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Statistical Modeling of Fingerprint Minutiae

Jianjiang Feng, Anil K. Jain, and Jie Zhou

Abstract

Understanding the probabilistic distribution of fingerprint patterns is of fundamental importance

to address many problems in fingerprint recognition, including synthesis, feature extraction, and indi-

viduality assessment. Because of the distinctiveness of minutiae and the popularity of minutiae-based

representation in Automated Fingerprint Identification Systems (AFIS), fingerprint modeling is often

posed in terms of modeling of minutiae patterns. Although several statistical models of minutiae patterns

have been proposed in the literature, they have not been subjected to careful validation. In this paper a

two-level generative model is proposed to approximate the statistics of fingerprint minutiae patterns. The

first level of the model approximates the distribution of orientation field whereas the second level models

the distribution of minutiae location and polarity as a marked inhomogeneous Poisson point process.

We also propose a new minutiae-based fingerprint reconstruction algorithm which is used to evaluate

the proposed minutiae model as well as other models published in the literature. Experimental results

show that fingerprints reconstructed from minutiae sets sampled by the proposed model are much more

realistic than minutiae simulated by the previous published models. We also show the application of the

proposed model in recognizing invalid fingerprint minutiae patterns and using minutia distinctiveness

to improve match score computation.
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I. INTRODUCTION

The friction ridge skin on human fingers forms a flow-like pattern. Such patterns, called

fingerprints, are believed to have two important properties: persistence and uniqueness. Persis-

tence means that fingerprints do not change during a person’s lifetime unless a serious injury

permanently destroys the pattern. Uniqueness means that fingerprints are so distinctive that each

fingerprint is distinct from all other fingerprints. These two properties assure that fingerprints

can be used to uniquely establish a person’s identity. Fingerprints also have an additional useful

property that once a finger touches the surface of an object, an impression, called latent print,

is usually left on the surface. The latent fingerprints serve as crucial evidence in criminal

investigations and conviction of suspects. These properties make fingerprint an ideal mark of

identity for person recognition not only in forensics but also in many government and civilian

applications.

The first systematic use of fingerprint recognition began in the early twentieth century [1],

as a tool by law enforcement agencies for recognizing repeated offenders and suspects. With

advances in automatic fingerprint recognition technology and rapidly growing need for reliable

person recognition in our society, fingerprint recognition has found wide adoption in a variety

of applications ranging from border control, national ID card, time and attendance, to computer

login [2].

Although automatic fingerprint recognition technology has evolved rapidly over the past forty

years, a fundamental problem, namely, the probability of observing a particular fingerprint pattern

(from amongst billions of such possible patterns), has not been adequately addressed. Our

objective is to construct a statistical model for the distribution of fingerprints. Given this model,

one can simulate fingerprints and evaluate the probability of observing a specific fingerprint

pattern. Statistical modeling of fingerprints is of fundamental importance to a number of problems

in fingerprint recognition, including

• Are the minutiae extracted by an algorithm genuine or spurious [3]?

• Has a fingerprint pattern been altered in any way [4]?

• How rare is a latent fingerprint [5]?

• How can we synthesize a large number of different yet realistic fingerprints [6]?

• How should the matching score between two fingerprints be computed [7]?
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• How secure is a minutiae template protection technique [8], [9]?

The goal of statistical modeling of fingerprints is to find an explicit expression to approximate

the true distribution of fingerprints fI(I), where I denotes a fingerprint image. Since it is not

feasible to directly study the distribution of the grayscale representation of a fingerprint image I

due to its high dimensionality1, we choose to study the distribution of minutiae patterns associated

with fingerprints considering the following facts:

• Compact representation. The minutiae template of a slap fingerprint can be stored in about

100 bytes2, much smaller than the size of the grayscale image.

• Sufficient representation. It has been shown that fingerprint images reconstructed from

minutiae can be successfully matched to the original fingerprint [10]–[12].

• High discriminating ability. State of the art fingerprint matchers that are solely based on

minutiae have been shown to provide high matching accuracy in several tests conducted by

the NIST.

• Wide adoption. Minutiae template is the most widely used representation scheme in au-

tomatic fingerprint recognition systems. In addition, human fingerprint examiners perform

fingerprint comparison mainly by comparing minutiae; decisions based on minutiae are

accepted as evidence in courts of law.

Statistical modeling of minutiae patterns has been studied mainly for estimating fingerprint

individuality [5], [13]–[15]. However, most studies (reviewed in [5]) on fingerprint individual-

ity do not derive an explicit model of minutiae patterns which is necessary for an objective

assessment. Even when an explicit model is proposed [13]–[15], it is not carefully validated.

Furthermore, although statistical minutiae models have potential value in many applications, we

have not yet seen any application other than fingerprint individuality assessment.

In this paper a two-level generative model is proposed to approximate the distribution of

fingerprint minutiae patterns. The first level of the model approximates the distribution of

orientation fields of the fingerprints; the second level utilizes a marked inhomogeneous Poisson

point process to model the distribution of minutiae location and polarity. As a second contribution,

1The dimensionality of a fingerprint image is defined as the total number of pixels in it. For a 512× 480 fingerprint image

(such as the fingerprints in NIST SD4), the dimensionality is as high as 245,760.
2Under the assumption that each of the three attributes (x, y, α) of a minutia is represented by one byte and a plain fingerprint

contains around 30 minutiae.
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we propose a minutiae-based fingerprint reconstruction algorithm and apply it to evaluate the

proposed minutiae model and two other published minutiae models [13], [15]. Experimental

results show that fingerprints reconstructed from minutiae simulated by the proposed model

are much more realistic than those from the minutiae simulated by the other two models.

As the third contribution, we applied the proposed model to address two specific problems

in fingerprint that are of significant interest: (i) recognizing invalid fingerprint minutiae patterns

and (ii) incorporating minutiae distinctiveness into match score computation.

The rest of this paper is organized as follows. In section II, the representation of fingerprints is

introduced. Section III is devoted to the statistical modeling of minutiae patterns. In section IV,

we present the methodology and results of testing minutiae models. Applications of the statistical

model are presented in section V. In the final section, we conclude the paper and suggest future

research directions.

II. REPRESENTATION MODELS

Since the grayscale representation of a fingerprint is not convenient for matching, feature based

representations are typically adopted in most fingerprint matching algorithms. In this section, we

describe the representation models of fingerprint features including orientation field, singularities,

ridge pattern, and minutiae.

A. Modeling Fingerprint Image

Features in fingerprints are generally categorized into three levels (Fig. 1):

1) Level 1 features mainly refer to ridge orientation field and features derived from it, i.e.

singularity and pattern type.

2) Level 2 features refer to ridge skeleton and features derived from it, i.e. minutiae.

3) Level 3 features include ridge contours, position and shape of sweat pores and incipient

ridges.

Larkin and Fletcher [16] proposed to represent a fingerprint image as a 2D amplitude and

frequency modulated (AM-FM) signal:

I(x, y) = a(x, y) + b(x, y) cos(Ψ(x, y)) + n(x, y), (1)

which is composed of four components: intensity offset a(x, y), amplitude b(x, y), phase Ψ(x, y),

and noise n(x, y). Here we are only interested in the phase Ψ(x, y), since ridges and minutiae
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(a) (b) (c) (d)

Fig. 1. Fingerprint features at three levels. (a) Grayscale image (NIST SD30, A067 11), (b) Level 1 features (orientation field,

core (red disk), and delta (green triangle)), (c) Level 2 features (ridge skeleton and minutiae), and (d) Level 3 features (ridge

contour, pore, and dot) shown only for the subimage marked in (a).

are completely determined by the phase provided we do not consider Level 3 features (such

as sweat pores and ridge contour). Therefore, a fingerprint can be approximated by a 2D FM

signal:

I(x, y) = cos(Ψ(x, y)). (2)

The gradient of the phase Ψ(x, y) is also termed as instantaneous frequency. In a fingerprint

image, the direction of instantaneous frequency is normal to the local ridge orientation and the

magnitude of instantaneous frequency determines the local ridge frequency.

B. Modeling Orientation Field

The orientation field of a fingerprint can be represented as the sum of a continuous orientation

field and a singular orientation field [17]–[19].

Θ(x, y) = ΘC(x, y) + ΘS(x, y). (3)

Hereinafter, Θ(x, y) is also termed as the composite orientation field to reflect the fact that it

consists of the continuous orientation field ΘC(x, y) and the singular orientation field ΘS(x, y).

The singular orientation field is defined by the singular points (core and delta) in a fingerprint

[17]:

ΘS(m,n) =
1

2

M∑
i

ti arctan(
y − yi
x− xi

), (4)
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(a) (b)

Fig. 2. Orientation field of (a) core type singularity and (b) delta type singularity. The singular points are located in the image

center.

where M denotes the number of singular points, (xi, yi) denotes the coordinate of the ith

singularity, and ti ∈ {1,−1} denotes its type (core: 1, delta: −1). Figure 2 shows the orientation

fields of a core type and a delta type singularity.

The continuous orientation field does not contain any singularity and looks like the orientation

field of a plain arch type fingerprint. To decompose an orientation field, we first detect singular

points using the Poincaré index method [2] and then use equations (3) and (4) to obtain ΘS(x, y)

and ΘC(x, y). Figure 3 shows the decomposition of the orientation field of a fingerprint.

C. Modeling Ridge Pattern

In the FM model, ridge pattern is determined by the phase. According to the Helmholtz

Decomposition Theorem [20], the phase can be represented as the sum of continuous phase and

spiral phase:

Ψ(x, y) = ΨC(x, y) + ΨS(x, y). (5)

Hereinafter, the phase Ψ(x, y) is also termed as the composite phase to reflect the fact that it

consists of the continuous phase ΨC(x, y) and the spiral phase ΨS(x, y).

The spiral phase ΨS(x, y) consists of a set of N spirals, each of which corresponds to a

minutia:

ΨS(x, y) =
N∑
i=1

pi arctan(
y − yi
x− xi

), (6)

where (xi, yi) denotes the coordinate of the ith minutia and pi ∈ {1,−1} denotes its polarity.

The similarity between equations (4) and (6) indicates that minutia can be deemed as a kind of

singularity in the phase image. When the direction of a minutia (shown in Fig. 4) is the same
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. Decomposition of an orientation field. (a) A fingerprint image with singular points overlaid (⃝ denotes core and ∆

denotes delta), (b) composite orientation field, (c) composite orientation field shown as a grayscale image, (d) singular orientation

field, (e) singular orientation field shown as a grayscale image, (f) continuous orientation field, and (g) continuous orientation

field shown as a grayscale image.

Fig. 4. The polarity of a minutia is defined based on its direction and local ridge orientation. The polarity of the two minutiae

marked by ⃝ is positive and the polarity of the minutia marked by � is negative. Along the local ridge orientation (shown as

an arrow), a positive minutia introduces a ridge and a negative minutia consumes a ridge.

as the local ridge orientation, the polarity of the minutia is positive (+1) and the minutia is

referred to as a positive minutia. On the other hand, when the minutia direction is opposite to

the local ridge orientation, its polarity is negative (−1) and the minutia is referred to as a negative

minutia. In other words, given the orientation field, the direction of a minutia is determined by

its polarity.

The continuous phase ΨC(x, y) does not contain any spiral. To decompose the composite
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(a) (b) (c) (d)

Fig. 5. Decomposition of fingerprint phase. (a) A fingerprint image with minutiae overlaid, (b) composite phase, (c) continuous

phase, and (d) spiral phase.

phase, we first detect spirals using the algorithm in [21] and then use equations (5) and (6) to

obtain ΨS(x, y) and ΨC(x, y). Figure 5 shows the decomposition of the phase of a fingerprint.

III. STATISTICAL MODELS

In this section, we first discuss the motivation of modeling fingerprint minutiae as a two-level

generative model and then describe each level of the model respectively.

A. Modeling Fingerprint Image

A statistical model of fingerprints attempts to find an explicit expression to approximate the

true distribution of fingerprints, fI(I), where I denotes a fingerprint image. Since it is not feasible

to directly study the distribution of the grayscale representation of a fingerprint I due to its high

dimensionality, we choose to study the distribution of fingerprint features. Several recent studies

have shown that Level 3 features only have a secondary role in discriminating fingerprints [22],

[23]. For this reason, we assume that a fingerprint image I is represented by its orientation field

Θ and minutiae set x. The probability distribution of a fingerprint I can be approximated by the

joint density of its orientation field Θ and minutiae pattern x.

fI(I) = fXΘ(x,Θ). (7)

Kücken and Newell [24] argue that fingerprint is the result of a buckling process in the basal

cell layer of the fetal epidermis; the stresses causing the buckling process come from the finger

creases, nail furrows, and volar pads. The well-known fingerprint synthesis software, SFinGe [6],

first synthesizes an orientation field and then performs iterative Gabor filtering on a randomly
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Fig. 6. Two-level statistical model of minutiae patterns.

seeded image to generate a fingerprint. Both the fingerprint formation theory [24] and the two-

stage fingerprint synthesis procedure [6] suggest that we should first model the orientation field,

Θ, and then model the minutiae pattern, x, conditioned on the orientation field (see Fig. 6).

fXΘ(x,Θ) = fΘ(Θ)fX|Θ(x|Θ), (8)

where fX|Θ(x|Θ) denotes the probability of a minutiae pattern given the orientation field.

According to fingerprint formation theory [24], the same orientation field can correspond to

a number of different minutiae patterns. This phenomenon has been observed in fingerprint

synthesis experiments [6] as well as in the fingerprints of identical twins [25]. As an example,

different minutiae patterns with the same orientation field are shown in Fig. 7.

In the following subsections, we describe the two levels of the fingerprint model: orientation

field model and minutiae pattern model.

B. Modeling Orientation Field

An orientation field is represented as the sum of singular orientation field and continuous

orientation field, as described in Section II-B. However, both the singularity features (type and

location) and the continuous orientation field are not fixed-length feature vectors which makes

the statistical modeling problem challenging. To convert an orientation field to a fixed-length
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(a)

(b)

Fig. 7. Different fingerprints (minutiae patterns) with the same orientation field: (a) arch-type orientation field followed by

three arch-type images with different minutiae patterns and (b) left loop-type orientation field followed by three left loop-type

images with different minutiae patterns.

feature vector, we treat three major types of fingerprints (arch, loop, and whorl) separately3, and

model the continuous orientation field by polynomials. As a result, the singularity features and

polynomial coefficients constitute a fixed-length feature vector, which is termed as the orientation

vector. While the probability distribution of fingerprint singularities has been studied by Cappelli

and Maltoni [27], we consider the probability distribution of the whole orientation field here.

Another difference from the model in [27] is that we study the distribution of singularities in

fingerprints of left loop, right loop, and tented arch together, since (i) all these three classes

contain one core and one delta and (ii) there are no absolute separating lines between these

three classes.

Let s = (x1, y1, · · · , xt, yt) be the set of singularity features of a fingerprint, where t denotes

the number of pairs of cores and deltas in the fingerprint. Note that t = 0, 1, 2 for arch, loop,

3According to the statistics reported in the document of the NIST SD14 database [26], around 99.7% of all fingerprints belong

to these three major types (arch: 3.6%, loop: 68.3%, and whorl: 27.8%).
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and whorl type, respectively. The sine and cosine of the doubled continuous orientation field4

are modeled by two polynomials of order m, respectively:

sin(2Θ(x, y)) = fsin(m, a; x, y) =
∑

i+j≤m

aijx
iyj, (9)

and

cos(2Θ(x, y)) = fcos(m,b; x, y) =
∑

i+j≤m

bijx
iyj. (10)

The orientation vector is obtained by combining three feature vectors:

A =


s

a

b

 . (11)

The probability density of orientation field is given by

fΘ(Θ) =
∑

t=0,1,2

wtpt(A), (12)

where wt denotes the a priori probability of fingerprints with t pairs of cores and deltas, and

pt(A) represents the probability density of orientation vectors of fingerprints of type t. The

density pt(A) is approximated by a Gaussian mixture model:

pt(A) =
Kt∑
k=1

πtkN (A|µtk,Σtk), (13)

where Kt denotes the number of Gaussians, πtk denotes the kth mixing probability, and N (·)

denotes the Gaussian PDF.

C. Modeling Minutiae Pattern

A minutiae pattern is a set of marked points in two-dimensional space, x = {(x1, p1), · · · , (xn, pn)},

where xi is the location of a minutia, and its mark is its polarity pi ∈ {+1,−1}. Notice

that in contrast to the traditional definition of minutiae [2], this definition does not contain

minutiae direction since the direction is fully determined by the polarity and orientation field.

Decoupling minutiae from orientation field enables modeling minutiae patterns using relatively

simple models.

4The orientation value is doubled in order to avoid discontinuity between θ and θ + π.
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Fig. 8. The left box contains no minutia, while the right one contains eleven minutiae. This image is from NIST SD4, F0017.

A minutiae pattern x can be deemed as a realization of a spatial point process X [28]. A

spatial point process is a random set of points, in which both the number of points and the

location of the points are random. To determine an appropriate point process model for minutiae

patterns, let us first consider only the location of minutiae. The homogeneous Poisson point

process [28] is the most basic model of a point process. A homogeneous Poisson point process

with density λ > 0 has the following properties:

1) The number of points falling in any region A follows a Poisson distribution with mean

λ · area(A). The probability mass function of a Poisson distribution with mean λ is:

fPoisson(n;λ) =
λn

n!
e−λ. (14)

2) Given that there are n points inside a region A, the locations of these points are i.i.d. with

uniform distribution inside A.

3) The sets of points in two disjoint regions A and B are independent. Both the number and

the location of the points in the two sets are independent.

The homogeneous Poisson point process is not suitable for minutiae patterns, since the

distribution of minutiae in fingerprints is apparently not uniform. There are generally an excess

number of minutiae in the area where the ridges either converge or diverge, for example around

the singular points. Figure 8 illustrates this fact. To account for the nonuniformity of minutiae,

the first two properties of the homogeneous Poisson point process should be modified as follows:

1) The number of points falling in any region A follows a Poisson distribution with mean∫
A
λ(u)du, where λ(u), u ∈ R2 represents the density of points at u;
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2) Given that there are n points inside a region A, the locations of these points are i.i.d. and

further, they are distributed with probability density f(u) = λ(u)/Λ(A), where Λ(A) =∫
A
λ(u)du.

This results in an inhomogeneous Poisson point process with density function λ(u). Given that

there are n points inside a region A, the density of the locations of these points is given by

fn(x) =
n∏

i=1

λ(xi)

Λ(A)
. (15)

Next we consider the polarity of minutiae. Using the arch-type fingerprints in Fig. 7(a) as an

example, where the ridges are flowing from left to right, ridges first diverge producing many

positive minutiae, and then converge producing many negative minutiae. This indicates that

minutiae with the same polarity tend to form clusters. Thus we use two different inhomogeneous

Poisson point processes to model positive and negative minutiae.

In summary, a minutiae pattern x is viewed as a union of two subsets of minutiae, a positive

minutiae pattern xp containing all positive minutiae in x, and a negative minutiae pattern xn

containing all negative minutiae in x. As a result, the minutiae pattern x is viewed as a realization

of two independent inhomogeneous Poisson point processes Xp and Xn with density functions

λp(u) and λn(u), respectively.

D. Parameter Estimation

The a priori probabilities of three major types of fingerprints are reported in the document

of the NIST SD14 database [26]. The parameters of the mixture model of orientation field in

Equation (13) are estimated using orientation vectors of fingerprints in the NIST SD4 database.

For reliable parameter estimation, the singular points of all these fingerprints are manually marked

and only those fingerprints (a total of 1,215) with complete singularity information are used.

The inhomogeneous Poisson point process model of minutiae patterns is fully determined

by its density function λ(u). To estimate the minutia density of a given orientation field, we

need a training set of minutiae patterns with the same orientation field. Due to the difficulty of

finding many true fingerprints with the same orientation field, we used a number of synthesized

fingerprints. Based on the given orientation field and a fixed ridge frequency (0.1 ridges per
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(a) (b)

(c) (d)

Fig. 9. Density maps of positive and negative minutiae in fingerprints of different pattern types: (a) arch, (b) left loop, (c) right

loop, and (d) whorl. Dark pixels indicate higher minutiae density. Ridge skeleton of an example fingerprint of corresponding

pattern type is overlaid on the density maps for illustration purpose.

pixel), a set of 1005 synthetic fingerprint images (with the same orientation field) are generated by

performing iterative Gabor filtering on random seed images. Minutiae are then detected in these

fingerprints and classified as positive or negative. Parzon window method is used to separately

estimate the density of positive and negative minutiae at each location in the fingerprint. Gaussian

kernel with a standard deviation of 20 pixels is used as the window function.

The two minutiae density maps6 for the arch-type fingerprint in Fig. 7(a) are shown in Fig.

9(a). We can observe that (i) positive minutiae dominate the left side and negative minutiae

dominate the right side of the arch-type fingerprint, (ii) minutiae density is higher in the top

portion of the image due to the convergence and divergence of orientation field, and (iii) due to

the symmetry of arch-type orientation field, the density maps of positive and negative minutiae

are quite symmetric. The two minutiae density maps for the left loop-type fingerprints in Fig. 7(b)

5We found in the experiment that the estimates obtained using 100 fingerprints are very similar to the estimates using 200 or

more fingerprints.
6Note that minutiae density maps shown in previous studies, such as [10], do not consider positive and negative minutiae

separately.
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are shown in Fig. 9(b). These two density maps appear very different from the density maps of

arch-type fingerprints, indicating that decoupling minutiae from orientation field is necessary to

simplify the minutiae modeling problem. But we do observe a common phenomenon in both types

of fingerprints, namely, the density maps of positive and negative minutiae are complementary

to each other. In other words, at each location in the fingerprint the dominating polarity is either

positive or negative and only at a few locations, the densities of minutiae with the two polarities

are balanced. A similar analysis can also be done for the density maps of right loop-type and

whorl-type fingerprints (see Fig. 9).

IV. VALIDATION

A statistical model of fingerprint minutiae should be able to simulate a set of synthetic minutiae

patterns which are realistic as well as have statistics similar to true fingerprint minutiae. In this

section, we first describe the minutiae simulation algorithm of the proposed minutiae model.

Then we present a new minutiae based fingerprint reconstruction algorithm which is used to

validate whether the simulated minutiae patterns are realistic. Finally, a statistical test of the

minutiae model is discussed.

A. Minutiae Simulation

A minutiae pattern is simulated by first generating an orientation field followed by generating

a minutiae pattern conditioned on the orientation field.

1) Orientation Field Generation: An orientation field is generated through the following steps:

(i) select a fingerprint pattern type (arch, loop, or whorl) according to the a priori probability

of fingerprint patterns, (ii) generate an orientation vector A according to the Gaussian mixture

model in Equation (13), (iii) compute the singular orientation field using Equation (4), (iv)

compute the continuous orientation field using Equations (9) and (10), and finally (v) compute

the orientation field using Equation (3).

2) Minutiae Pattern Generation: A minutiae pattern is generated by first simulating two inho-

mogeneous Poisson point processes, one for positive minutiae and the other for negative minutiae,

and then combining the two patterns. The flowchart of the minutiae simulation algorithm is given

in Fig. 10. The two density maps of the given orientation field are estimated using the approach

described in Section III-D. An inhomogeneous Poisson point process is simulated by the rejection
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Fig. 10. Flowchart of the minutiae pattern simulation algorithm for a given orientation field.

method [29]. This method consists of two steps. First, a sample of the homogeneous Poisson

process with density λ∗ = max(λ(u)) is generated. Simulation of an homogeneous Poisson

point process consists of two steps as well. The number n of points is first sampled from a

Poisson distribution with mean λ∗ · area(A). Then n points are sampled independently from a

uniform distribution over the region A. Due to the use of a large density λ∗, the number n of

points simulated in the first step is much higher than in the final pattern. In the second step, an

independent, location-dependent thinning procedure is performed. For each point in the sample

{x1, · · · , xn} simulated, a decision is made as to whether to “retain” or “thin” it. A point xi is

retained with probability pxi
= λ(xi)/λ

∗ and a point is retained or deleted independently of what

happens to any of the other points. A set of minutiae patterns simulated using this method is

shown in Fig. 11. Note that the direction of a minutia is obtained based on the minutia polarity

and local ridge orientation.

B. Visual Validation

Given a set of N fingerprint minutiae {xi, yi, αi}, 1 ≤ n ≤ N , where (xi, yi) and αi denote

the location and direction of the ith minutia, respectively, the goal of fingerprint reconstruction is

to reconstruct a fingerprint image with the same minutiae pattern as the given minutiae pattern.

Reconstructing a fingerprint that is consistent with the given minutiae pattern is known to be

difficult [10], [11]. The line drawing approach [10] is not very successful in reconstructing

January 5, 2011 DRAFT



17

(a)

(b)

Fig. 11. Minutiae patterns simulated according to the proposed model: (a) four minutiae patterns of arch type and (b) four

minutiae patterns of left loop type.

a complete and realistic fingerprint. The iterative Gabor filtering approach [11] is known to

generate some spurious minutiae and may even annihilate or shift the given minutiae. Based on

Frequency Modulation (FM) model and Holmholz phase decomposition theorem [16], Feng and

Jain [12] first reconstructed the continuous phase and then combined it with the spiral phase

to obtain the reconstructed fingerprint image. Although such an approach can avoid generating

spurious minutiae in principle, spurious minutiae are still introduced in practice. The reason for

spurious minutiae is that the “continuous” phase reconstructed by the algorithm in [12] is not

really continuous.

The goal of the proposed reconstruction algorithm is to reconstruct the FM representation

of the original fingerprint, cos(Ψ(x, y)). To obtain the phase Ψ(x, y), the following three steps

are performed: (i) orientation field reconstruction, (ii) continuous phase reconstruction, and (iii)

combination of the spiral phase and the continuous phase. The flow chart of the proposed

fingerprint reconstruction algorithm is depicted in Fig. 12. While this reconstruction algorithm

uses a similar framework as [12], it differs in how the continuous phase is reconstructed from

an orientation field. Piecewise planar model was used to model continuous phase in [12]. In

contrast, here we employ a non-parametric approach to construct the continuous phase (see the

flowchart in Fig. 13), which is more effective since it can generate fingerprints consistent with

the given minutiae patterns.
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Fig. 12. Flow chart of the proposed fingerprint reconstruction algorithm.

The main steps of the continuous phase reconstruction algorithm are given below:

1) A complex valued fingerprint image I = Ireal+i·Iimag is generated by performing iterative

complex Gabor filtering on a seed image initialized by random noise.

2) The composite phase of fingerprint I is given by arctan(Ireal, Iimag).

3) Spirals are detected from the composite phase image using the algorithm in [21] and the

spiral phase is computed using equation (6).

4) The continuous phase is obtained by subtracting the spiral phase from the composite phase.

This algorithm can be viewed as first generating a fingerprint using a SFinGe like approach and

then extracting the continuous phase of the fingerprint.

A good reconstruction algorithm should preserve almost all of the given minutiae and produce

very few spurious minutiae. As we can see from the example in Fig. 14, using the piecewise

planar model of [12], eleven of the given minutiae are missed and 10 spurious minutiae are

produced. However, using the proposed algorithm, only two of the given minutiae are missed

and no spurious minutiae are produced. In addition, the fingerprint reconstructed by the proposed
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Fig. 13. Constructing the continuous phase from a given orientation field.

(a) (b) (c)

Fig. 14. Fingerprint reconstruction from a given minutiae pattern: (a) Minutiae pattern, (b) reconstructed fingerprint by the

piecewise planar model [12], and (c) reconstructed fingerprint by the proposed algorithm. Missed minutiae are marked by ⃝

and spurious minutiae are marked by �.

algorithm is smoother.

To validate a statistical model of minutiae, minutiae patterns are simulated from the model,

followed by fingerprint image reconstruction. If the reconstructed image appears unrealistic, we

assert that the statistical model is not valid. Note that this validation is based on visual observation

and it is a necessary but not sufficient condition for the validity of a minutiae model. A statistical

and quantitative test, which will be described in the next section, has to be conducted to validate
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the model.

Figure 15(a) shows a set of minutiae patterns simulated using the uniform distribution model

of Pankanti et al. [13], where both the position and direction of a minutia are modeled by

independent uniform distributions. While it is difficult to determine whether this minutiae dis-

tribution model is valid by observing the synthesized minutiae patterns, we can easily glean

that the uniform distribution model is not appropriate by observing the reconstructed fingerprint

images. Figure 15(b) shows a set of minutiae patterns simulated using the mixture model of

Chen and Jain [15]. In the mixture model [15], minutiae in fingerprints of the same pattern

type are clustered into several clusters. In each cluster, the minutia position is modeled by a

bivariate Gaussian distribution, the minutia direction is modeled by von Mises distribution, and

the position and the direction of a minutia are assumed to be conditionally independent of each

other. Again, by observing the fingerprint images reconstructed from the simulated minutiae

patterns, we conclude that the mixture model is not valid. Compared with the reconstructed

images of these two minutiae models, the images (shown in Fig. 15(c)) reconstructed from the

minutiae simulated by the proposed minutiae model are much more realistic.

C. Statistical Test

We have conducted a formal goodness-of-fit test for the proposed minutiae model. The

envelope test introduced by Ripley [30] is used. The idea is to compare the empirical summary

characteristic estimated from true minutiae patterns to estimates of the summary characteristic for

simulated minutiae pattern. The summary characteristic used is the nearest neighbor distribution

function, D(r), which represents the probability that the distance between a minutia and its

nearest neighbor is less than r. The estimate of D(r), D̂(r), is obtained from a sample of 100

different fingerprints (with the same orientation field) simulated by performing iterative Gabor

filtering on random seed images. A total of k = 100 minutiae patterns are simulated using the

proposed model. For each simulated minutiae pattern, the estimate D̂i(r) for i = 1, · · · , k, is

determined. The extreme values

Dmin(r) = min
(i)

D̂i(r) (16)

Dmax(r) = max
(i)

D̂i(r) (17)
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(a) (b)

(c)

Fig. 15. Minutiae patterns simulated by three different minutiae distribution models and the reconstructed fingerprint images

from these minutiae patterns. (a) Uniform model of [13], (b) mixture model of [15], and (c) proposed model.

are obtained. If the inequality

Dmin(r) ≤ D̂(r) ≤ Dmax(r) (18)

holds for all r, namely the empirical summary characteristic is enclosed by the envelope, the

model is accepted, otherwise it is rejected. We conducted this test for models of four types of

fingerprints (namely, arch, left loop, right loop, and whorl) in Fig. 9. As shown in Fig. 16, the

inequality holds for all r in all cases and thus the proposed marked inhomogeneous Poisson

point process model is accepted and is valid.

V. APPLICATIONS

A statistical model of fingerprint minutiae can be used for several applications dealing with

fingerprint analysis. In this section, we present two applications of the proposed model: (i)
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(a) (b)

(c) (d)

Fig. 16. Envelope test of positive and negative minutiae models in fingerprints of four different pattern types: (a) arch, (b)

left loop, (c) right loop, and (d) whorl. Solid lines represent the distribution of nearest neighbor distances based on synthetic

fingerprint images and dotted lines are the envelopes.

determining whether a minutiae pattern comes from a valid fingerprint and (ii) use distinctiveness

of minutiae to improve match score computation.

A. Recognizing Non-Fingerprint Patterns

Given a set of minutiae (with direction), can we tell if it is a valid fingerprint minutiae pattern

or not? In other words, we would like to know if the given set of minutiae were indeed extracted

from a fingerprint image. Invalid fingerprint images or minutiae patterns may be encountered

due to various reasons. In multibiometrics databases maintained by law enforcement agencies,

other biometric traits, such as face or iris, may be incorrectly labeled as fingerprints due to some

mistakes; Minutiae templates in crucial databases may be purposely modified by attackers. It

is desired to have a validation algorithm to detect such invalid fingerprint patterns in order to

maintain the integrity of large scale fingerprint databases.

The proposed validation algorithm consists of two steps: (i) orientation field validation and (ii)

minutiae validation. The orientation field validation algorithm determines whether the orientation

field reconstructed from the given minutiae pattern is valid. If the orientation field is not valid,

the minutiae pattern is deemed as not valid. Otherwise, the minutiae validation algorithm checks

whether the distribution of the minutiae is valid.
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To validate if a minutiae pattern comes from a valid orientation field, the orientation field

is reconstructed from the given minutiae pattern using the algorithm in [12]. Fourth order

polynomials are fitted to the reconstructed orientation field and the orientation field is represented

by the coefficients of the polynomials7. The vector of coefficients is termed as orientation vector

and contains 30 coefficients. The distribution of polynomial coefficients is modeled by a Gaussian

mixture model (see Equation (13)), whose parameters are estimated using 1,125 good quality

fingerprints (with NFIQ [31] value of 1 or 2) in the NIST SD4 database. Given a reconstructed

orientation field, the probability density of its orientation vector is evaluated using Equation (13).

The logarithm of probability density is linearly mapped to a number in the range [0, 1], which

is termed as validity score.

To validate the distribution of a minutiae pattern which passes the orientation field validation,

we compare the two density maps (positive and negative) of the given minutiae pattern with the

corresponding density maps of simulated fingerprints with the same orientation field. Specifically,

the mean of the absolute difference between corresponding density maps is computed. The

negative of the mean is linearly mapped to a validity score in the range [0, 1]. The assumptions

made here are: (i) synthetic fingerprints simulated using an iterative contextual filtering algorithm

[6] are valid, and (ii) the density maps of a valid minutiae pattern should be similar to the density

maps of these synthetic fingerprints with the same orientation field.

To evaluate the proposed orientation field validation algorithm, we collected true minutiae

patterns from 100 fingerprints in NIST SD4 (not included in the training set) and three types of

invalid minutiae patterns: (i) minutiae extracted from 100 face images in the FERET database

[32], (ii) minutiae extracted from 100 iris images in the CASIA-IrisV3 database [33], and (iii) 100

synthetic minutiae patterns simulated using the uniform model [13]. Minutiae in all fingerprint,

face, and iris images are extracted using the same fingerprint feature extraction algorithm in

Neurotechnology VeriFinger 6.2 SDK [34]. Figure 17 shows the distributions of the validity

scores of these four types of minutiae patterns. As shown in Fig. 17, the distributions of the

three types of invalid minutiae patterns are well separated from the distribution of true minutiae

patterns. The examples in Fig. 18 clearly show that the reconstructed orientation fields from

7To avoid the difficulty in modeling caused by missing or spurious singular points in true fingerprint images, the polynomial

model is directly used to approximate the composite orientation field.
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Fig. 17. Distributions of validity scores at the orientation field level for minutiae patterns extracted from face images, iris

images and true fingerprint images, and synthetic minutiae patterns simulated by the uniform model [13].

three types of invalid minutiae patterns are not valid. Figures 17 and 18 also indicate that the

reconstructed orientation field of iris is closer to true fingerprint orientation field than face or

minutiae simulated by the uniform model.

To evaluate the proposed minutiae pattern validation algorithm, we generate minutiae (with

location and polarity) using the uniform model while the direction of each minutia is taken from

true orientation field. This can be viewed as an improved uniform model. The true minutiae

patterns used are the same as in the first experiment (from NIST SD4). Figure 19 shows the

distributions of the validity score of simulated minutiae patterns and true minutiae patterns. The

two distributions are also well separated, even though the simulated minutiae patterns using the

improved uniform model appear quite natural to human eye, as shown in Fig. 20. However, when

the true minutiae pattern contains a large number of spurious minutiae as shown in Fig. 20(c),

its validity score might be lower than the validity scores of some simulated minutiae patterns

using the improved uniform model.

B. Minutia Distinctiveness

The number of matched minutiae pairs is an important factor in computing the match score

between two fingerprints [35], [36]. However, typically all the matched minutiae pairs are treated

equally.

For a minutia p in fingerprint A, the probability that it has a matched minutia q in fingerprint

B is given by integrating the density of minutiae in A in a tolerance region around p. The
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(a) (b)

(c) (d)

Fig. 18. Validating a minutiae pattern at the orientation field level. (a) Minutiae extracted from a face image and the orientation

field reconstructed from the minutiae, (b) minutiae extracted from an iris image and the orientation field reconstructed from the

minutiae, (c) a synthetic minutiae pattern following the uniform model and the orientation field reconstructed from the minutiae,

(d) the minutiae pattern of a true fingerprint image (NIST SD4, F1887) and the orientation field reconstructed from the minutiae.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Score

P
er

ce
nt

ag
e

 

 
Improved uniform
True

Fig. 19. Distributions of validity scores at the minutia level for minutiae patterns simulated by the improved uniform model

and true minutiae patterns.

justification for treating each minutia equally in computing the match score is that the minutiae

follow a uniform distribution model [13]. Thus the probability that any minutia in A has a

matched minutia in B is the same. In other words, no minutia is more distinctive than any

other. However, according to our minutiae model, the higher the density of a minutia, the more
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(a) (b)

(c) (d)

Fig. 20. Validating a minutiae pattern at the minutiae level. (a) A true minutiae pattern (NIST SD4, F1885) and the image

reconstructed from it, (b) a synthetic minutiae pattern (with the same orientation field as (a)) simulated using the improved

uniform model and the image reconstructed from it, (c) a true minutiae pattern (NIST SD4, F0844) and the image reconstructed

from it, (d) a synthetic minutiae pattern (with the same orientation field as (c)) simulated using the improved uniform model

and the image reconstructed from it. The validity score of the true minutiae pattern in (a) is larger than that of the synthetic

minutiae pattern in (b), while the validity score of the true minutiae pattern in (c) is smaller than that of the synthetic minutiae

pattern in (d) due to many missing and spurious minutiae in (c).

probable it is that it has a matched minutia. In other words, minutiae in large density area are

less distinctive than minutiae in low density area.

Minutia distinctiveness can be utilized in computing the match score as follows. Let n be the

number of minutiae within R pixels from a minutia p. The weight or distinctiveness associated

with p is defined as:

w = exp(− n

N(R)
), (19)

where N(R) denotes the average number of neighboring minutiae within R pixels from any

minutia. For R = 40 pixels, N(R) is found to be around 3 on a set of training fingerprints. The

match score is computed as the sum of the weight of each matched minutia.

To validate this approach, we use the Hough transform based minutiae matcher [37] to find

matched minutiae for all 2,800 genuine and 4,950 impostor matches in FVC2002 DB1 A. Figure

21 shows the ROC curves of two match score computation methods, namely, the number of
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Fig. 21. ROC curves of two scoring methods (weighted and non-weighted matched minutiae) on FVC2002 DB1 A. A total

of 2,800 genuine matches and 4,950 impostor matches are performed.

matched minutiae pairs and the weighted matched minutiae pairs. This figure indicates that the

weighted score is better than the unweighted score in discriminating genuine from impostor

matches. Note that the purpose of this experiment is to show the relative contribution of minutia

distinctiveness rather than to develop a new fingerprint matcher. A higher match accuracy can be

obtained by using more sophisticated matching algorithms and including additional features [7],

[38]. Figure 22 shows an example to illustrate why the weighted score has a higher discriminative

ability than the unweighted score. In this example, although the impostor fingerprint pair contains

a larger number of matched minutiae than the genuine fingerprint pair, the weighted score of the

genuine pair is larger because the matched minutiae in the genuine pair are more distinctive.

The above experiment indicates that both the number of matched minutiae pairs and the

distinctiveness of minutiae affect the strength of a match. Thus the standard for identification

that requires a minimum number of matched minutiae between a latent and a known print may

not be the best choice [1]. This experiment also suggests that fingerprint individuality study

should not pose the individuality problem as simply estimating the probability that two arbitrary

minutiae sets share m minutiae, as done in [13], [14].

VI. CONCLUSION AND FUTURE WORK

Although automatic fingerprint recognition technology has advanced significantly in the past

forty years, a fundamental problem, namely, probabilistic distribution of fingerprint patterns, has

yet to be solved. Statistical modeling of fingerprints is of fundamental importance for many
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(a) (b)

Fig. 22. Although the impostor pair in (a) has 22 matched minutiae pairs and the genuine pair in (b) has only 9 matched

minutiae pairs, the weighted score of the genuine pair is 8.1, larger than the weighted score of the impostor pair, 7.4. The

matched minutiae are shown in blue color while the unmatched minutiae are shown in black color.

problems in fingerprint recognition, varying from synthesis, feature extraction, to individuality

assessment. Considering the distinctiveness and popularity of minutiae-based representation of

fingerprints, we focus our study on the problem of statistical modeling of minutiae patterns. We

use a two level generative model to approximate the statistics of minutiae patterns, with the

first level approximating the distribution of orientation fields and the second level modeling

the distribution of minutiae location and polarity. We have also proposed a minutiae-based

fingerprint reconstruction algorithm that preserves the given minutiae pattern and applied it to

evaluate the proposed minutiae model and two previously published minutiae models; fingerprints

reconstructed from minutiae simulated using the proposed model are more realistic than minutiae

simulated by other models. We have applied the proposed model to address two specific problems:

(i) recognizing non-fingerprint patterns and (ii) using minutia distinctiveness in match score

computation. Use of the proposed model provides improved results for both the problems.

The current study can be continued along the following directions. We have assumed minutiae

to be independent of each other. In practice, minutiae with different polarities tend to appear in

pair. We plan to improve the statistical model of minutiae to take into account possible interaction

between neighbouring minutiae. Another interesting problem is to apply the minutiae model to

other practical problems such as individuality estimation and altered fingerprint detection.
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