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Various touch-based interaction techniques have been developed to make interactions on mobile devices
more effective, efficient, and intuitive. Finger orientation, especially, has attracted a lot of attentions since it
intuitively brings three additional degrees of freedom (DOF) compared with two-dimensional (2D) touching
points. The mapping of finger orientation can be classified as being either absolute or relative, suitable for
different interaction applications. However, only absolute orientation has been explored in prior works. The
relative angles can be calculated based on two estimated absolute orientations, although, a higher accuracy is
expected by predicting relative rotation from input images directly. Consequently, in this paper, we propose
to estimate complete 3D relative finger angles based on two fingerprint images, which incorporate more
information with a higher image resolution than capacitive images. For algorithm training and evaluation,
we constructed a dataset consisting of fingerprint images and their corresponding ground truth 3D relative
finger rotation angles. Experimental results on this dataset revealed that our method outperforms previous
approaches with absolute finger angle models. Further, extensive experiments were conducted to explore
the impact of image resolutions, finger types, and rotation ranges on performance. A user study was also
conducted to examine the efficiency and precision using 3D relative finger orientation in 3D object rotation
task.

CCS Concepts: • Human-centered computing → Interaction techniques; • Computing methodologies
→ Artificial intelligence.

Additional Key Words and Phrases: 3D relative finger orientation, fingerprint image, deep learning, 3D
manipulation
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1 INTRODUCTION
Over the past decades, touchscreen has been widely used as the main interaction technology of
smartphones, tablets, and other mobile devices. However, due to the low resolution of capacitive
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Fig. 1. Estimating 3D relative finger orientation based on 2D images and the data acquisition system. (a) A
fingerprint image (500 ppi) and its simulated capacitive image (10 ppi). (b) Definition of 3D relative finger
rotation (from pose 1 to pose 2), represented by three Euler angles: yaw (green), pitch (blue), and roll (red). (c)
The whole data acquisition system, including optical tracking cameras, a fingerprint scanner, and several
reflective markers attached on a small stent and the fingerprint scanner respectively.

images captured by measuring capacitive changes caused by fingers touching on the touchscreens
[32], only two-dimensional (2D) touching point is acquired from the touchscreen driver despite
the flexibility of human fingers. Recently, researchers have proposed various novel interaction
techniques, including touching area shape [33], size [4], fingernails [22], part of finger [15], finger
identification [25], shear force [14, 17], finger angles [12, 24, 28, 37, 38, 47], hand part recognition
[15], and hand pose [1, 6, 21], to extend the richness of input vocabulary in various HCI applications.

Among these interaction techniques, finger angles present notablemanipulation potential because
of the precise and intuitive interaction using fingers for additional degrees of freedom (DOF)
compared to 2D touching points. For interactions based on shear force, interactions using finger
orientation present superiority since finger angle is easier to be controlled across different users.
Compared to size and shape of touching area, finger orientation provides more DOFs, and one of
the main factors for changes in touching area shape and size is diverse finger angles. Intuitively,
introducing 3D finger orientation allows natural mapping for 3D object manipulation [24, 46] and
interactions on small screens, e.g. slider selection on smartwatches [47]. Besides, pencil width
modification, menu selection, and joysticks substitute can also be implemented using finger angles
[44]. Besides, 3D finger orientation is also utilized to refine 2D touching points [20]. In addition to
accurate finger orientation estimation, identifying extreme finger angles, e.g. touching with large
pitch angle, provides valuable information for rejecting unintended touching.

It is still a challenging task to estimate 3D finger angles accurately based on 2D images. Recently,
capacitive images are utilized to predict 3D finger angles [28, 47], while presenting limited accuracy
due to quite low resolution and lack of information. Some auxiliary sensors were employed to
alleviate the information gap, e.g. the photosensitive device attached to fingernails [46], RGB
cameras [7], and depth cameras [24, 29, 31]. Obviously, utilizing these extra devices is inconvenient
for mobile applications. Besides, performing roll rotation is comparatively easy, but roll angle
is rarely explored in prior works probably because it is hard to estimate based on capacitive
images. With the development of under-screen fingerprint sensing techniques [34, 36, 48], capturing
fingerprint images of fingers interacting with screens becomes feasible. Some recent works also
proposed to utilize fingerprint images to estimate 3D finger angles for interaction [8, 16]. Figure
1(a) shows an example of comparison between fingerprint and capacitive image (simulated for an
approximate resolution). Compared to capacitive image, fingerprint image with a higher resolution
contains more useful information, e.g. ridge patterns and fine boundaries, making it feasible to
predict all 3D finger angles.
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Vogelsang et al. [44] classified the mapping from input to object into two types, namely absolute
and relative. Absolute mapping utilizes the angles between fingers and the display for interac-
tion, resulting in fast and intuitive manipulations such as fast reorientation. However, ergonomic
constraints limit the input space in absolute mapping, e.g. large pitch angles are not feasible to
perform with long fingernails, thus requiring counterintuitive scaling for complete 3D orientation
control [47]. Consequently, experts advocate for the investigation of relative input interactions
[18, 27] which focuses on the difference between initial finger angles (while touching the display)
and current finger angles. The definition of 3D relative finger angles while touching on a display
refers to the concepts in flight control (as shown in Figure 1(b)). Relative finger orientation-based
interaction is similar to mouse input, whereby manipulation is terminated when lifting fingers off
the screen and resumes after moving down [44]. Intuitively, manipulation range is enlarged using
relative mapping (e.g. [−90◦, 90◦] for relative pitch angle and [−180◦, 180◦] for relative yaw angle),
which enables knob, wheel menu picker, and other interactions with large or circular value space
[44].

Various applications using finger orientation have been proposed and fully explored in previous
research [44], while we believe the unsatisfactory precision is one of the most important factors
preventing its widespread adoption in daily applications. Absolute finger orientation is explored in
previous studies without exception. Although relative finger angles can be obtained by calculating
the transformation between two absolute finger angles, predicting 3D absolute finger angles itself
may be inaccurate since zero finger orientation definitions are difficult to determine and not
consistent across fingers with diverse finger shapes and sizes, especially for thumbs. In contrast,
estimating relative finger angles directly advances the estimation accuracy as it focuses on the
difference between two inputs and mitigates the problem of defining zero finger orientation.

Therefore, in this paper, we focus on improving the precision and stability of 3D relative finger
orientation estimation. Different from prior works which estimate absolute finger angles from a
single capacitive or fingerprint image, we first propose to estimate 3D relative finger angle based
on two fingerprint images directly and utilize the relative rotation angles for interaction. To further
improve the generalization ability across different fingers with various shapes, sizes, identities, and
other characteristics, we decompose the latent feature extracted from fingerprint into pose-relevant
and pose-irrelevant, then estimate relative 3D finger angles based on the pose-relevant features
only.
All three relative finger angles (yaw, pitch, and roll) that fully describe 3D finger rotation are

predicted simultaneously, thanks to the incorporation of fingerprint images with higher resolution
and more information than capacitive images. Mean absolute error (MAE) of three relative finger
angles in experiments are 9.14◦ for yaw, 6.01◦ for pitch, and 8.41◦ for roll, respectively. Given the
accurately estimated 3D relative finger orientations, rotations of human fingers in 3D space could
be described more precisely, thus promoting the richness of input vocabulary for touch based
interface.

2 RELATEDWORKS
Existing finger orientation estimation techniques can be classified into three categories based on
sensing techniques, including touch sensor based, auxiliary device based, and fingerprint sensor
based.

2.1 Touch Sensor
Capacitive images are widely used in various human interaction applications and commercial
devices. Generally, the shape of silhouette and distribution of capacitance around the touching area
vary with different finger angles. This property is applied in various 3D finger orientation estimation
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algorithms directly. Wang et al. [45] attempted to estimate yaw using the shape of touching area.
Rogers et al. [37] attempted to use a capacitive sensor matrix to track 2D touching points and finger
orientation (yaw and pitch) simultaneously. Zaliva et al. [50] made a step forward by extracting
additional features, such as capacitive value and asymmetry of touching area, to estimate 3D finger
angles for gesture recognition. However, no quantitative experiment was conducted to evaluate
finger angles estimation accuracy in these studies. Xiao et al. [47] extracted 42 manually defined
features from touching area to predict yaw and pitch angles, but the estimation performance is
evaluated on several discrete angles (15◦ increments). Mayer et al. [28] first adopted a convolution
neural network (CNN) model for pitch and yaw estimation. Using the ground truth finger angles
recorded by an optical tracking system, they reported a state-of-the-art (SOTA) performance based
on capacitive images. However, due to the low resolution of capacitive images, the deep network is
very shallow and the estimation errors are not sufficiently small. Meanwhile, estimating roll angle
is rarely explored despite the fact that rolling is easy to perform for most fingers and the range of
roll is also larger than pitch.

2.2 Auxiliary Device
Some auxiliary devices were also employed for finger orientation estimation. Watanabe et al. [45]
placed a photosensitive sensor on fingernails to identify luminance attenuation with different finger
angles, while the attached sensor constrained the natural range of finger rotations. Furthermore,
Kratz et al. [24], Mayer et al. [29], andMurugappan et al. [31] utilized depth cameras to capture point
clouds of fingers while touching, based on which pitch and yaw angles were estimated. However,
application scenarios are restricted due to the difficulties and costs of introducing additional sensors
for sensing a finger interacting on mobile devices.

2.3 Fingerprint Sensor
Fingerprint based finger orientation estimation has received little attention in HCI community. In
[13], 2D translation and rotation (namely, relative yaw angle) between two fingerprint images were
calculated by analyzing optical flow. Holz and Baudisch [20] proposed to rectify 2D touching points
using 3D finger orientation estimated from fingerprint images by 𝑘-nearest neighbor searching,
while estimation accuracy for 3D finger angles was not reported since they focused on 2D touching
position rectification. Major weaknesses using this method for finger angle estimation are: (1) it
requires enrollment of a number of fingerprints with ground truth angles from the specific finger
and (2) estimation performance conflicts with time consumption in estimation stage, i.e. higher
performance requires more enrolled fingerprints while consuming more time in searching. Duan
et al. [8] attempted to reduce searching time in enrollment by reconstructing 3D surface from
sequential fingerprint images, and all three fingerprint angles were estimated by point matching
and projection parameters estimation, which requires higher image resolution for robust key-points
extraction. He et al. [16] proposed to predict 3D finger angles from 2D fingerprint images directly,
and demonstrated the superiority of utilizing fingerprints for 3D finger angles estimation compared
with capacitive images. Besides, both absolute and relative finger angle play an important role in
fingerprint recognition, in which only yaw angle is considered since fingerprint is usually viewed
as a 2D image [26]. Registration of two fingerprints, involving estimation of relative yaw angle, is
a routine step in fingerprint recognition. For absolute yaw angle estimation, [49] reported very
low error (1.45◦ for yaw angle). However, fingerprint images adopted in [49] are rolled fingerprints
captured using forensic techniques, which contains more information and higher quality compared
with fingerprints used in daily applications. And the range of yaw angle is also limited since these
fingerprints are collected in controlled environment for identity recognition purpose.
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Yaw: -132.42 Pitch: 34.01 Roll: -2.97 Yaw: -39.57 Pitch: -29.13 Roll: 0.87 Yaw: 96.11 Pitch: 4.12 Roll: 18.64Yaw: 79.40 Pitch: -3.37 Roll: -7.73

Fig. 2. Several collected examples. The 3D relative orientation is described by three Euler angles based on the
definition in Figure 1(b).

In summary, several recent research have been conducted to explore the estimation of absolute
3D finger angles from 2D capacitive or fingerprint images. However, despite benefits of relative
input interaction, to the best of our knowledge, there has been no research to estimate 3D relative
finger angles based on 2D fingerprint images up to date.

3 DATASET
To train and evaluate the proposed algorithm, we constructed a dataset consisting of fingerprint
pairs and their corresponding 3D relative finger rotation based on the dataset collected by He
et al. [16]. Note that we cannot directly use the dataset in [16], since such research considers
only absolute finger angles, while our task aims to estimate 3D relative finger rotation. For the
completeness of the paper, a brief summary of the data collection method is provided here, and
more details can be found in [16].

The acquisition system, shown in Figure 1(c), contains a frustrated total internal reflection (FTIR)
fingerprint scanner DF5001 and an optical tracking system PST Iris2. A small stent with 4 reflective
markers was fixed on the back of fingers, and additional 5 reflective markers were also attached on
the fingerprint scanner. Specifically, sequential fingerprint images (frames) are captured by the
fingerprint scanner, and the corresponding 3D finger angles are determined by calculating the
transformation between the small stent and fingerprint scanner.
In total, the dataset was collected from 22 participants, including 12 male and 10 female with

ages from 20 to 48 [16]. Six fingers including thumbs, index, and middle from both left and right
hands for each subject were captured (132 fingers in total). Participants were asked to press fingers
on the fingerprint scanner with arbitrary angles to ensure a wide range of all three angles in a
comfortable way, during which the fingerprint images and the corresponding 3D finger absolute
angles were captured simultaneously (the acquisition sample rate was set as 20 Hz). And then we
excluded those data in which no fingerprint is captured due to extreme finger angles.
The dataset was then regrouped into pairs randomly, where each data pair consists of two

fingerprint images as well as their corresponding 3D relative finger rotation angles. Note that
only data pairs from the same finger are considered, since the relative rotation between different
fingers is meaningless for interaction purpose. Considering the similarity between adjacent frames,
up to 3,000 pairs were selected from each finger. Finally, a total of 332,418 pairs consisting of
fingerprint images and their corresponding 3D relative finger rotation ground truth were collected.
The fingerprint scanner used in this study offers a 1.6” × 1.5” effective touch area, and the size of
captured fingerprint images is 800 × 750 pixels with resolution of 500 ppi originally. We down-
sampled them to 180 ppi and cropped to 256 × 256 pixels for computation efficiency. Several
examples are shown in Figure 2.

1see details in http://www.dotutech.com/en/pro_d.php?id=3
2see details in https://www.ps-tech.com/products-pst-iris
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Fig. 3. Pose-relevant features are extracted and concatenated to predict 3D relative finger rotation.

4 METHODS
We propose to estimate 3D finger rotation using a siamese framework that utilizes two neural
networks with the same architecture and shared weights to extract features from a pair of 2D
fingerprint images. The extracted features are then concatenated to predict 3D relative finger
rotation. Considering the different characteristics of 3D relative finger rotation caused by diverse
initial finger angles and finger types, we also utilize metric learning to constrain the extracted
features. As mentioned in Section 3, data pairs, consisting of two fingerprint images and their
corresponding 3D relative rotation ground truth, are used for algorithm training and evaluation.
Figure 3 illustrates the schematic representation of our approach.

4.1 Network Architecture
Siamese network has been widely used in relative camera pose estimation [9]. Inspired by this
idea, we propose a pose-aware siamese network to extract pose-relevant features, which are then
concatenated to estimate 3D relative rotation represented by three Euler angles: roll 𝛼 , pitch 𝛽 ,
and yaw 𝛾 . The proposed network comprises three modules: (a) a feature extraction module to
derive features from input images; (b) a reconstruction module to restore input images based on the
extracted features; and (c) a prediction module to estimate 3D relative finger angles. The feature
extraction module consists of a convolution block with a kernel size of 7 and a stride of 2, alongside
several residual-pooling blocks. The resultant features maps are flattened using global average
pooling and followed by a concatenation layer. Finally, the 3D relative finger rotation is predicted
via two fully connected (FC) layers. And the decoder module is introduced to restore the input
images, thus preserving sufficient information in the latent feature space.

4.2 Feature Decomposition
Characteristics of 3D relative finger orientation between two input images are different with
diverse initial finger angles, e.g., the difference between input images is different when rolling
with initial absolute pitch angle at 10◦ and 70◦. Thus, to extract discriminative features containing
more essential information and exclude pose-irrelevant information like finger size, identity, and
other irrelevant poses, it is helpful to decompose to latent interpretable features, and recent studies
have demonstrated its effectiveness in various tasks [2, 5, 42]. In this paper, an auto-encoder (AE)
network is employed for discriminative feature extraction and latent space disentanglement as
shown in Figure 4. With the reconstruction branch, sufficient information is reserved within latent
feature space and only pose-relevant part is utilized for following 3D relative angles estimation.
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Fig. 4. Feature extraction module (decompose latent features into pose-relevant and pose-irrelevant) and
decoder module.

4.3 Pose Distribution Learning
Inspired by the idea of metric learning [23, 40, 51], which aims to learn a reliable distance function
for measuring image similarities, in this paper, latent feature disentanglement is achieved by con-
straining similarities between the extracted pose-relevant features. Considering that the definition
of zero finger orientation is inconsistent across different fingers, we propose to approximate the
distance between extracted pose-relevant features𝐷 (𝒇𝑖 ,𝒇𝑗 ) to the relative rotation distance between
3D absolute finger angles 𝐷 (𝑝𝑖 , 𝑝 𝑗 ). Specifically, distance 𝐷 (𝒇𝑖 ,𝒇𝑗 ) is defined as Euclidean distance
between the extracted embeddings 𝒇 from two input images:

𝐷 (𝒇𝑖 ,𝒇𝑗 ) =
𝒇𝑖 − 𝒇𝑗


2 , (1)

The 3D finger orientation distance 𝐷 (𝑝𝑖 , 𝑝 𝑗 ) is calculated as angular distance 𝐷 (𝑝𝑖 , 𝑝 𝑗 )

𝐷 (𝑝𝑖 , 𝑝 𝑗 ) = arccos(
trace(𝑹 𝑗𝑹−1

𝑖 ) − 1
2

), (2)

where 𝑹𝑖 and 𝑹 𝑗 are the rotation matrix of 3D finger orientation 𝑝𝑖 and 𝑝 𝑗 , respectively, and
trace(·) denotes the trace of matrix. Note that the angular distance 𝐷 (𝑝𝑖 , 𝑝 𝑗 ) is the rotation angle
in axis-angle representation of 3D relative rotation from pose 𝑝𝑖 to pose 𝑝 𝑗 . Then the distance of
log distance ratios based on triplets [23, 51] can be minimized:

L(𝒇𝑖 ,𝒇𝑗 ,𝒇𝑘 ) = (log
𝐷 (𝒇𝑖 ,𝒇𝑗 )
𝐷 (𝑝𝑖 , 𝑝 𝑗 )

− log
𝐷 (𝒇𝑖 ,𝒇𝑘 )
𝐷 (𝑝𝑖 , 𝑝𝑘 )

)2, (3)

which is modified to improve the computation efficiency and take full advantage of samples within
a mini-batch [51]:

L(𝑩) = 𝑏 (𝑏 − 1)
∑︁

𝑖≠𝑗∈𝑩
(log

𝐷 (𝒇𝑖 ,𝒇𝑗 )
𝐷 (𝑝𝑖 , 𝑝 𝑗 )

)2 − (
∑︁

𝑖≠𝑗∈𝑩
log

𝐷 (𝒇𝑖 ,𝒇𝑗 )
𝐷 (𝑝𝑖 , 𝑝 𝑗 )

)2, (4)

where 𝑩 denotes the indices within a mini-batch and 𝑏 is the batch size.
In this way, information from fingerprint images of various 3D finger angles and different

fingers is incorporated, thus improving the features discrimination and generalization ability of the
proposed approach.

4.4 Objective Functions
4.4.1 Angular loss. Three Euler angles (namely yaw, pitch, and roll) are predicted and used to
represent relative 3D finger rotation. The widely used mean-squared error loss function is utilized
for optimization:

Lang =
1
3𝑏

∑︁
𝑖∈𝑩

(𝑑 (𝛼𝑖 , 𝛼𝑖 )2 + 𝑑 (𝛽𝑖 , 𝛽𝑖 )2 + 𝑑 (𝛾𝑖 , 𝛾𝑖 )2), (5)
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where 𝛼 , 𝛽 , and 𝛾 are predictions, and 𝛼 , 𝛽 , and 𝛾 are the corresponding ground truth value
respectively. Considering the periodicity of orientation angle, which means −180◦ is consistent
with 180◦ while completely different for neural network, we normalize the difference between two
angles 𝑑 (𝜃1, 𝜃2) by determining the minimum of Δ𝜃 and 360◦ − Δ𝜃 .

4.4.2 Reconstruction Loss. By constraining the distance between original and reconstructed image
in pixels, extracted latent features retain sufficient information for accurate image recovery:

Lrec =
1
𝑏𝜔

∑︁
𝑖∈𝑩

∑︁
𝑗∈𝛀

|𝑰𝑖, 𝑗 − 𝑰𝑖, 𝑗 |, (6)

where 𝑰 is the reconstruction of input 𝑰 , 𝛀 denotes the pixel indices across input image, and 𝜔 is
the size of 𝛀.

4.4.3 Pose distribution loss. As mentioned in Section 4.3, we utilize the dense loss within a mini-
batch to constrain the distribution of extracted pose-relevant features:

Lpose =
1

𝑏 (𝑏 − 1)
∑︁

𝑖≠𝑗∈𝑩
𝐷2
log − ( 1

𝑏 (𝑏 − 1)
∑︁

𝑖≠𝑗∈𝑩
𝐷log)2, (7)

where

𝐷log = log
𝐷 (𝒇𝑖 ,𝒇𝑗 )
𝐷 (𝑝𝑖 , 𝑝 𝑗 )

= log𝐷 (𝒇𝑖 ,𝒇𝑗 ) − log𝐷 (𝑝𝑖 , 𝑝 𝑗 ). (8)

4.4.4 Overall loss. The proposed network is optimized by minimizing the following overall objec-
tive function

L = Lang + 𝜆recLrec + 𝜆poseLpose + 𝜆regLreg, (9)
where 𝜆rec, 𝜆pose, and 𝜆reg denotes trade-off parameter of reconstruction loss, pose distribution
loss, and regularization loss, respectively. In this paper, we utilize 𝐿2 norm of trainable network
parameters for regularization. We set 𝜆rec = 1.0, 𝜆pose = 1.0, and 𝜆reg = 0.01 such that these loss
functions have similar decreasing rates during training.

4.5 Implementation Details
We implement the proposed network in PyTorch and train it on a single NVIDIA GeForce 2080Ti.
During training, data is augmented via random image translations up to 20% of the image width
and height, as well as random rotations within the range of [−180◦, 180◦] to increase the diversity
of yaw angles. AdamW optimizer with initial learning rate of 0.00035 is utilized to update network
parameters. The learning rate decays by 0.1 when performance on validation subset does not
increase for 10 epochs, and training procedure stops after learning rate decays for three times. The
entire network is trained from scratch.

5 EXPERIMENTS
In this section, we first introduce the dataset used for training and evaluation. Afterwards, the
compared baseline methods and a new performance metric are described. Subsequently, experi-
mental results are reported, and the effects of various factors on the estimation performance are
also explored such as input image resolution and finger type.

5.1 Dataset
Experiments were conducted on the dataset described previously, consisting of a total of 332,418
pairs from 132 fingers (22 subjects) with fingerprint images and their corresponding 3D relative
finger angles ground truth. We randomly split the dataset into three subsets: 235,569 pairs from 92
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Table 1. Distributions of three angles in the test subset. The definition of "AD" is shown in Equation 10. "AD"
of "Absolute" denotes the angular rotation from zero finger orientation to current absolute finger orientation.
"SD" denotes standard deviation.

Absolute Relative

Yaw Pitch Roll AD Yaw Pitch Roll AD

Min -88.0 -87.5 -85.2 13.0 -180.0 -88.9 -101.3 2.0
Max 90.0 -9.1 89.5 153.0 179.9 73.5 102.5 180.0
Mean 2.8 -41.3 -0.2 81.8 -2.0 -13.7 -0.8 100.9
SD 60.5 16.6 37.3 18.9 103.7 29.8 35.1 49.2

fingers for training, 36,968 pairs from 13 fingers for validation, and 59,881 pairs from 27 fingers
for testing. Note that three subsets may contain fingers from the same participants, but all images
from the same finger were assigned to single subset. The use of fingerprint images with an original
resolution of 500 ppi is neither practical nor essential for mobile devices in daily applications due
to their limited volume and computational resources. Therefore, we down-sample the fingerprint
images to 180 ppi (256 × 256 pixels). Before down-sampling, low-pass filtering was applied to
provide spatial anti-aliasing. The statistical details of the test subset can be found in Table 1, which
highlights the considerable enlargement of the ranges for all three relative angles compared to
absolute angles, particularly for yaw and pitch angles.

5.2 Baseline Methods
We reimplemented themethod inMayer et al. [28] as a baseline since it first introduced deep learning
to estimate finger angles based on capacitive images. Considering that the network was designed
for capacitive images with low resolution originally, images with higher resolution, e.g., fingerprint
images, might not be compatible due to the limited network receptive field. Consequently, on the
one hand, we simulated capacitive images by down-sampling the original fingerprint images with
spatial anti-aliasing to match the general resolution of capacitive images (~4 mm pitch, ~10 ppi), as
shown in Figure 1(a). On the other hand, we also developed a deeper multi-task CNN model in [16]
to predict 3D finger angles based on fingerprint images. Note that we added an adaptive global
average pooling layer with output size of 3 in the CNN model in Mayer et al. [28] to estimate on
images with arbitrary resolutions. The aforementioned networks predict absolute 3D finger angles
directly from the single input image, then the relative 3D finger orientation can be determined
from two separate inputs. Besides, we also proposed a naïve siamese network that uses the same
feature extraction module and FC layers as our proposed model, while removing the latent feature
disentanglement module. This network also predicts the 3D finger relative orientations directly.
To ensure fairness and comprehensiveness of comparison with baseline methods, the same

dataset is utilized for training and evaluation for all methods, and we also apply the same data
augmentation as mentioned above. All networks are trained from scratch using the same optimizer
and learning rate decay schedule.

5.3 Performance Metrics
Apart from the widely used Euler angles, we also evaluate the estimation performance in 3D space
directly. Similar with Equation (2), 3D rotation error, named 3D angular distance (AD), is proposed
for a better measurement of distance between two 3D finger rotations, which can be calculated by:

AD = arccos( trace(𝑹�̂�
−1) − 1

2
), (10)
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Table 2. Quantitative results for 3D relative finger angles estimation. Default image resolution is 180 ppi.
Errors are reported in degrees.

Algorithm Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

CNN in Mayer et al. [28]1 36.50 57.37 44.27 15.99 21.84 14.87 19.04 26.97 19.10 44.42 60.67 41.32
CNN in Mayer et al. [28] 22.45 34.39 26.03 11.03 14.44 9.33 15.04 22.24 16.38 28.07 35.47 21.69
Multi-task CNN [16] 13.91 22.45 17.63 8.74 11.65 7.70 11.72 16.89 12.17 19.69 24.96 15.34

Naïve Siamese 10.20 14.91 10.87 7.56 9.39 5.56 10.12 13.92 9.55 14.99 17.16 8.35
Pose-aware Siamese 9.14 14.83 11.67 6.01 7.84 5.04 8.41 12.13 8.75 13.46 16.96 10.31
1 down-sample the input fingerprint image to 10 ppi for capacitive image simulation.

where 𝑹 and �̂� are rotation matrixes of ground truth 3D relative finger orientation and prediction,
respectively. Mean absolute error (MAE), root mean squared error (RMSE) and standard deviation
(SD), are applied to perform quantitative performance comparison between different approaches.

5.4 Comparison with Baselines
In Table 2, we show the experimental results of the proposed method and baseline methods on
the test subset. As shown in the table, the proposed approach performs better than other baseline
methods. The models predicting 3D relative finger angles, i.e. naïve siamese and pose-aware
siamese networks, perform better than those models based on absolute finger orientation, which
demonstrates the superiority of estimating 3D relative finger rotation directly. Note that the metric
SD is decreased when estimating relative finger angles directly, which means relative estimations
are more stable and robust compared to calculating relative rotation angles between two absolute
finger angle estimations. Besides, we observe that with a higher resolution of input image, i.e.,
fingerprint rather than capacitive images, estimation performance of [28] also increases. Figure 5
also shows the error distribution of our method under different ground truth values of three Euler
angles and AD.
Figure 6 shows several results estimated by baseline methods and our proposed relative finger

orientation estimationmodel. As shown in the figure, inaccurate and opposite rotations are observed
in those approaches that calculate relative finger angles based on absolute finger angle estimations,
which itself is not reliable.

5.4.1 Analysis of image resolution. Additional experiments are conducted to investigate the impact
of input resolution.We down-sampled the original fingerprint images to several different resolutions,
including 180 ppi (256× 256 pixels), 120 ppi (171× 171 pixels), 60 ppi (85× 85 pixels), 30 ppi (43× 43
pixels originally, padded to 48 × 48 pixels), and 10 ppi (14 × 14 pixels originally, padded to 32 × 32
pixels). Examples with different resolutions are shown in Figure 7, and experimental results are
shown in Table 3. The down-sampled images with resolution of 10 ppi may not be consistent
with real capacitive images (e.g., capacitive sensing detects the proximity rather than contact [41]).
Hence, these simulated 10 ppi images are solely utilized for the shallow CNN model [28] as a
performance reference. As shown in the table, it is observed that estimation performance increases
with higher resolution, since additional features, such as ridge patterns, help to recognize 3D
finger rotation angles accurately. Superior performance is consistently achieved by predicting 3D
relative finger angles directly, especially for low image resolution, which further demonstrates the
effectiveness of focusing on difference between inputs in 3D relative finger orientation estimation.
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(a) Error distribution for yaw angle.
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(b) Error distribution for pitch angle.
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(c) Error distribution for roll angle.
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(d) Error distribution for AD.

Fig. 5. Error distribution of the proposed method for 3D relative finger orientation represented by all three
angles and angular distance (AD) in the test subset. 95% confidence interval (CI) is shown as gray area.

Note that this experiment does not intend to verify whether our method can be applied on
capacitive images. We are actually trying to explore the estimation performance given different res-
olutions of input images. Such experiments are valuable and comprehensive since lower resolution
always means higher operation speed, allowing for a better trade-off between estimation error and
frame rate in practical HCI scenarios.

5.4.2 Analysis of finger type. As mentioned above, zero orientation definitions are not consistent
across different fingers, which decreases performance of absolute finger orientation estimation
in prior works. Therefore, estimation accuracy of our proposed method on different fingers were
evaluated. Specifically, performance on three finger types is shown in Table 4. We found that the
estimation accuracy on thumb is lower than the other two fingers when calculating 3D relative
finger angles based on absolute finger angles. The main reason maybe that the shape and size of
thumbs are more diverse compared to other fingers, making the definition of zero finger orientation
across different fingers less reliable. While for our proposed method, difference between input
images is focused and impacts like finger shape, size, and identities are also alleviated by latent
feature disentanglement, thus achieving better and more robust performance.
Besides, we also conduct more experiments to explore the effects of various factors on the

estimation performance, and more details can be seen in supplementary materials.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Examples of 3D finger rotation estimation. From left to right, they are (a) the first frame, (b) the second
frame, (c) zero initial pose, (d) 3D rotation ground truth from the first one to the second, (e) results of CNN in
Mayer et al. [28], (f) results of multi-task CNN [16], (g) results of naïve siamese, and (h) results of pose-aware
siamese network.

180 ppi 120 ppi 60 ppi 30 ppi500 ppi 10 ppi

Fig. 7. Examples of fingerprint images with different resolutions.

6 USER STUDY
Finger orientation has been demonstrated to be intuitive in a number of HCI applications [44],
and 3D manipulation task is very suitable for evaluating input technology rigorously since it
requires more DOFs, accurate as well as stable control, and quick response [3]. Therefore, apart
from quantitative evaluation experiments, a user study is also conducted to investigate relative
finger orientation based 3D interaction in a realistic scenario, i.e. a representative 3D manipulation
task in which a virtual object (teapot) is rotated to the target orientation.

6.1 Device
Due to the restriction of acquiring images in real time from fingerprint sensors embedded in mobile
devices, we implemented using a fingerprint scanner with a 1.6” × 1.5” touch area (the same device
shown in Fig. 1(c)). The fingerprint scanner was connected to a PC with GeForce 1080 GPU, and
the same operation described in Section 3 was adopted, i.e., down-sampling the original fingerprint
images to 180 ppi and cropped to 256 × 256 pixels.
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Table 3. Quantitative results for 3D relative finger orientation estimation with different resolutions. Errors
are reported in degrees.

Algorithm PPI Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

CNN in Mayer et al. [28]
10 36.50 57.37 44.27 15.99 21.84 14.87 19.04 26.97 19.10 44.42 60.67 41.32
30 31.20 49.82 38.84 13.72 18.89 13.00 17.10 24.25 17.19 38.15 52.58 36.19
180 22.45 34.39 26.03 11.03 14.44 9.33 15.04 22.24 16.38 28.07 35.47 21.69

Multi-task CNN [16] 30 24.91 43.68 35.88 12.59 17.73 12.49 15.71 22.78 16.50 32.36 47.33 34.54
180 13.91 22.45 17.63 8.74 11.65 7.70 11.72 16.89 12.17 19.69 24.96 15.34

Naïve Siamese 30 17.40 28.86 23.03 10.70 14.58 9.90 12.64 17.98 12.78 24.58 33.47 22.72
180 10.20 14.91 10.87 7.56 9.39 5.56 10.12 13.92 9.55 14.99 17.16 8.35

Pose-aware Siamese

30 17.35 33.01 28.08 9.52 13.63 9.76 12.00 17.45 12.71 23.75 36.12 27.21
60 15.22 29.04 24.73 8.65 12.46 8.97 10.68 15.77 11.61 20.78 31.89 24.19
120 10.49 16.07 12.17 7.03 9.40 6.23 9.61 13.55 9.56 15.40 18.74 10.69
180 9.14 14.83 11.67 6.01 7.84 5.04 8.41 12.13 8.75 13.46 16.96 10.31

Table 4. Quantitative results of 3D relative finger orientation estimation models on different fingers. Errors
are reported in degrees.

Algorithm Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

Thumb Multi-task CNN [16] 19.56 33.09 26.69 9.94 13.70 9.42 14.55 22.89 17.67 24.99 34.33 23.54
Pose-aware Siamese 10.34 17.47 14.08 5.97 7.86 5.11 9.95 15.45 11.86 14.32 18.35 11.47

Index Multi-task CNN [16] 9.94 14.62 10.72 7.59 9.40 5.54 9.36 13.16 9.26 15.19 16.87 7.34
Pose-aware Siamese 7.33 14.02 11.95 5.68 7.25 4.50 7.11 10.34 7.50 11.56 15.77 10.73

Middle Multi-task CNN [16] 13.24 18.81 13.36 8.83 11.78 7.80 12.01 16.54 11.36 19.49 22.90 12.03
Pose-aware Siamese 10.06 15.00 11.12 6.26 8.21 5.30 8.68 12.27 8.67 14.25 16.99 9.24

6.2 Tasks
Each trial is started when users begin to manipulate the virtual object (the first time fingers touch
the scanner), and two types of termination are explored in our study: (1) task is terminated on
a key press by participants when the teapot is believed to reach the target orientation; (2) task
is terminated after keeping absolute errors of all three angles less than 3◦ for 1 second. Then
task completion time (type 1&2 task) and rotation error (type 1 task) are utilized to evaluate the
efficiency and precision of 3D interaction techniques using different relative finger orientation
estimation models, including (1) multi-task CNN [16] which calculates relative finger angles based
on two absolute finger orientations, and (2) the proposed relative finger orientation estimation
approach. We mapped the estimated relative finger angles to control 3D rotation of virtual object.
Inspired by the PRISM (precise and rapid interaction through scaled manipulation) techniques

proposed by Frees et al. [10, 11], which scales down input movements to improve accuracy of direct
manipulation, we implemented a naïve scaling method in which finger rotation angle around each
axis is scaled down when users move their fingers slower than a pre-defined threshold around the
corresponding axis (less than 3◦ between adjacent frames in this study).
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Fig. 8. Rotate teapot from initial orientation (red) to the target orientation (green).

0 5 10 15 20 25 30

Pose-aware Siamese

Multi-task CNN

Task completion time (s)

(a) Type 1 task

0 5 10 15 20 25 30

Pose-aware Siamese

Multi-task CNN

Task completion time (s)

(b) Type 2 task

Fig. 9. Task completion times (in seconds) of (a) type 1 task and (b) type 2 task respectively, where error bars
denote 95% CI.

Table 5. Average rotation errors with 95% CI in 3D manipulation task (type 1). Errors are reported in degrees.

Algorithm Yaw Pitch Roll AD

Multi-task CNN [16] 4.27±0.84 2.30±0.37 3.28±0.59 6.63±0.88

Pose-aware Siamese 2.98±0.44 1.36±0.18 2.61±0.39 4.82±0.41

6.3 Participants
Ten unpaid participants (all male with a university degree) took part in our comparative study,
and none of participants were involved in the training dataset. They were intentionally given the
minimal guidance on using the device to complete the manipulation task and asked to balance
accuracy and speed in type 1 task. A video demo is also provided in supplementary materials.
Per relative finger orientation estimation model, we asked our participants to carry out 10

repetitions. The initial object orientation was randomly selected from remaining orientations
within a pool, and we used the same pool for all methods (as shown in Figure 8). Besides, the order
of employing models was also counter-balanced to reduce the bias caused by learning effects.

6.4 Quantitative Results
A total of 400 trials were collected from 10 participants (200 trials for each type of task). Quantitative
results are shown in Figure 9 and Table 5. The CNN model in Mayer et al. [28] was also evaluated
based on the simulated capacitive images (10 ppi). However, the tasks were rarely completed (each
task is limited to maximum of 100 seconds) in most cases since the object orientation is hard to
control and wobbles around the target orientation which is caused by inaccurate, unstable, or even
contrary estimation of 3D finger angles.
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6.4.1 Task Completion Time. It is observed that less completion time is achieved for rotating
objects to the desired orientation using the proposed model, since keeping an object close to the
target orientation requires a more accurate and stable response to the changes of finger orientation.
Besides, paired t-test revealed that statistically significant differences for interaction based on the
proposed model and the multi-task CNN [16] model with 𝑝 = 0.0003 for type 1 task and 𝑝 = 0.0003
for type 2 task. Note that log-normalizing was utilized as it is standard in such cases [3, 39]. And
before that a Shapiro-Wilk test was applied to ensure that data normality assumption was met
(𝑊 = 0.987, 𝑝 = 0.470 for type 1 task and𝑊 = 0.985, 𝑝 = 0.331 for type 2 task).

6.4.2 Rotation Error. For type 1 task, higher rotation precision is achieved based on the proposed
model. Different from task completion time, we found that paired t-test is not appropriate since the
data is not normally distributed according to Shapiro-Wilk test. Therefore, paired Wilcoxon test
(also known as Wilcoxon signed-rank test) was utilized and we also found statistically significant
differences regarding rotation error after completing type 1 task:𝑊 = 1684, 𝑍 = −2.892, 𝑝 = 0.0038
for yaw,𝑊 = 1815, 𝑍 = −2.441, 𝑝 = 0.0147 for pitch,𝑊 = 1131, 𝑍 = −4.793, 𝑝 < 0.0001 for roll, and
𝑊 = 954, 𝑍 = −5.402, 𝑝 < 0.0001 for AD.

6.4.3 Experience. Three of the participants ranked themselves as skilled at 3D object manipulation
task since they use 3D software or 3D video-games frequently. For these participants with relevant
experience, the average task completion time using the proposed method is reduced to 13.67s
and 14.58s for type 1&2 task respectively, which indicates a better control can be achieved with
experience.

This 3D object rotation study shows the importance of finger angle estimation accuracy in human
computer interaction applications. Note that this manipulation speed and accuracy are better than
or at least comparable to the four input techniques for 3D object rotation reported in [19], although
this is not a fair comparison due to different experimental settings.

6.5 Qualitative Results
Based on our observations during manipulation and subjective feedbacks from participants in this
user study, several qualitative insights and discussions can be obtained.

6.5.1 Perferences. Subjective preferences were collected after participants finished the required 3D
manipulation tasks. We asked the participants how they felt about the tested models and ranked
them, including sensitivity (sensitivity of response to finger rotation angles), stability (consistency
of response to finger rotation angles), and overall preference. Results are depicted in Figure 10. We
found that most participants prefer the proposed 3D relative finger orientation estimation model,
and followed by the absolute finger angle based model, multi-task CNN [16]. Stability seems to
play an important role when participants rank all tested models. Due to the limited information
provided by a single input, the absolute multi-task CNN [16] model presents lower reliability for
manipulation. While our method does not suffer from this since more effective information can
be reserved from two input images. For the CNN model inspired by Mayer et al. [28], which was
designed for estimating pitch and yaw based on capacitive images originally, all participants agree
that it is not easy to use, with the main problem being the large estimation error or the deviation
from the actual rotation direction, since the lower image resolution makes it difficult to predict all
three finger angles. And that is also the reason only pitch and yaw angle are concerned in prior
works based on capacitive images.

6.5.2 Control Strategy. We did not impose a constraint on which finger the participants used
during manipulation. An interesting finding was that people prefer to use their index fingers for
manipulation, especially for those absolute finger angle estimation models. This can be backed
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Fig. 10. Participants’ preference for each model regarding different criteria, i.e., the number of times of each
model was ranked as 1st/2nd/3rd.

by the observation that estimation performance on index fingers is higher than other fingers (see
Table 4). Besides, some users tended not to change pitch angle drastically, but to control it using
roll angle by first rotating 90◦ around yaw axis. The main reason is the limited range of pitch angle
according to the feedbacks, which also fits the picture of roll angle being valuable in finger based
3D manipulation tasks.

6.5.3 Subjective Feedbacks. Some participants pointed out that if the fingerprint scanner can be
made as small as a smartphone, it would not have to be placed on a table and could be easily held by
one hand and operated by the other hand, making it more convenient for manipulation. Some users
believe that if the refresh rate were higher, the manipulation experience would be better. There
are also several people claimed that the reason they prefer a certain method is that the estimated
finger angles are more consistent with their self-perception, even though we did not record the
ground truth of 3D finger angles in user study.

7 DISCUSSION
Finger orientation based interactions have been explored in prior works, but have not yet been
widely adopted in real applications. We believe that one of the main obstacles for real applications is
the relatively lower estimation precision. Except for the low resolution of touch sensors, predicting
absolute finger angles but utilizing relative finger rotation in real applications also limits the
improvement of estimation performance. In this paper, we first proposed to predict 3D relative
finger rotation angles based on two input fingerprint images directly. Experimental results show
the superiority of the proposed 3D relative model compared to previous absolute models. And the
user study also demonstrates the effectiveness and efficiency of the proposed approach.
Higher input image resolution matters for finger angle estimation. Compared to capacitive

images which were widely used in previous research, fingerprints contain more useful information
related to finger orientation, thus helping to promote the estimation accuracy and robustness. The
resolution difference between fingerprint and capacitive images is so large (180 ppi versus 10 ppi
in our study), and it is unlikely to reconstruct the original ridge pattern in fingerprint images by
up-sampling capacitive images (such as [35]), which is necessary for estimating complete 3D finger
angles. Intuitively, computational cost will increase with higher image resolution, resulting in
longer latency, which is concerned in interactions. Compared to predict finger angles based on
single input, more information is considered in the proposed relative approach, thus achieving a
better performance under the same sensor conditions.
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Estimating absolute finger angles presents different performance on different fingers. Zero finger
orientation is difficult to define (especially for pitch) and not consistent across different fingers
with diverse finger shapes, sizes, and habits of movements. Therefore, for those absolute finger
angle models, estimation performance is different among different fingers due to the uncertainty of
absolute finger angle ground truth, especially for thumbs whose shapes and sizes present large
variance. While the proposed relative finger angle model concerns about the difference between two
inputs (from the same finger) and does not suffer from the problem of zero orientation definition
seriously.

Higher estimation consistency on different rotation ranges is achieved using the proposed relative
finger angle model since relative information is involved. While for prior absolute finger angle
models, estimation performance decreased when the actual rotation range is large. Due to the large
estimation error on large rotation range, users tend to perform rotation in a small range for a more
precise estimation, thus requiring more times of lifting fingers.
Roll angle is valuable in finger orientation based 3D manipulation tasks. Roll angle was rarely

explored in previous works since it is difficult to infer in capacitive images. However, compared to
pitch angle, roll angle presents larger controllable range and is easy to control. Duringmanipulations
in user study, we also found that some participants preferred to convert pitch rotation to roll rotation
by first performing 90◦ yaw rotation.
Although the proposed method estimates 3D relative finger rotation based on fingerprint data,

which is widely used in biometric recognition and contains sufficient identity information, privacy
concerns may not be a major issue. Firstly, as demonstrated in Section 5.4, the proposed method can
still perform well on fingerprint images with slightly lower resolution, from which the minutiae are
difficult to be observed and extracted. Additionally, it is also possible to, like existing fingerprint-
based identity recognition systems, prevent external access to fingerprint data and only allow
access to the estimated 3D finger angles. This can help to avoid privacy issues caused by leakage of
fingerprint data

8 LIMITATIONS
Although promising performance is achieved using fingerprint images for 3D relative finger
orientation estimation, there are several limitations to be tackled.
Different from capacitive images, which are collected based on electrical capacitance changes

when fingers touch on the display, fingerprint images are hard to capture for extreme finger angles,
e.g. large pitch angle whose absolute value is over 80◦. Therefore, estimating 3D extreme finger
angles is less accurate, which limits the controllable range during interaction. This can be alleviated
by relative finger orientation proposed in this paper. A fusion of fingerprint and capacitive images
is likely to improve estimation accuracy for extreme finger angles further. Meanwhile, such fusion
scheme can provide additional valuable information, e.g. capacitance changes while fingerprint not
captured, for rejecting unintended touching, where interactions with extreme finger angles are
performed in most cases.

As shown in Figure 5, the estimation performance is still unsatisfactory when the relative rotation
angle is large, especially for roll angle which is inherently more difficult. This can be alleviated by
selecting keyframes during interaction to split the 3D rotation procedure into several small discrete
rotations, and combining them to obtain the final 3D finger rotation. Collecting more samples with
large relative finger angles and designing more robust and efficient data augmentation strategies
may also help.
Although simulated images with various resolutions were utilized as input in our experiments,

we did not verify whether the proposed method can be applied to capacitive images. And we
think that it is not feasible to estimate all three 3D finger angles simultaneously due to the limited

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ISS, Article 431. Publication date: December 2023.



431:18 Duan et al.

resolution of capacitive images. Besides, fingerprint images in our study were captured using
FTIR-based fingerprint scanner, instead of under-screen fingerprint sensors in mobile devices. Due
to the limitation of the Trusted Execution Environment (TEE)3 in smartphones, fetching fingerprint
images from mobile devices directly is not feasible without special support of fingerprint sensor
and smartphone manufacturers. Therefore, considering the promising development of fingerprint
based interaction techniques, these pioneer manufacturers are expected to make a step forward to
facilitate the related research. Although the performance may drop on under-screen images due to
lower quality, the reduction should not be more severe than the reduction observed in reducing
image resolution, which means privacy concern may not be an issue since satisfactory precision
can be achieved based on low resolution images erasing identity information already (Table 3).

Various simulated image resolutions are explored in our experiments, nevertheless, other factors
are not explored systematically yet, such as wetness, dryness, and complicated skin distortion of
fingers. And only males participated in our user study. We also noticed that our participants have
various skin quality and the proposed model seems to be robust to skin quality.

Besides, the refresh rate of our method relies on the frame rate of capturing fingerprint images
and processing time of network inference. The inference time of the proposed approach is about
0.0011 seconds per image pair on a PC with GeForce 1080 GPU. So the current bottleneck is the
frame rate of fingerprint sensor (30 Hz), which was designed for person identification rather
than interaction. For applications requiring very small latency, fingerprint sensors with higher
frame rate but lower spatial resolution should be utilized. However, currently, such sensors are not
available in the market. In addition, considering that the computing resources on mobile devices
are relatively limited, apart from reducing the resolution of image acquisition, methods such as
model quantization can also be employed to reduce the computational demand during inference on
actual mobile devices.

Similar with capacitive images, both relative translation and rotation can be obtained based on
fingerprint images. However, in this study, only finger angles were utilized in 3D object manipulation
tasks since we focus on 3D relative finger rotation estimation in this paper. Six DOFs interactions
based on fingerprint images can be further investigated in the future research. In addition, DOF
separation and more advanced mapping strategies are not fully investigated in our user study, which
have been demonstrated to be effective in previous studies [3, 10, 11, 30, 43]. Besides, similar with
[3], elaborately comparing with previous 3D manipulation techniques, such as mouse+keyboard,
tactile, and tangible inputs, to analyze strengths or weaknesses and explore suitable potential
applications of different input techniques is also a promising research topic in the future.

9 CONCLUSION
Compared with absolute finger orientation, relative finger angles present superiority in several HCI
applications. In this paper, we propose a 3D finger rotation estimation framework via 2D fingerprint
images. Relative finger orientation, represented by three Euler angles, is directly estimated based
on two input images, rather than calculating the relative transformation between two estimated
absolute finger angles. Considering the characteristic of relative pose transformation varies with
different initial finger angles and different fingers, metric learning is further utilized to constrain
the distribution of extracted features to incorporate pose-relevant information. To explore the
performance of the proposed approach, we collected a dataset consisting of fingerprint images
with their corresponding ground truth 3D finger angles. The experimental results demonstrate the
effectiveness and efficiency of our approach, and the proposed method is robust to different initial
finger angles, finger types, and ranges of 3D rotation. Furthermore, a user study also revealed the

3https://source.android.com/security/trusty
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superiority using the proposed 3D relative finger orientation in 3D object rotating task. We have
also discussed the limitations of the current study. With accurate 3D finger rotation estimation,
more innovative finger orientation based HCI interaction techniques would be possible in the
future.
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A SUPPLEMENTARY MATERIALS
A.1 Experimental Results
The error distribution of our method under different 3D absolute finger angle ground truth of
the first frame is shown in Figure A1, which aims to explore the effects of initial finger angles on
estimation performance. As shown in the figure, the proposed model is robust to 3D absolute finger
angle of the first frame, initial finger orientation in other words.
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(a) Error distribution for yaw angle.
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(b) Error distribution for pitch angle.
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(c) Error distribution for roll angle.
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(d) Error distribution for AD.

Fig. A1. Error distribution of the proposed method for 3D absolute finger orientation (of the first one within a
pair of images) represented by all three angles and angular distance (AD) in the test subset. 95% CI is shown
as gray area.

A.1.1 Analysis of absolute finger orientation. The performance of approaches that calculate 3D
relative finger angles based on 3D absolute finger angles, is affected by the estimation accuracy
of single absolute finger angle. Therefore, performance of 3D absolute models, i.e. CNN in Mayer
[28] and multi-task CNN [16], is also shown in Table A1. Similarly, the estimation performance
increases with higher image resolution. The deeper network multi-task CNN [16] performs much
better than the simple and shallow CNN model in Mayer et al. [28]. Meanwhile, based on the results
of these models in Tables 3 and A1, we find that the prediction accuracy of relative finger angles
decreases compared to absolute finger angles.

A.1.2 Analysis of rotation range. Compared with 3D absolute finger orientation based interaction,
input range is enlarged using 3D relative finger angles, e.g. range of yaw angle extended from
[−90◦, 90◦] to [−180◦, 180◦] and pitch angle from [0◦, 90◦] to [−90◦, 90◦]. Intuitively, users tend
to perform large rotation for rough manipulation quickly and achieve fine rotation by scaling.
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Table A1. Quantitative results for 3D absolute finger angle models. Errors are reported in degrees.

Algorithm PPI Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

CNN in Mayer et al. [28]
10 23.61 38.29 30.15 10.17 12.85 7.86 20.43 28.44 19.79 33.09 47.36 33.89
30 20.11 32.77 25.87 9.04 11.53 7.15 18.08 24.11 15.96 28.36 39.78 27.90
180 15.51 22.19 15.87 8.10 10.09 6.01 15.67 20.24 12.81 22.59 27.52 15.71

Multi-task CNN [16] 30 17.84 30.92 25.26 8.81 11.22 6.95 17.14 23.97 16.75 25.29 37.07 27.10
180 10.28 15.98 12.24 7.04 8.87 5.39 13.81 18.18 11.83 17.51 21.05 11.69

Therefore, robust prediction accuracy for different actual finger rotation angles is important in
real applications. In Table A2, we show the 3D relative finger orientation estimation accuracy
when the relative rotation angle ground truth is less than 90◦ and greater than 90◦ respectively.
We observe that the proposed 3D relative model perform robustly on different rotation ranges,
making it possible to utilize large relative finger pose transformation for input interaction in real
applications.

Table A2. Quantitative results for 3D relative finger orientation estimation models when actual rotation angle
is smaller than 90◦ and greater than 90◦ respectively. Default image resolution is 180 ppi. Errors are reported
in degrees.

Algorithm Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

AD≤ 90◦

CNN in Mayer et al. [28]1 27.90 45.87 36.41 14.83 20.02 13.46 15.85 21.68 14.79 37.61 51.06 34.53
CNN in Mayer et al. [28] 16.90 24.14 17.23 10.78 14.02 8.97 12.25 16.51 11.06 24.44 29.10 15.79
Multi-task CNN [16] 11.46 17.95 13.81 8.53 11.43 7.61 10.30 14.04 9.54 18.32 22.63 13.28
Naïve Siamese 8.94 12.65 8.94 7.45 9.24 5.46 8.66 11.47 7.52 14.25 16.26 7.82
Pose-aware Siamese 8.55 14.87 12.17 6.20 8.02 5.09 7.47 10.49 7.36 13.42 17.72 11.58

AD> 90◦

CNN in Mayer et al. [28]1 44.06 65.85 48.94 17.01 23.31 15.94 21.85 30.89 21.83 50.40 68.00 45.65
CNN in Mayer et al. [28] 27.37 41.36 31.00 11.24 14.80 9.63 17.50 26.26 19.59 31.26 40.25 25.35
Multi-task CNN [16] 16.07 25.77 20.15 8.93 11.84 7.77 12.96 19.05 13.96 20.90 26.84 16.85
Naïve Siamese 10.94 16.42 12.24 7.29 9.22 5.66 11.03 15.52 10.91 15.27 17.60 8.76
Pose-aware Siamese 9.66 14.79 11.19 5.85 7.69 4.99 9.23 13.41 9.74 13.49 16.25 9.06

1 down-sample the input fingerprint image to 10 ppi for capacitive image simulation.
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