-
egories. This process, which is similar to triage in hospitals,
helps decrease the unbalance between categories for both se-
lectors and agents. Experiments on an extremely imbalanced
pneumonia CT dataset and a publicly available X-ray dataset
Chexpert show that TriageNet is relatively robust to imbal-
anced data.

Index Terms— disease diagnosis, long-tail distribution,
multiple experts, imbalanced data

1. INTRODUCTION

Computer assisted or aided diagnosis (CAD) is widely stud-
ied in recent years, and with the help of deep learning tech-
nology, many diagnostic algorithms [1, 2, 3, 4] have been pro-
posed to deal with various diagnostic issues. However, most
of disease of one organ have many types, but most existing
diagnosis algorithms can only work on small groups of them,
usually 2 to 5 classes. It is one of the challenges that CAD still
faces, which limited the practical usages of these algorithms.
The main causes of this situation are that collecting sufficient
numbers of samples for multi-category deceases is difficult,
and even when the data is collected, imbalanced distribution
of them troubles the network training.

We suppose that creating methods with more universality
is a trend and need for CAD, and some of publications have
already worked on it. For example, Andre et al. [5] proposed
a classification algorithm on skin cancer in which 2,032 dif-
ferent diseases were included. However, this algorithm can
only perform two critical binary classifications rather than
all diseases; Chexpert [6] is a multiple observation diagnosis
dataset, on which many algorithms were developed [7, 8].
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Fig. 1. Network diagram of TriageNet. TriageNet is com-
bined by selectors and agents. Selectors work as triage worker
to send cases to different agents. Agents work as clinics
which are good at different categories of disease.

Since Chexpert is a multi-label dataset rather than a multi-
category dataset, most algorithms approached multi-label
classification problem as multiple binary classification tasks.

From the view point of network training, when the num-
bers of different categories are imbalanced, the training might
be dominated by the categories with more samples. To deal
with this issue, some former works used sampling [9, 10],
and some others used weighted loss for different categories
[11]. However, these methods cannot work well when the
imbalanced is extreme, such as the so-called long-tail distri-
bution. What’s more, these designs cannot help in learning
fine-level features between similar categories. Groupsoftmax
[12] is a classification structure targeting the long-tail issue
and it works well in natural image databases. It uses some ab-
stract groups to cover the long-tail categories to balance train-
ing samples within and between groups. This method is quite
close to our target but it still cannot help network to learn spe-
cific fine-level differences between confusing categories be-
cause the grouping is done based only on numbers. Multi-gate
Mixture-of-Experts (MMoE) [13] is another network design
towards in-group fine-level feature extraction. It uses mul-
tiple linear layers to represent different experts and these ex-
perts extract different features for fine-level differences within
groups. However, the groups are not really defined in MMoE,
instead it just processes features using different linear layers
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and aggregates the results.
Inspired by the triage system in real hospitals, we pro-

posed our TriageNet which simulates a triage process for ev-
ery sample. All categories are allocated by different diagnos-
tic agents, which simulate clinics, so that different agents can
only diagnose their allocated disease. A triage selector is also
set for every agent, which helps to predict whether the cases
are within the group or not. For every agent, the classifier is
trained using only the cases within the group, resulting in an
expert for the group, which inherits the essence of MMoE.
The groups are defined randomly or based on prior knowl-
edge of confusing diseases, which is different from Group-
softmax. Besides, since agents learn fine-level differences
between groups, we set groups with overlapping categories
in order to find different fine-level features. The contributions
of this work can be summarized as:

• proposed a model targeting imbalanced of data in CAD
named TriageNet, whose architecture simulates the real
hospital’s triage.

• evaluate TriageNet on an extremely imbalanced pneu-
monia CT dataset and a publicly available X-ray dataset
Chexpert. According to results, TriageNet is robust in
data unbalance and long-tail distribution thanks to net-
work triage of cases and aggregation of multiple agents.

2. METHOD

2.1. TriageNet Designs

In hospitals, most doctors are specialists in some specific
fields so that almost all hospitals divided their doctors to
different departments. Patients are assigned to proper depart-
ments according to general practitioners, experienced nurses
or themselves, which is called triage. Our TriageNet simu-
lates this system for better diagnostic performances, which
works based on two assumptions:

• classifiers trained on specific part of data work better than
those trained on the whole data, when the test data is only
within that part.

• identification of groups of categories is easier than iden-
tification of all separate ones, whatever the principles of
grouping.
Since multi-expert method is already successfully used in

MMoE, the first assumption is reasonable. On the other hand,
Groupsoftmax proved the second one should be feasible too.

Our TriageNet (Fig. 1) contains multiple different diag-
nostic agents which allocate different skilled categories, and
multiple triage selectors which correspond to agents one by
one and predict the possibility of cases sending to that agent.
The training of TriageNet is end-to-end that both agents and
selectors are optimized together. During inference, the final
results can be computed by:

P (y = d|X) =

∑
i|d∈Gi

P (y ∈ Gi|X) ∗ P (y = d|X, t ∈ Gi)∑
i|d∈Gi

P (y ∈ Gi|X)

=

∑
i|d∈Gi

Si(X) ∗A(d)
i (X)∑

i|d∈Gi
Si(X)

(1)
where Si(X) is the output of i-th selector, A(d)

i (X) is the
output of i-th agent on category d, and Gi is the allocated
categories of i-th agent.

2.2. Diagnostic Agents

The structure of diagnostic agents is shown on Fig. 2. For
each agent, different features from backbone are selected, dif-
ferent classification jobs are defined and the data of different
jobs are fed in training process. We denote the number of
features as nf , the number of agents as na, and the number
of categories each agent as nc. We can either set different
na, nf , nc for every agent according to some prior of sense,
or just fix them.

The inner structure of agents is a layer of fully-connected
layer using the selected elements of features. The loss func-
tion for each agent is cross-entropy after a Softmax process
on agent’s outputs, which is defined as:

Lagent =

na∑
i=0

Âi(X) log(Ai(X))I(y ∈ Gi) (2)

where the function I(y ∈ Gi) remains zero unless y is within
the range of Gi, Âi(X) is the groundtruth of agents’ out-
put which can be generated by y. Since the allocated cate-
gories have different indexes, for every agent the groundtruth
of agent should be generated respectively.

2.3. Triage Selectors

The inner structure of triage selectors is a fully-connected
layer and the groudtruth for them can be generated accord-
ing to whether y is within the range of Gi. Different from
diagnostic agents, selectors take all features from backbone
for more accurate triages (Fig. 2). Therefore, the loss func-
tion of triage selectors can also be defined as cross-entropy:

Lselector =

na∑
i=0

Ŝi(X) log(Si(X)) (3)

The whole TriageNet is trained end-to-end so that the loss
function is :

L = λ1Lagent + λ2Lselector + λ3R (4)

where R is regularization item, and λx are weights to balance
loss items.

Random selecting processes is used in order to build var-
ious diagnostic agents (Fig. 2), which gives more possibility
to overcome noises and meets the essence of multi-expert.
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Fig. 2. Diagram for Agents, Selectors and the random sampling process. Deep features in the figure means features from
backbone network, which are shared by all selectors and agents.

Fig. 3. Example of 12 categories in pneumonia dataset which
are CTs shown in slices. The numbers after names are ratios
of cases for the categories.

3. EXPERIMENTS

3.1. Dataset

We test our method on two datasets, and the first one is a
pneumonia dataset which was collected from our cooperation
hospitals. There are 2,353 CTs in the dataset which can be
divided into 12 types of pneumonia based on their different
pathogens (Fig. 3). According to the bio-taxonomy of the 12
pathogens, we defined 5 level-I categories (viral, fungal, bac-
terial, mycoplasma and chlamydial) in our dataset, while the
raw detailed pathogens are used as level-II categories. Rec-
ognizing pathogens of pneumonia using images is believed a
challenging task even for experienced radiologists [14, 15],
and it suffers a severe unbalance in numbers of different cat-
egories.

The second one is a publicly available dataset called
Chexpert [6] which contains 224,316 chest radiographs of
65,240 patients, and the labels are 14 common chest radio-
graphic observations. Chexpert is unclearly labeled and the

14 observations are not mutual exclusive with each other. We
test the U-Ignore results on Chexpert, because in this situa-
tion the unbalance of data is the most severe, and the number
of cases is least.

3.2. Hyper-parameters and Training Details

The hyper-parameters can influence results a lot, so we
choose them based on experiments and memory of GPUs.
For pneumonia dataset, we set nf = 1024, nc = 3 for its
best performances in training set, and used nt = 50 since
it fills up one piece of GPU, which is NVIDIA RTX3090.
Among all agents, half of them were used to predict level-I
label, and the others were for level-II. While for Chexpert,
we set nf = 512, nc = 4, and nt = 50. Since Chexpert is
in fact a multi-label task rather than a multi-category task, we
removed the selectors when dealing with it. As a substitute,
we regard the exponent of minus outputs’ entropy as Si(X)
for agents during inference (as (5)). All the training was
performed for 20 epochs with 10−4 learning rate.

Si(X) = e
∑

d∈Gi
A

(d)
i (X)×logA

(d)
i (X) (5)

The feature extraction backbones are not the main topic
of this work, so that we just use fixed backbone in our ex-
periments which is ResNet [16] for pneumonia dataset and
DenseNet [17] for Chexpert. Because pneumonia dataset con-
tains CTs, we use backbone network to extract features of all
slices and aggregate all slices of the same volumes into one
feature using maxpooling.

3.3. Results on Pneumonia Dataset

To compare our method against the state of the art, we set
up some baselines. ResNet is one baseline results that used
ResNet features and two layers of fully-connected to predict
level-I or level-II labels. Groupsoftmax is another method to
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(a) Results for level-I categories.
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(b) Results for level-II categories.

Fig. 4. ROC curves on pneumonia dataset.

Table 1. Performances on pneumonia dataset

Methods level-I level-II
AUC(%) Acc.(%) AUC(%) Acc.(%)

ResNet 71.88±1.07 54.70±1.21 61.90±0.78 24.48±1.00
Groupsoftmax 77.59±0.59 69.68±1.05 76.84±0.51 48.07±0.95

TriageNet 82.93±0.39 71.39±1.10 85.08±0.43 52.48±1.05

overcome long-tail distribution [12]. In our experiments, we
grouped long-tailed level-II labels into four groups and non-
long-tails into one. Our method used the hyper-parameters
described in 3.2.

The results (Fig. 4 and Table 1) shows that our method
outperformed all other methods and gave accuracies of
71.39±1.10% and 52.48±1.05% respectively for level-I and
level-II. Since this task is quite challenging, the accuracies are
acceptable and much better than the baselines. Without any
improvement, the naive ResNet can only get 54.70±1.21%
and 24.48±1.00% accuracies respectively.

We can tell from Fig. 5 that TriageNet worked signifi-
cantly better on most categories and the averaged accuracy.
Especially for some categories with lower numbers, such as
CMV, Respiratory syncytial, TriageNet outperformed base-
line significantly.
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Fig. 5. Accuracies for categories of pneumonia dataset. The
lines are averaged accuracies of two methods across all cate-
gories.

Table 2. Performances on Chexpert dataset

Methods Atelectasis Cardiomegaly Consolidation Edema Pleural
Effusion

DenseNet 76.48 82.14 86.96 92.81 85.96
TriageNet 79.62 82.10 87.70 91.47 87.48

3.4. Results on Chexpert Dataset

For Chexpert, a result is reported in the original paper[6], but
the results of 14 observations did not come from single model.
Therefore, we reran the model of original paper in a multi-
label training process as our baseline. Results (shown in Ta-
ble 2) show that in the five labels that Chexpert reported, our
TriageNet slightly outperformed DenseNet baseline. Only re-
sults for Edema are worse than that the baseline, which is the
label with least positive samples. It shows that our TriageNet
seems not that robust for multi-label tasks when the number
of cases is extremely insufficient. However, the other labels
still get better results which probably benefits from the multi-
expert design.

4. CONCLUSIONS

The design of TriageNet simulates the triage in real hospitals
which divides a complex diagnose task into easier sub-tasks.
The diagnosis task for every agent is easier because of the
less imbalanced data and fewer diagnostic choices when in-
ference. Experiments on two datasets show TriageNet helps
in dealing with imbalanced data which is very common in
medical image diagnosis field.
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