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Abstract—During the past decade, many efforts have been made to use palmprint as a biometric modality. However, most of the
existing palmprint recognition systems are based on encoding and matching creases which are not as reliable as ridges. This affects
the use of palmprints in large scale person identification applications where the biometric modality needs to be distinctive as well as
insensitive to changes in age and skin conditions. Recently, several ridge-based palmprint matching algorithms have been proposed to
fill the gap. Major contributions of these systems include reliable orientation field estimation in presence of creases and use of multiple
features in matching, while the matching algorithms adopted in these systems simply follow the matching algorithms for fingerprints.
However, palmprints differ from fingerprints in several aspects: 1) palmprints are much larger and thus contain a large number of
minutiae, 2) palms are more deformable than fingertips, and 3) the quality and discrimination power of different regions in palmprints
vary significantly. As a result, these matchers are unable to appropriately handle the distortion and noise despite heavy computational
cost. Motivated by the matching strategies of human palmprint experts, we developed a novel palmprint recognition system. The main
contributions are as follows: 1) statistics of major features in palmprints are quantitatively studied; 2) a segment-based matching and
fusion algorithm is proposed to deal with the skin distortion and the varying discrimination power of different palmprint regions; and 3)
to reduce the computational complexity, an orientation field based registration algorithm is designed for registering the palmprints into
the same coordinate system before matching and a cascade filter is built to reject the non-mated gallery palmprints in early stage. The
proposed matcher is tested by matching 840 query palmprints against a gallery set of 13,736 palmprints. Experimental results show
that the proposed matcher outperforms the existing matchers a lot both in matching accuracy and speed.

Index Terms—Palmprint, orientation field, density map, data fusion, distortion, matching, cascade filtering, generalized Hough
transform, naive Bayes classifier.
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1 INTRODUCTION

THE human palm consists of two main features: flex-
ion creases and friction ridges [1]. Flexion creases are

formed due to the folding of the palm. The three most
salient flexion creases, termed as major creases or prin-
cipal lines [1], divide the palm into three regions: thenar,
hypothenar and interdigital (see Fig. 1). The palm also
contains many minor creases which are not as permanent
as the major creases [1]. Friction ridges are formed as a
result of a buckling instability in the basal cell layer of
the fetal epidermis [2]. And an imaging resolution of
about 500 ppi is required to observe the ridge feature.
The patterns formed by the friction ridges on the palm
are both unique and persistent, making it useful as a
biometric trait for person identification. Law enforce-
ment agencies throughout the world have been routinely
collecting palmprints together with fingerprints from
criminals since the early twentieth century [3].

Existing research on palmprint recognition mainly
concentrates on low-resolution palmprint images which
can be acquired using cheap cameras [4], [5], [6], [7], [8],
[9], [10], [11]. The images are usually captured in con-
tactless manner, and the resolution is about at 100 ppi.
At such low resolution, ridges cannot be observed and
matching is mainly based on major and minor creases. In
[12], [13], [14], [15], researchers tried to explicitly extract
and match major creases. In [5], [16], [17], [18], crease
information is encoded and compared in various forms
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Fig. 1. Crease and ridge features in a palmprint.

such as Gabor phase.
However, major biometric modalities used in large

scale person identification systems, such as forensic and
border control systems, need to be both distinctive and
insensitive to changes in age and skin condition. Thus
palmprint recognition systems for these applications
have to be based on ridge features, although creases may
be used as supplementary features. In fact, 500 ppi is the
standard resolution for capturing palmprints in forensic
applications [19] and person identification based only on
ridge features (such as minutiae) is accepted in courts of
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law [1].
The literature of ridge-based palmprint recognition

is still very sparse until now. In [20], Jain and Feng
proposed a minutiae-based palmprint recognition sys-
tem achieving acceptable accuracy. In this system, a
region growing algorithm was proposed to extract the
ridge orientation in presence of creases and a novel
minutia descriptor, MinutiaCode, was designed. In [21],
a multi-feature based palmprint recognition system was
proposed by Dai and Zhou, where multiple features,
including minutia points, orientation field, density map
and major creases are extracted and compared to achieve
higher accuracy.

Despite the available techniques, there are still some
problems remaining to be solved for large-scale applica-
tions. Some of the most important problems are:

1) Skin distortion. Unlike finger tip, the palm contains
many joints and its size is much larger. As a re-
sult, distortion is quite common between different
impressions of the same palm, and much more
serious than the distortion of fingerprints. Fig. 2
shows an example of palmprints with distortion.
Since the algorithms in [20], [21] used a global
rigid transformation model, they are fragile to large
distortion.

2) Diversity of different palm regions. Different re-
gions of palmprints have varying quality and dis-
tinctiveness. While the existing algorithms in [20],
[21] treat the identifying information from the dif-
ferent regions of a palm equally, it is important to
weight such information according to its quality
and distinctiveness to have a reliable matching
procedure.

3) Computational complexity. Because palmprints in
operational palmprint databases are usually not
positioned in a common coordinate system, minu-
tiae matching algorithms have to try all possible
rotation and translation or all possible correspon-
dence of minutiae. Since palmprints contains much
more minutiae than fingerprints, those matching
algorithms which are basically adapted from fin-
gerprint matching algorithms are very inefficient in
matching palmprints. For example, a well known
commercial matcher, VeriFinger [22], can perform
more than 15,000 fingerprint matches per second,
but only three palmprint matches per second. The
matching algorithms in [20], [21] are also very slow.

The limitations of the existing palmprint matching
algorithms in [20], [21] can be summarized as that
these algorithms are basically adapted from fingerprint
matching algorithms [23], [24]. To develop an accurate
and efficient palmprint matching algorithm, the intrinsic
characteristics of palmprints have to be utilized.

Motivated by the matching strategies of human palm-
print experts [1], [25], such as registering palmprints
using clues from orientation field and rejecting non-
mated palmprints based on partial region, we developed

 

Fig. 2. A pair of mated palmprints with large distortion, as
indicated by the corresponding triangles.

a novel palmprint matching system for 1:N matching.
The main contributions include:

1) A quantitative statistical study of various charac-
teristics of palmprints is conducted to guide the
design and parameter selection of the matching
system.

2) To deal with the distortion and the varying dis-
crimination power of different palmprint regions,
a segment-based palmprint matching and fusion
algorithm is proposed. The whole palmprint image
is divided into small segments which are then
separately matched to deal with distortion. The
similarity between two palmprints is calculated by
fusing the similarity scores of different segments
using a Bayesian framework.

3) To reduce the computational complexity, an orien-
tation field based registration algorithm is designed
for registering palmprints of different positions and
rotations into the same coordinate system before
matching. Furthermore, a cascade filter is built to
reject non-mated gallery palmprints in early stage
by comparing just a small portion of the whole
palmprint.

Experimental results of matching 840 query palm-
prints against a gallery set of 13,736 palmprints show
that the proposed algorithm achieves large improve-
ment in both matching accuracy and speed. In full-
to-full palmprint matching experiments, a True Accep-
tance Rate (TAR) of 97.9% is obtained by the proposed
algorithm when the False Acceptance Rate (FAR) is
controlled at 2 × 10−7. This TAR is 17% higher than
that of the algorithm in [21] and 40% higher than that
of the algorithm in [20]. In partial-to-full palmprint
matching, the TAR is 91.9% at a FAR of 3 × 10−8, 34%
and 65% higher than the TARs of the algorithms in [21]
and [20], respectively. Experimental results also show
that the proposed algorithm can improve the palmprint
matching speed by a factor of 132 compared with the
algorithm in [21].

The rest of this paper is organized as follows: In
Section 2, the statistics of palmprint characteristics is
analyzed. Section 3 describes the proposed palmprint
matching algorithm. In Section 4, the experimental re-
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Fig. 3. Average palmprint region mask. The bright pixels
correspond to the location that tends to be valid palmar
region.

sults are presented and analyzed. Finally, we finish with
conclusions in Section 5.

2 STATISTICAL ANALYSIS OF PALMPRINTS

While qualitative knowledge on palmprints is sufficient
for human experts, in order to design an automatic sys-
tem and optimize its parameters, we need a quantitative
study of palmprint features. In this section, the statistical
characteristics of different palmprint features, different
palmprint regions as well as palmprint distortion are
discussed.

2.1 Statistical Analysis of Different Features

The goal of a statistical study of palmprint features is to
identify good features for registration and matching. A
criterion is that the features with high consistency among
different palms and low consistency among different
regions of the same palmprint are useful for registering
palmprints into the same coordinate system, while the
features with high diversity among different palms are
more important for matching.

To conduct a quantitative analysis of the features in
palmprints, including orientation field and density map,
we utilized 200 palmprints from 200 different palms.
And they are composed of the first impressions of 40
different palms in the training set of the THUPALMLAB
(see Table 3 for the details of this database) and another
160 palmprints further gathered from 160 palms. The
palmprints are manually transformed into the same
coordinate system, and those from the right hands are
mirrored to increase the number of samples.

2.1.1 Region Mask

Region mask M of a palmprint I is a binary image
where 1 indicates valid palmar region. Region mask is
estimated using the algorithm in [20]. As shown by the
average palmprint region mask in Fig. 3, the central
regions of about 50% palmprints are missing. This is
very common in palmprints captured using contact-
based techniques.

2.1.2 Orientation Field
Orientation field characterizes the ridge orientation at
each location in the palmprint. To study its statisti-
cal characteristic, the palmprint is divided into non-
overlapped blocks of 64×64 pixels, and ridge orientation
is estimated at each block using the algorithm in [20].
Let θi(x, y) denotes the orientation at (x, y) of the ith

palmprint. We map it to a complex number of unit
magnitude zi(x, y) = cos(2θi(x, y)) + j sin(2θi(x, y)) for
computational convenience. The mean of zi at (x, y) is:

z̄(x, y) =
∑

i∈T zi(x, y)Mi(x, y)∑
i∈T Mi(x, y)

, (1)

in which Mi(x, y) is the region mask at (x, y) of the ith

palmprint.
The average and the circular standard deviation values

for the orientation field at (x, y) are calculated by [26]:


θ̄(x, y) = 1

2Arg(z̄(x, y)),

σθ(x, y) = 1
2

√
−2 ln z̄(x, y).

(2)

The derived average and circular standard deviation
images are shown in Fig. 4 (a) and (b). As shown in
Fig. 4 (b), a large portion of the palmar region has low
deviation, and the circular standard deviation is below
15◦ in about 67% palmar region. This indicates there is a
general ridge flow often repeated in the majority of the
palmprints. Some common patterns in the orientation
field of palmprints have been defined by palmprint ex-
perts [25], as shown in Fig. 5. In the thenar region, ridge
flow forms a semi-circular pattern around the thumb,
which is termed as “half-moon”. In the hypothenar
region, the characteristic is that ridges flow down and
out of the hand. Near the top of the hypothenar region,
ridges funnel toward the center. The ridges at the top
side of the funnel are usually much flatter than those
at the lower side. The orientation field shows common
pattern between different palms and has large variance
in different regions of the same palmprint, making it a
good feature for registering different palmprints.

2.1.3 Density Map
Density map depicts the ridge density of different lo-
cations in the palmar region. Density map is estimated
by the algorithm in [21]. The average and standard
deviation images of density map are shown in Fig. 6
(a) and (b), which are calculated by:


d̄(x, y) =

∑
i∈T

di(x,y)Mi(x,y)∑
i∈T

Mi(x,y)
,

σd(x, y) =

√∑
i∈T

[(di(x,y)−d̄(x,y))2·Mi(x,y)]∑
i∈T

Mi(x,y)−1
,

(3)

in which di(x, y) is the ridge distance (reciprocal of
ridge density) estimated at the 16 × 16 pixels block
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Fig. 4. Statistical characteristics of orientation field: (a)
and (b) are the mean and circular standard deviation for
the orientation field respectively. Note that bright pixels in
(b) correspond to the location where singular points tend
to appear.
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Fig. 5. Common ridge flow patterns in the average
orientation field.

around (x, y) for the ith palmprint, d̄(x, y) and σd(x, y)
are the average and standard deviation values of the
ridge distance at (x, y). As is shown in the statistical
results, the average ridge distance scatters in the range
of 8 pixels to 12.5 pixels, while the standard deviation
values are higher than 1.3 pixels in almost all the palmar
region, showing low consistency among different palms.
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Fig. 6. Statistical characteristics of density map: (a) and
(b) are the mean and standard deviation for the ridge
distance respectively.

2.2 Discrimination Power of Palmprint Features and
Regions
Since ridge patterns in different palmar regions have
different characteristics, the discrimination power of dif-
ferent regions also varies. In order to study this prob-
lem, a statistical experiment is conducted using the 8
impressions of 40 different palms in the training set. All
the palmprints are transformed into the same coordinate
system manually. Next, the transformed palmprint im-
ages are divided into non-overlapped blocks of 64 × 64
pixels to save computational cost. The discrimination
power of the 510 × 510 pixel local region centered at
each block is studied. The size is chosen so that there
are sufficient features within to align successfully. When
matching two palmprints, each block’s local region is
separately matched to the corresponding block’s local
region if they are valid palmprint regions. A total of
1,120 genuine matches and 101,280 impostor matches are
performed using the algorithm in [21].

With the similarity scores of genuine and impostor
match pairs from all the segments, the discrimination
power of different features at different segments can be
reflected by the True Acceptance Rate (TAR) when the
False Acceptance Rate (FAR) is set as 10−4, as shown in
Fig. 7.

It can be seen from Fig. 7 that the discrimination
power of different area varies significantly. The interdig-
ital and the hypothenar regions show better discrimina-
tion power than the thenar region. This is because there
are many creases in the thenar, which significantly affect
the extraction of ridge based features. It is also shown
that among the features of minutiae, orientation field and
density map, density map achieves the highest accuracy
in most of the regions. Density map outperforms minu-
tiae and orientation field in about 85% and 91% palmar
regions respectively in the experiment. Some researchers
have tried to apply it to fingerprint recognition but did
not get a good result [27]. But this experiment proved
that it is indeed a discriminating feature for palmprint
recognition.

2.3 Distortion
The human hand has 27 bones, including the carpals
in the wrist, the metacarpal bones running along the
palm, and the phalanx bones in the fingers [28]. Due to
the multiple degrees of freedom of the skeleton beneath
the palm, distortion is very common in the palmar
region. To study the distortion characteristic, a statistical
experiment is conducted on the training set.

The registered palmprint images are divided into
non-overlapped blocks of 64 × 64 pixels as above. The
distortion of the 510 × 510 pixel local region centered
at each block is studied. The 8 impressions of each
palm are finely aligned with each other, generating 1,120
matching pairs in total. Each local region is aligned to
the corresponding local region respectively using the
generalized Hough transform based minutiae matching
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Fig. 7. TARs of three different features at different palmprint regions when the FAR is set as 10−4: (a) minutiae; (b)
orientation field; (c) density map.

algorithm [23], and the displacement parameters for all
the local regions are recorded. For a given matching pair,
let (∆xk, ∆yk, ∆θk) denote the displacement parameters
for the kth local region, then the mean displacement
between two palmprints is calculated by:

∆̄x = 1
Na

∑Na

k=1 ∆xk,

∆̄y = 1
Na

∑Na

k=1 ∆yk,

∆̄θ = 1
2atan(

∑Na

k=1
sin 2∆θk

cos 2∆θk
),

(4)

in which Na is the number of corresponding local regions
for the matching palmprint pair.

To characterize the distortion, the relative displace-
ment (∆̃xk, ∆̃yk, ∆̃θk) for each local region is cal-
culated by subtracting the mean displacement from
(∆xk, ∆yk, ∆θk). Finally, the average of the absolute
values for the relative displacement parameters in each
local region are calculated using all the matching pairs.

The calculated average absolute values are shown in
Fig. 8. As shown in the image, distortion widely exists
in the palmprint images, especially at the thenar re-
gion. The adduction/abduction movement of the human
thumb is controlled by its carpal-metacarpal joint at
the thenar region which is highly flexible [29], leading
to greater susceptibility of the thenar regions towards
distortion. And the distortion of other regions still cannot
be ignored. Due to the universality of distortion in
palmprints, distortion tolerant algorithms are required
to achieve high accuracy for large-scale applications.

2.4 Summary

Major conclusions pertaining to palmprint characteristics
are summarized as follows:

1) Orientation field shows high consistency among
the same region of different palms and low consis-
tency among different regions of the same palm-
print.

2) Different regions and different features of the palm-
print have varying discrimination power.

3) Distortion widely exists in the palmprint images.

1) Orientation field characteristic 

2) Varying discrimination power 

3) Widely existing distortion 

Registration 

Segment-Based 

Matching and Fusion 

Cascade Filtering 

Palmprint characteristics Matching algorithms 

Fig. 10. Relations between the three characteristics of
palmprints and the three modules of the proposed match-
ing algorithm.

3 PROPOSED PALMPRINT MATCHING SYSTEM

3.1 System Outline

Motivated by the matching strategies of human palm-
print experts and based on our quantitative study of
palmprint statistics, we design a novel palmprint match-
ing system for 1:N matching. The outline of the proposed
palmprint matching system is shown in Fig. 9. The sys-
tem is composed of three modules: palmprint registra-
tion, segment-based matching and fusion, and cascade
filtering. The relations between the three modules and
the major characteristics of palmprints summarized in
Section 2.4 are shown in Fig. 10.

Since different palmprints share a lot of common ridge
flow patterns, orientation field is used for palmprint
registration, which transforms palmprints of different
rotations and displacements into the common coordinate
system. Thus, tight position constraint can be enforced
in the matching algorithm, and matching speed can be
greatly improved.

The segment-based matching and fusion algorithm
is proposed to deal with distortion and varying dis-
crimination power of different regions. Registered palm-
prints are divided into small segments. During palm-
print matching, all the corresponding segments are finely
aligned and compared respectively. When distortion oc-
curs, the segments will rotate and shift to compensate for
the distortion. In this way, the influence of distortion can
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Fig. 8. Distortion characteristics of the palmprints: (a), (b) and (c) show the average absolute values of ∆̃xk, ∆̃yk, ∆̃θk

respectively. ∆̃xk and ∆̃yk are in pixels, while ∆̃θk is in degrees.
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Fig. 9. Outline of the proposed palmprint identification system.

be effectively reduced. The similarity score is calculated
at each segment for each feature respectively, and the
weights of various features at different segments are
determined by learning.

As some segments in palmprints are very distinctive,
it is possible to discard many non-mated gallery palm-
prints by just comparing these distinctive segments. The
cascade filter is based on this idea.

In application, the proposed palmprint matching sys-
tem operates as follows:

1) Palmprint registration is performed for the gallery
palmprints in the enrollment stage and for the
query palmprints in the identification stage sep-
arately. The gallery palmprints are generally full
palmprints, while the query palmprints are live-
scanned full palmprints from unknown suspects
or latents recovered from crime scenes. The full
palmprints are automatically registered by the pro-
posed algorithm, while the latents are manually
registered due to small palmar area, which is a
common practice.1

1. The latents recovered from crime scenes are few and valuable.
Palmprint experts usually manually mark the ridge features and
determine the locations of latents based on the latent shape as well
as some fine orientation field and crease features [25].

2) Corresponding segments between the query and
the gallery palmprints are compared sequentially
based on an ordering determined by the cascade
filter. Gallery palmprints which are very dissimilar
to the query are rejected at once. Generally a large
portion of the gallery palmprints are rejected after
comparing just a few segments.

3) After cascade filtering, the query palmprint is
matched with the remaining gallery palmprints by
the segment-based matching and fusion algorithm
to determine the true mate of the query palmprint.

3.2 Registration
Palmprint images in law enforcement databases are gen-
erally not in the same coordinate system since they are
usually captured without posture and position restric-
tion. Registration is thus necessary to bring different
palmprints into the same coordinate system to facilitate
the matching. Registration is an indispensable step in
most biometric recognition techniques, such as iris [31],
face [32]. Iris is generally registered by its inner and outer
circular contours while face is generally registered by the
location of eyes. The acceleration gained by registration
is due to the tight position constraint in matching reg-
istered images. In case of minutiae matching, a minutia
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(a)

(b)

Fig. 11. Palmprint images captured by contactless tech-
niques in laboratory environment (a) and by contact-
based techniques in operational environment (b). The left
one in (a) is from the CASIA palmprint database [16] and
the right one in (a) is from the PolyU palmprint database
[30].

point in the query palmprint just needs to be matched
with a small portion of the minutia points in the gallery
palmprint whose location and direction are similar to it,
reducing the computational complexity significantly.

The key to registration is to find a good feature, which
is similar between different palms, contains sufficient
information to determine the correct position, and is
robust to noise and incomplete impressions. Existing
palmprint registration methods, which are based on
intervals between fingers [4], [5], [33], [34], [35], hand
contour [36] or principal lines [13], are mainly designed
for contactless low-resolution palmprint verification sys-
tems. The low-resolution palmprints are captured by
contactless devices, which ensures the whole palmar
region and the finger roots are visible. However, in palm-
prints captured using contact-based techniques (such
as inking and FTIR sensors, see Fig. 11), fingers are
not available and principle lines and hand contours are
usually incomplete or not reliable, making registration
a challenging task. The statistical analysis in Section
2.1 shows that the orientation fields of different palms
are quite similar and the orientation fields in different
palmar regions are very distinctive, making orientation
field a promising feature for palmprint registration.

Given the orientation field of an original (unregis-
tered) palmprint, the registration algorithm first esti-
mates the rigid transformation between the unregistered
orientation field and the reference orientation field, and
then registers the original palmprint with respect to
the reference. The average orientation field shown in
Fig. 4 is used as the reference orientation field for all
the palmprints. And the unregistered orientation field

(a)

(b)

Fig. 13. Palmprints successfully registered by the pro-
posed registration algorithm: (a) three original images
from the same palm; (b) outputs of the registration algo-
rithm.

is registered to both the reference orientation field (left
palmprint) and the mirrored version (right palmprint).
The unregistered palmprint is deemed left/right if it is
more similar to the left/right reference. The algorithm
in [20] is used to estimate orientation field on non-
overlapped large blocks (64 × 64 pixels) in order to
suppress noise and reduce the computational complexity
of the registration algorithm.

The orientation field of an unregistered palmprint can
be viewed as a transformed and noisy version of the
reference orientation field. The optimal rigid transforma-
tion between two orientation fields is found using the
generalized Hough transform (GHT) algorithm [37]. All
possible pairs of blocks between the unregistered and
reference orientation fields are considered to vote for
the corresponding transformation parameters: rotation,
horizontal and vertical translation.

Since the features which are similar between different
palms are important for registration, higher weights
should be assigned to the votes from the regions with
high orientation field consistence. Let w(x, y) denote the
weight for the vote given by (x, y) in the coordinate of
reference orientation field, it is calculated by:

w(x, y) =
1

1 + σθ(x, y)
, (5)

in which σθ(x, y) is the corresponding circular standard
deviation of orientation field as defined in Equation (2).

After all pairs of blocks are considered, the bin in the
transformation space with the largest number of votes is
chosen as the transformation parameter.

The palmprint registration algorithm is used to speed
up matching with as small accuracy reduction as pos-
sible. Therefore it is important to examine whether the
different impressions of the same palmprint can be con-
sistently transformed to the same coordinate system with
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Fig. 12. Difference between the registration parameters estimated by the palmprint registration algorithm and the
ground truth.

small deviation. We conducted a systematic experiment
to automatically evaluate the consistence of registration
for different impressions of the same palmprint. Eight
impressions of the 40 different palms in the training
set of THUPALMLAB are used in this experiment. The
ground truth transformation parameters between palm-
prints are first estimated using the minutiae matcher
in [21] and then manually verified. Fig. 12 shows the
histograms of the difference between the registration
parameters estimated by the proposed registration al-
gorithm and the ground truth. The vast majority of
the palmprints can be successfully registered with small
difference. The example in Fig. 13 shows that although
the three different impressions of the same palmprint
are quite different in direction and impression region,
the registration results are very consistent. According
to the histograms of registration consistence in Fig. 12,
the maximum rotation and displacement allowed in
matching are set as 20◦ and five blocks of 64× 64 pixels
respectively in our experiments.

3.3 Segment-Based Matching and Fusion
As shown by the statistical results in Section 2, distortion
usually occurs between palmprints, and the different
features from different segments have large difference in
discrimination power. Although some distortion models
have been proposed for fingerprint [38], [39], [40], they
are not suitable for palmprint because they are not
efficient enough and the distortion of palmprints is much
more serious. A segment-based matching and fusion
algorithm is proposed to deal with the distortion and
the varying discrimination power of different segments.

The registered palmprints are divided into 4 × 4 non-
overlapped segments of 510 × 510 pixels uniformly as
in Fig. 9. The size is chosen so that there are sufficient
features within each segment for successful minutiae
matching, while the distortion within the segment is
sufficiently small. Although there are numerous possible
segmentation strategies, here we adopted this simple
strategy to verify the effectiveness of our algorithm. The
following procedures are performed at the segment level.

Each segment of 510 × 510 pixels from the query
palmprint is matched with the corresponding segment

from the gallery. Since the registration is coarse and
may produce some deviations, the gallery segment is
enlarged to 610 × 610 pixels to completely contain the
query segment. So the segments in the gallery palmprint
are overlapped.

Before the matching is performed, first, the algorithm
tests the completeness of the matching segments, which
is measured by the foreground area size and the min-
imum minutiae number of the gallery and query seg-
ments within their overlapped palmprint region. In our
algorithm, if the foreground area size is smaller than
76,800 pixels or the minimum minutiae number is less
than 20, then the matching segments are deemed to be
very incomplete and are not considered.

Next, the remaining matching segments are finely
aligned by the generalized Hough transform based
minutiae matching algorithm [41] with small tolerance.
The maximum rotation and displacement allowed are set
as 20◦ and five blocks of 64×64 pixels respectively. After
a segment is aligned, the number of matched minutiae
within it is counted, and orientation field and density
map are compared at blocks of 16 × 16 pixels using the
equations in [42] and [21]. The notation used in feature
similarity calculation is summarized in Table 1, and the
similarity scores are calculated as:

Sm =
M

M + ME
· M2

MgMq
, (6)

So =
No

No + NoE

· (1 − Do/90◦), (7)

and

Sd =
Nd

Nd + NdE

· 1
Nb

Nb∑
i=1

exp(−|dg(i) − dq(i)|), (8)

in which ME , NoE
and NdE

are set as 5, 100 and 100,
respectively.

After the above procedure, we get the similarity scores
of three types of features for each segment. In addition,
we observed that the consistence of the spatial transfor-
mations of segments can be used to distinguish genuine
pairs from impostor ones, as shown in Fig. 14. The
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TABLE 1
Notation in feature similarity calculation.

Notation Meaning
Sm Similarity score of minutiae
M Number of matched minutiae.
ME Estimated minimal number of matched minutiae for

the genuine.
Mq Number of minutiae within the overlapped area for

the query.
Mg Number of minutiae within the overlapped area for

the gallery.
So Similarity score of orientation field.
No Number of matched blocks where orientation field

difference is within 22.5◦.
NoE Estimated minimal number of blocks matched by

orientation field for the genuine.
Do Mean of the orientation difference in all the blocks.
Sd Similarity score of density map.
Nd Number of matched blocks whose ridge distance

difference is within 1 pixel.
NdE

Estimated minimal number of blocks matched by
density map for the genuine.

Nb Number of overlapped blocks between the match-
ing segments.

dq(i) Ridge distance of the ith query block.
dg(i) Ridge distance of the ith gallery block.

(a) (b) (c)

(d) (e) (f)

Fig. 14. Spatial transformations of segments for genuine
and imposter match pairs: (a) and (b) are two different im-
pressions of the same palm, (c) is the spatial transforma-
tions of aligning (a) to (b); (d) and (e) are the impressions
of two different palms, (f) is the spatial transformations of
aligning (d) to (e).

relative displacement described in Section 2.3 depicts the
consistence and is used as the feature.

Finally, the relative displacement, the similarity scores
of minutiae, orientation field and density map are com-
bined by Bayesian inference to output a match score.
The probability that an observed palmprint match pair is
genuine or impostor can be denoted by P (Y |{(∆̃xk, ∆̃yk,

∆̃θk, Smk
, Sok

, Sdk
)k=1,··· ,16}), in which (∆̃xk, ∆̃yk, ∆̃θk)

denote the relative displacement parameters for the kth

segment, Smk
, Sok

and Sdk
are the segment’s similarity

scores of minutiae, orientation field and density map
respectively, Y can take two values: G (Genuine) or I
(Impostor). The dimension of the feature vector of the
whole palmprint is 96. To avoid the curse of dimen-
sionality, the features are supposed to be independent.
The likelihood ratio of genuine versus impostor can be
decomposed as:

L =
P (G|{(∆̃xk, ∆̃yk, ∆̃θk, Smk

, Sok
, Sdk

)k})
P (I|{(∆̃xk, ∆̃yk, ∆̃θk, Smk

, Sok
, Sdk

)k})

=
P (G)
P (I)

P ({(∆̃xk, ∆̃yk, ∆̃θk, Smk
, Sok

, Sdk
)k}|G)

P ({(∆̃xk, ∆̃yk, ∆̃θk, Smk
, Sok

, Sdk
)k}|I)

=
P (G)
P (I)

16∏
k=1

P ((∆̃xk, ∆̃yk, ∆̃θk, Smk
, Sok

, Sdk
)|G)

P ((∆̃xk, ∆̃yk, ∆̃θk, Smk
, Sok

, Sdk
)|I)

=
P (G)
P (I)

16∏
k=1

P (∆̃xk|G)P (∆̃yk|G)P (∆̃θk|G)
P (∆̃xk|I)P (∆̃yk|I)P (∆̃θk|I)

P (Smk
|G)P (Sok

|G)P (Sdk
|G)

P (Smk
|I)P (Sok

|I)P (Sdk
|I)

=
P (G)
P (I)

16∏
k=1

Ls
kLd

k, (9)

in which P (G)
P (I) is the prior likelihood ratio, Ls

k and Ld
k

are the likelihood ratio values estimated according to the
similarity scores and displacement parameters of the kth

segment respectively. And the likelihood ratio values for
the incomplete segments are set as 1.

To avoid the influence of very poor quality segments
on genuine matches, a regularization term is added. So
the equation takes the form of:

L =
P (G)
P (I)

16∏
k=1

(ϵ + Ls
kLd

k), (10)

where the regularization term ϵ is empirically set as
0.001.

In Equation (9), P (G)/P (I) is set as 1 and the PDFs are
estimated using the results of matching the full palm-
prints from the training set. Gaussian Mixture Model
(GMM) is used to approximate the 192 PDFs in Equation
(9). The Expected Maximization (EM) algorithm [43] is
performed to search for the best fit between the models
and the observed samples.

3.4 Cascade Filtering
Human experts can declare a pair of palmprints as
unmatched as long as a portion of them is not matched
[1]. The statistical result in Section 2.2 shows that some
regions of the palmprint possess high discrimination
power. Considering these facts, we develop a cascade
filtering scheme to first compare these distinctive regions
and quickly reject the dissimilar gallery palmprints.
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Cascade filtering is an important speedup technology
in computer vision [44], [45], and multibiometrics [46].
Here we first describe how the cascade filtering works
and then present how to construct the cascade filters.

A cascade filter containing M filters can be denoted
by F = {(Cm, Tm)m=1,··· ,M}, in which Cm and Tm are
the indices of the set of segments and the corresponding
threshold used by the mth filter, respectively. In cascade
filtering, a pair of palmprints passes through the filters
sequentially. At the mth filter, the segments within Cm

are matched, and the likelihood ratio is computed by:

LCm =
P (G)
P (I)

∏
k∈Cm

(ϵ + Ls
k). (11)

The formula is different from Equation (10) in that just
the likelihood ratio terms estimated by the similarity
scores within the segments of Cm are used, since just
the segments within Cm are available. If the calculated
likelihood ratio, LCm , is lower than Tm, then the match
pair is deemed as unmatched and quickly dropped.
Otherwise, it is passed to the next filter and the above
procedure repeats. In this way, most non-mated gallery
palmprints can be rejected by just comparing a small
region of the whole palmprint, resulting in a significant
reduction of computational cost.

To construct a cascade filter, which segments to use in
each filter should be determined, and appropriate thresh-
olds should be chosen to exclude the non-mated palm-
prints while retaining the mated ones. Feature selection
technique is brought in to determine the arrangements
and parameters by viewing each segment as a feature. In
most cases, the filter with more features can reject more
non-mated pairs, while it takes more time to perform
the filtering. To trade off between these two effects,
our goal is to construct filters achieving desired True
Rejection Rate (TRR) while keeping the False Rejection
Rate (FRR) as 0 by using as few segments as possible.
When building a filter, the possible combinations of
segments form a search tree. The algorithm travels across
this search tree in a breadth-first procedure. All possible
filters using just one segment are first tested, and the
best of them are selected. If the best one can reach the
desired TRR, then the traversal procedure stops and the
filter is built. Otherwise, all possible combinations of two
segments are tested. The traversal procedure continues
until the desired TRR cannot be achieved even using
Nmax segments. When a filter is built, it is added to the
cascade filter. The segments used by the current filter are
marked as occupied and the samples filtered are deleted.
The algorithm tries to build the next filter with the left
segments and training samples. So the cascade filter
building procedure is a combination of greedy algorithm
and exhaustive strategy. When building a specific filter,
the exhaustive strategy is utilized. Once a filter is found,
it will not change in the following search procedure,
which is greedy.

The pseudocode of the algorithm for cascade filter
construction is shown in Table 2. The inputs are the

TABLE 2
Pseudocode of the cascade filter construction algorithm.

Function ConstructCascadeFilter(L, Y )
//Input: L – likelihood ratios of all the segments in the
// training samples, Y – label array of the training samples
//Output: F – constructed cascade filter
do

for number of segments to use, N , in 1 to Nmax do
generate combinations of N unoccupied segments {CiN

}
foreach combination CiN

do
[TRRiN

, TiN
]=ComputeTRRandThreshold(CiN

, L, Y )
end
find the filter (ClN , TlN ) achieving the highest GlN
if TRRlN > TRRdesire then

add (ClN , TlN ) to the cascade filter
mark the segments in ClN as occupied
delete the samples filtered by (ClN , TlN ) from L, Y
break

end
end

while new filter is added
output the constructed cascade filter F = {(Cm, Tm)m=1,··· ,M}

likelihood ratios of all the segments in the training
samples, L, and label array of the training samples,
Y . In the algorithm of ComputeTRRandThreshold, the
threshold, TiN

, is set as the minimum likelihood ratio
of the genuine match pairs and the corresponding TRR,
TRRiN

, is calculated.

4 EXPERIMENTS

4.1 Palmprint Database

Till now, there is no publicly available high-resolution
palmprint database to our knowledge. To test the algo-
rithm, we collected 1,280 palmprint images from 80 sub-
jects (two palms per person and eight impressions per
palm) using a commercial palmprint scanner of Hisign.
To increase the size of the gallery, 13,616 different palm-
prints (one impression per palm) provided by a local
police department are used as the background database.
All these palmprints images are of 2040×2040 pixels and
500 ppi. The former set of 1,280 palmprints is termed
as multi-impression subset and the latter is termed
as uni-impression subset. As a whole, the database
is termed as the THUPALMLAB, and it contains 320
more palmprints than the former database used in [21].
The multi-impression subset of THUPALMLAB is avail-
able at http://ivg.au.tsinghua.edu.cn. To simulate the latent
prints recovered from crime scenes, we created partial
palmprints from different regions of the full palmprints.
For each palm in the multi-impression subset, 7 partial
images are cropped from the thenar, hypothenar and
interdigital regions of the last 7 impressions respectively.
As a result, we obtain 160 × 21 partial palmprints from
160 different palms. Since the partial palmprints are
cropped to simulate the latents, they are manually reg-
istered as in real applications. In experiments, the prints
from the first 40 palms of the multi-impression subset
are used for training, while the left prints are used for
testing. Among all the palmprint images, about 20% of
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TABLE 3
Summary of the THUPALMLAB database.

Print type Number of
palmprints

Number of
palms

Multi-impression
subset

Train 320 40

Test
960 120

Uni-impression subset 13,616 13,616

Fig. 15. Two palmprints not successfully registered by the
registration algorithm.

them are of relatively poor quality due to large amount
of creases, deformation, smudges, blurs, incompleteness
and etc. The database is summarized in Table 3.

4.2 Performance of Each Module

In this subsection, we evaluate the performance of each
of the three modules, i.e. registration, segment-based
matching and fusion, and cascade filtering.

4.2.1 Registration
To test the speed up gained by registration, the GHT-
based minutiae matching algorithm is used to match
different impressions of the same palm. The average
time for the fine alignment is counted on the whole
THUPALMLAB. Without registration, we cannot make
assumptions about the relative position between the
matching palmprints. The maximum rotation allowed is
360◦ and the max displacement allowed is set as half of
the palmprint image size. It takes about 5.1 seconds to
match two full palmprints on average. When registration
is performed, tight translation and rotation constraints
can be applied. According to the histograms in Fig. 12,
the maximum rotation and displacement allowed are set
as 20◦ and five blocks of 64× 64 pixels respectively. The
average time cost of matching two full palmprints using
the same minutiae matcher is reduced to 78ms, which is
about 65 times faster than without registration.

The computational cost of the registration procedure
itself is composed of voting and best parameter search-
ing, which are denoted by Tv and Ts. Tv is O(Nu × Nr)
and Ts is O(D × D × Ψ), where Nu and Nr are the
numbers of non-overlapped 64×64 foreground blocks in
the unregistered and reference palmprints respectively,
D and Ψ are the maximum displacement and rotation

allowed between the unregistered and reference palm-
prints. In experiments, Tv and Ts are about 900 for full
palmprints, D and Ψ are set as half of the palmprint
image size and 360◦ respectively. The execution time of
the registration procedure is about 1.12s in our experi-
ment. Since it is performed in the enrollment stage for
the gallery palmprints and in the identification stage for
the query palmprint only once, its computational cost
takes a very small portion of the online identification
procedure.

As for accuracy, 44 palmprints are not successfully
registered, which is 0.3% of all the palmprints within
the database. All the failure cases are due to improper
impression or bad image quality. Two of the failed
palmprints are shown in Fig. 15. Currently, we do not
have an automatic method to determine whether the
registration is correct or not. So these 44 palmprints also
go through the cascade filtering and matching.

4.2.2 Segment-based matching and fusion

The segment-based matching and fusion algorithm com-
prises the advantages of being robust to skin distortion
and making better use of varying discrimination of dif-
ferent palmprint regions. To verify the above advantages,
we design three matching algorithms with different
combinations of matching and scoring methods. In the
first system, palmprints are aligned with global rigid
transformations and feature similarity scores are calcu-
lated at global level as in [21]. The derived similarity
scores are fused by a naive Bayesian with GMM. In
the second system, palmprints are aligned at segment
level, while feature similarity scores are still calculated
globally and fused by a naive Bayesian. In the third
system, palmprints are aligned and similarity scores are
calculated at the segment level. The performance of these
three matching algorithms in full-to-full and partial-to-
full matching experiments are shown in Figs. 16. The
experiment settings are the same as in Section 4.3.

It can be seen from Fig. 16 (a) that aligning at segment
level can greatly improve the performance of matching
full palmprints, for which distortion is a serious prob-
lem. The results of aligning the palmprints in Fig. 2 at
global level and at segment level are shown in Fig. 17. It
can be seen that aligning at segment level can effectively
deal with the serious distortion. In partial-to-full match-
ing, the system calculating and fusing similarity scores at
segment level achieves higher accuracy than the system
performs the operations at global level, as shown in Fig.
16 (b).

4.2.3 Cascade filtering

The cascade filter is trained on the training set of
THUPALMLAB. The maximum number of segments
to use, Nmax, and the desired TRR are set as 2 and
20%, respectively. The constructed cascade filter and its
performance are shown in Fig. 18. The first filter uses
the segment of C2, which corresponds to the region with
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(a) (b)

Fig. 17. Aligning the palmprints in Fig. 2 at different levels: (a) global level; (b) segment level.
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Fig. 16. ROC curves of three matching and fusion meth-
ods: (a) matching 840 full palmprints against the gallery
set of 13,736 palmprints; (b) matching 2,520 partial palm-
prints against the same gallery set.

outstanding discrimination power (see Fig. 7). By com-
paring one segment, this filter can reject up to 55.7% non-
mated gallery palmprints while retaining all the mated
gallery palmprints. The second filter uses the segment
combination of B2 and D3, and 60.0% of the remained
non-mated gallery palmprints can be rejected. But 1.1%
of the mated gallery palmprints are also rejected. The
third filter uses the segment combination of B3 and C3,
resulting in a TRR of 22.4% and a FRR of 0%. As a
whole, the constructed cascade filter achieves a TRR of
86.3% when the FRR is 1.1%. It can effectively reject the
non-mated gallery palmprints by just comparing a small
region of the palmprints.

The acceleration gained by cascade filtering is sig-
nificant. Without cascade filtering, the segment-based
matching and fusion algorithm takes about 151ms to
match an impostor matching of full palmprints. When
the cascade filtering is performed, the time is reduced to
39ms, resulting in an average acceleration rate of about
3.9.

In our experiment, when cascade filter is performed,
the TAR of the proposed matching algorithm is about
97.9% when the FAR is set as 2 × 10−7, which is 1.1%
lower than the TAR of the algorithm without cascade
filtering.

4.3 Overall Performance

The proposed matching algorithm was compared to the
algorithms in [21] and [20] on the THUPALMLAB. The
same feature extraction algorithm in [21] was used for
all three matching algorithms. Both full-to-full palm-
print matching and partial-to-full palmprint matching
experiments were conducted. In these experiments, we
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Cascade Filtering 

Filter 1 

Segments: C2 

FRR: 0% TRR: 55.7% 

Filter 2 

Segments: B2, D3 

FRR: 1.1% TRR: 60.0% 

Filter 3 

Segments: B3, C3 

FRR: 0% TRR: 22.4% 

Fig. 18. Constructed cascade filter and its performance
in filtering the matchings of 840 full palmprints against the
gallery set of 13,736 palmprints.

used the full palmprints from 40 palms in the multi-
impression subset as the training set to estimate the
PDFs in Equation (9). The first impressions of the rest
120 palms in the multi-impression subset are combined
with the uni-impression subset to form the gallery set of
13, 736 palmprint images. The same galley set is used
in both experiments. In the full palmprint matching
experiment, the rest seven impressions of each of the
120 palms in the multi-impression subset are searched
against the gallery set. In the partial palmprint matching
experiment, the 21 partial impressions of each of the
120 palms are searched against the gallery set. When
matching partial to full prints, the cascade filter is not
used because the partial prints are very incomplete.

The performance is shown in both identification Re-
ceiver Operating Characteristic (ROC) curves [47] and
verification ROC curves. Verification ROC curve is rou-
tinely reported for the convenience of comparison, while
identification ROC curve measures the performance of
the identification system. The identification system op-
erates as follows. Given a query print, the system returns
the gallery print whose similarity with the query is larger
than the predefined threshold and is the largest one
in all gallery prints. If there is no gallery print whose
similarity is larger than the threshold, no gallery print is
returned. An identification system may make two kinds
of error: false negative identification and false positive
identification. When the mate of the query is contained
in the database but not returned by the system, a
false negative identification occurs. When the database
does not contain the mate of a query, but the system
returns a gallery print, a false positive identification
occurs. The false negative identification rate (FNIR) can
be measured by performing a number of query whose
mate is contained in the database and the false positive
identification rate (FPIR) can be measured by performing
a number of query which does not have a mate in the
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Fig. 19. Identification ROC and verification ROC curves
of the proposed algorithm, the algorithms in [21] and [20]
in matching 840 full palmprints against the gallery set
of 13,736 palmprints: (a) identification ROC curves; (b)
verification ROC curves.

database. Since in our case, each query print has a mate
in the database, the FPIR is obtained by setting the
similarity with the mate as the lowest value. Another
frequently used indicator, true positive identification rate
(TPIR) is equal to 1-FNIR. By changing the similarity
threshold, we can obtain a set of TPIRs and FPIRs and
plot the identification ROC curve.

The identification and verification ROC curves of the
full palmprint matching experiment are shown in Fig.
19. In the identification ROC curves, the TPIR of the
proposed algorithm is about 97.9% when the FPIR is
set as 2 × 10−3, and it is about 17% and 43% higher
than the algorithms in [21] and in [20] respectively. In
the verification ROC curves, the TAR of the proposed
algorithm is about 97.9% when the FAR is set at 2×10−7,
which is about 17% higher than the algorithm in [21] and
40% higher than the algorithm in [20].

The performance of partial-to-full palmprint match-
ing systems are shown in Fig. 20. According to the
identification ROC curves, a TPIR of about 91.9% is
achieved by the proposed algorithm when the FPIR is
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Fig. 20. Identification ROC and verification ROC curves
of the proposed algorithm, the algorithms in [21] and [20]
in matching 2,520 partial palmprints against the gallery
set of 13,736 palmprints: (a) identification ROC curves;
(b) verification ROC curves.

set as 5 × 10−4, about 34% and 65% higher than the
algorithms in [21] and [20] respectively. According to
the verification ROC curves, the TAR of the proposed
algorithm is 91.9% when the FAR is 3 × 10−8, 34% and
65% higher than the TARs of the algorithms in [21] and
in [20] respectively. The performance improvement for
the partial-to-full matching system is more significant
than that for the full palmprint matching system. That is
because the influence of varying discrimination power of
different palmprint regions is stronger for partial prints,
as shown in Section 4.2.2.

To facilitate comparison with other algorithms, we also
report the performance on the public multi-impression
subset of THUPLAMLAB, containing 1,280 palmprints
from 160 different palms. Since the first 40 palms have
been used in the statistical study, the impressions from
the left 120 palms are compared against each other in
the testing stage. So 3,360 genuine matchings and 456,960
impostor matchings are generated to measure the perfor-
mance. Since the gallery size (120) is very small, the per-
formance of the proposed algorithm and the algorithms
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Fig. 21. Verification ROC curves of the proposed al-
gorithm and the algorithms in [21], [20] on the publicly
available multi-impression subset of THUPALMLAB.

in [21], [20] are shown as the verification ROC curves in
Fig. 21. Besides, we have made our algorithm publicly
available on the web site of http://ivg.au.tsinghua.edu.cn,
so that other researchers can test it on other palmprint
datasets.

The computational costs of different algorithms are
measured on a PC with Intel 2.4GHz CPU and Windows
XP operating system. The feature extraction algorithm
in [20] is used for all three matchers, which takes about
55s for processing a full palmprint. The matching time
of different algorithms is shown in Table 4. The cascade
filtering is not used for partial-to-full matching, so the
speed of the proposed algorithm in partial-to-full match-
ing is slower than that in the full-to-full matching. It
should be noted that the proposed algorithm just uses a
simple GHT-based minutiae matching algorithm to align
palmprints, which is the same as in [21]. The experimen-
tal results show that the proposed algorithm improved
the speed of the original matching algorithm in [21]
by a factor of 132 for full-to-full impostor matching,
which consumes most of the computational resources in
large identification systems. Note that the acceleration
is not only effective for GHT-based minutiae matching
algorithm but also for other matching algorithms as well,
including other minutiae-based methods [48], [49], [50],
texture-based methods [24], [51], image-based methods
[38] and so on.

5 CONCLUSION AND FUTURE WORK

In recent ten years, a number of palmprint recognition
algorithms have been proposed and most of these al-
gorithms are based on crease features extracted from
low resolution contactless palmprints. However, crease-
based palmprint recognition has not been successfully
used for large scale person identification applications
because of some inherent limitations. Ridge features in
palmprints are proven unique and persistent and identi-
fication based ridge features is accepted in courts of law.
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TABLE 4
Computational costs of different algorithms.

Algorithm
Full-to-full

matching time (ms)
Partial-to-full

matching time (ms)

Genuine Impostor Genuine Impostor

Proposed algorithm 161 39 62 57

Algorithm in [21] 5,364 5,158 2,763 2,678

Algorithm in [20] 2,019 1,906 657 623

Recently, a few ridge-based palmprint recognition sys-
tems have been proposed. Although there is some nov-
elty in the feature extraction algorithms, the matching
algorithms of these systems are basically adapted from
fingerprint matching. Thus the accuracy of these systems
is limited despite heavy computational cost. Motivated
by the matching strategies of human palmprint experts,
we quantitatively analyzed the statistics of palmprint
characteristics and proposed a novel palmprint match-
ing algorithm based on the obtained statistics, which
achieves higher accuracy as well as lower computational
cost than the previous systems. The main contributions
include:

1) A quantitative statistical study on palmprints is
conducted to guide the design of a robust and
efficient 1:N palmprint matching system.

2) A segment-based palmprint matching and fusion
algorithm is proposed to deal with distortion and
varying discrimination power of different palm-
print features and regions.

3) An orientation field based registration algorithm
and a cascade filter is designed to reduce the com-
putational complexity in 1:N palmprint matching.

The proposed algorithm may also provide assistance
for the low-resolution palmprint recognition [5]. The
segment-based matching and fusion provides a strategy
to deal with distortion and varying discrimination power
of different regions for palmprint matching, while the
cascade filtering idea may also be useful for acceleration.

The current registration algorithm is designed for
registering full palmprints. But the palmprint experts can
determine the location of a small latent palmprints based
on certain clues, including the latent shape, some fine
orientation field and crease features [25]. How to extend
the current registration algorithm to partial and latent
palmprints is an interesting but challenging problem.
The registration algorithm needs to not only estimate the
best spatial transformation but also output a confidence
value associated with the transformation. Large law en-
forcement databases can contain as many as millions of
palmprint images. While the current matcher is already
significantly faster than existing matchers, its efficiency
still requires large improvement.
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