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Abstract—Fingerprint matching systems generally use four types of representation schemes: grayscale image, phase image, skeleton

image, and minutiae, among which minutiae-based representation is the most widely adopted one. The compactness of minutiae

representation has created an impression that the minutiae template does not contain sufficient information to allow the reconstruction

of the original grayscale fingerprint image. This belief has now been shown to be false; several algorithms have been proposed that

can reconstruct fingerprint images from minutiae templates. These techniques try to either reconstruct the skeleton image, which is

then converted into the grayscale image, or reconstruct the grayscale image directly from the minutiae template. However, they have a

common drawback: Many spurious minutiae not included in the original minutiae template are generated in the reconstructed image.

Moreover, some of these reconstruction techniques can only generate a partial fingerprint. In this paper, a novel fingerprint

reconstruction algorithm is proposed to reconstruct the phase image, which is then converted into the grayscale image. The proposed

reconstruction algorithm not only gives the whole fingerprint, but the reconstructed fingerprint contains very few spurious minutiae.

Specifically, a fingerprint image is represented as a phase image which consists of the continuous phase and the spiral phase (which

corresponds to minutiae). An algorithm is proposed to reconstruct the continuous phase from minutiae. The proposed reconstruction

algorithm has been evaluated with respect to the success rates of type-I attack (match the reconstructed fingerprint against the original

fingerprint) and type-II attack (match the reconstructed fingerprint against different impressions of the original fingerprint) using a

commercial fingerprint recognition system. Given the reconstructed image from our algorithm, we show that both types of attacks can

be successfully launched against a fingerprint recognition system.

Index Terms—Fingerprint synthesis, fingerprint reconstruction, interoperability, minutiae, phase image, orientation field, singularity,

AM-FM.

Ç

1 INTRODUCTION

FINGERPRINT recognition systems play a crucial role in many
situations where a person needs to be verified or

identified with high confidence. As a result of the interaction
of genetic factors and embryonic conditions, the friction ridge
pattern on fingertips is unique to each finger. Fingerprint
features are generally categorized into three levels (Fig. 1):

1. Level 1 features mainly refer to ridge orientation
field and features derived from it, i.e., singular
points and pattern type.

2. Level 2 features refer to ridge skeleton and features
derived from it, i.e., ridge bifurcations and endings.

3. Level 3 features include ridge contours, position,
and shape of sweat pores and incipient ridges.

Most fingerprint matching systems are based on four
types of fingerprint representation schemes (Fig. 2):
grayscale image [2], phase image [3], skeleton image [4],
[5], and minutiae [6], [7]. Due to its distinctiveness,

compactness, and compatibility with features used by
human fingerprint experts, minutiae-based representation
has become the most widely adopted fingerprint represen-
tation scheme. But other representation schemes do show
strong performance, i.e., Bioscrypt’s algorithm in FVC2002
and FVC2004 (Fingerprint Verification Competition) [8].
Some minutiae-based matching systems [9], [10], [11] also
employ additional features, i.e., orientation field, singular
points, ridge count, etc., to improve the matching accuracy.
In these representation schemes, the grayscale image has
the most information and features at all three levels are
recorded (depending on the sensor); compared to grayscale
image, phase image and skeleton image lose all Level 3
features and compared with phase image and skeleton
image, the minutiae template further loses some Level 2
information, such as ridge path between minutiae.

The widespread deployment of fingerprint recognition
systems in various applications has caused concerns that
compromised fingerprint templates may be used to make
fake fingers, which could then be used to deceive all
fingerprint systems the same person is enrolled in. Once
compromised, the grayscale image is the most at risk.
Leakage of a phase image or skeleton image is also
dangerous since it is a trivial problem to reconstruct a
grayscale fingerprint image from the phase image or the
skeleton image. Fig. 3 shows the reconstructed grayscale
image from the phase image �ðx; yÞ by cosð�ðx; yÞÞ and that
from the skeleton image by distance transform. In contrast
to the above three representations, leakage of minutiae
templates has been considered to be less serious as it is not
trivial to reconstruct a grayscale image from the minutiae.
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However, several researchers [12], [13], [14] have shown
that it is possible to reconstruct a fingerprint image from the
given minutiae template.

The methods of Hill [12] and Ross et al. [13] first
reconstruct a skeleton image from minutiae, which is then
converted into the grayscale image. In [12], the orientation
field is generated based on singular points according to the
model in [18]. A line drawing algorithm is used to generate
a sequence of splines passing through the minutiae. In [13],
the orientation field is estimated using selected minutiae
triplets in the template. Streamlines are then traced starting
from minutiae and border points. Linear Integral Convolu-
tion is used to impart texture-like appearance to the ridges.
Finally, the image is smoothed to obtain wider ridges. This
reconstruction algorithm can only generate a partial
fingerprint. In addition, streamlines that terminate due to
distance constraint between adjacent streamlines will
generate spurious minutiae. The validity of this reconstruc-
tion algorithm was tested by matching 2,000 reconstructed
fingerprints against the 2,000 original fingerprints in NIST
SD4. A rank-1 identification rate of 23 percent was reported.

Cappelli et al. [14] proposed a technique to directly
reconstruct the grayscale image from minutiae. The

orientation field is estimated by fitting a modified model
initially proposed in [20] to the minutiae directions. Gabor
filtering is iteratively performed starting from minutiae on
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Fig. 2. Fingerprint representation schemes. (a) Grayscale image (FVC2002 DB1, 19_1), (b) phase image, (c) skeleton image, and (d) minutiae.

Fig. 3. Reconstruction of grayscale fingerprint image (FVC2002 DB1,
19_1, see Fig. 2a). (a) Reconstructed from phase image and
(b) reconstructed from skeleton image.

Fig. 1. Features at three levels in a fingerprint. (a) Grayscale image (NIST SD30, A067_11), (b) Level 1 feature (orientation field), (c) Level 2 feature
(ridge skeleton), and (d) Level 3 features (ridge contour, pore, and dot).



an image initialized by the local minutiae pattern. A
rendering step is performed to make the reconstructed
fingerprint image appear more realistic. The efficacy of this
reconstruction algorithm was assessed by attacking nine
fingerprint matching algorithms. An average True Accept
Rate (TAR) of 81.49 percent at 0 percent False Accept Rate
(FAR) was obtained in matching 120 reconstructed finger-
prints against the 120 original fingerprints in FVC2002 DB1.
However, this algorithm also generates many spurious
minutiae in the reconstructed fingerprints.

Fingerprint reconstruction from minutiae (hereinafter
simply referred to as fingerprint reconstruction) is very
similar to fingerprint synthesis [17] except that the goals
and the inputs of the two techniques are different. The goal
of fingerprint reconstruction is to obtain an artificial
fingerprint that resembles the original fingerprint as much
as possible, while the goal of fingerprint synthesis is to
generate any artificial fingerprint that is as realistic as
possible. For fingerprint reconstruction, the minutiae from a
given fingerprint must be provided, while for fingerprint
synthesis, no input is needed (except for a statistical model
of fingerprint learned from many real fingerprint images).

The well-known SFINGE fingerprint synthesis method of
Cappelli et al. [17] performs Gabor filtering on a seed image
according to the orientation and frequency images; minu-
tiae automatically emerge during the filtering procedure.
Some intraclass variations, such as spatial transformation,
touching area, nonlinear distortion, ridge dilation/shrink-
ing, and noise, are simulated to generate realistic impres-
sions of the master fingerprint. One main limitation of
SFINGE is that minutiae cannot be controlled. As a result,
SFINGE may generate problematic fingerprints that contain
too few minutiae or very long ridges. It is well known that
the distribution of minutiae in fingerprints is not random
and fingerprints of different pattern types have different

minutiae distributions [13]. The minutiae distribution of
fingerprints generated by SFINGE may not conform to such
distributions since these minutiae are automatically gener-
ated during the image filtering process. Similar fingerprint
synthesis methods have also been proposed in [15], [16].
The reaction-diffusion technique described in [21] can also
be used for synthesizing fingerprints. Bicz [19] described a
fingerprint synthesis technique based on the 2D FM model.
The phase of the FM model consists of the continuous
component and the spiral component, which corresponds to
minutiae. A fingerprint is synthesized by first generating
each component separately and then combining them.
Separation of the continuous phase and the spiral phase
makes minutiae controllable. However, the most important
step, generating the continuous phase component, was not
described in [19]. According to the demo software provided
by the author, only a partial fingerprint (around the core)
can be generated and the orientation field of each of the four
fingerprint pattern types (whorl, left loop, right loop, and
arch) is fixed.

Fingerprints can also be synthesized by following the
fingerprint formation process. Fingerprints are believed to
be formed as a result of the buckling process of the
epidermal basal layer, which is caused by regression of
volar pads and resistance of nail furrows and flexion
creases to the intensive proliferation of the basal layer cells
[22]. After simulating the stress, ridge patterns are found as
the solution of a von Karman equation. Although the
synthesized fingerprints in [22] are basically consistent with
real fingerprints, the ridges are not smoothly connected in
the area where different ridge systems [23] meet. Table 1
summarizes the eight fingerprint reconstruction and synth-
esis methods proposed in the literature.

In this paper, a novel approach to fingerprint reconstruc-
tion from minutiae template is proposed which first
reconstructs a phase image from the minutiae template
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TABLE 1
Existing Fingerprint Reconstruction (R) and Synthesis (S) Methods



and then converts the phase image into the grayscale image.
The advantages of our approach over existing approaches to
fingerprint reconstruction [12], [13], [14] are: 1) A complete
fingerprint can be reconstructed and 2) the reconstructed
fingerprint contains very few spurious minutiae. The
proposed reconstruction algorithm has been quantitatively
assessed by matching reconstructed fingerprints against the
corresponding original fingerprints (termed as type-I
attack) and against different impressions of the original
fingerprints (termed as type-II attack) using a commercial
fingerprint SDK, Neurotechnology VeriFinger 4.2 [24].
Type-I attack was found to have a high chance of deceiving
the fingerprint recognition system in both the verification
and identification experiments. Type-II attack also has a
significantly higher accept rate than that of impostor match.
A TAR of 94.13 percent at a FAR of 0 percent has been
observed in the verification experiment conducted on
FVC2002 DB1, and 99.70 percent rank-1 identification rate
has been observed in the identification experiment con-
ducted on the NIST SD4 database.

2 FINGERPRINT REPRESENTATION

Larkin and Fletcher [25] proposed representing a finger-
print image as a 2D amplitude and frequency modulated
(AM-FM) signal:

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cosð�ðx; yÞÞ þ nðx; yÞ; ð1Þ

which is composed of four components: the intensity offset
aðx; yÞ, the amplitude bðx; yÞ, the phase �ðx; yÞ, and the
noise nðx; yÞ. Here, we are only interested in the phase
�ðx; yÞ since ridges and minutiae are totally determined by
the phase; the other three components just make the
fingerprint appear realistic. Therefore, an ideal fingerprint
can be represented as a 2D FM signal:

Iðx; yÞ ¼ cosð�ðx; yÞÞ: ð2Þ

The gradient of the phase is also termed instantaneous
frequency. In a fingerprint image, the direction of instanta-
neous frequency is normal to the local ridge orientation and
the magnitude of instantaneous frequency is equal to the
local ridge frequency.

According to the Helmholtz Decomposition Theorem
[26], the phase can be uniquely decomposed into two parts:
the continuous phase and the spiral phase:

�ðx; yÞ ¼ �Cðx; yÞ þ�Sðx; yÞ: ð3Þ

Hereinafter, the phase �ðx; yÞ is also termed the composite
phase to reflect the fact that it consists of the continuous phase

and the spiral phase.
The continuous phase does not contain any rotational

component and the integral of its gradient around any
simple closed path is zero. For example, the continuous
phase given by

�Cðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð4Þ

corresponds to a grayscale image (cosð�Cðx; yÞÞ) that looks

like a whorl pattern (see Fig. 4). Its gradient (instantaneous
frequency) is ðcosð�Þ; sinð�ÞÞ, where � is the angle in the
polar coordinate system.

The spiral phase �Sðx; yÞ consists of a set of N spirals
(residues):

�Sðx; yÞ ¼
XN
n¼1

pn arctan
y� yn
x� xn

� �
; ð5Þ

where xn and yn denote the coordinates of the nth spiral
and pn 2 f1;�1g denotes its polarity. A spiral with positive
polarity is referred to as a positive spiral and with negative

polarity is referred to as a negative spiral. The gradient of
the spiral phase is not defined in the position of spirals. See
Fig. 5 for the phase of a spiral and its gradient.

A minutia emerges after adding a spiral to the
continuous phase. Assume a positive spiral is added to

the continuous phase shown in Fig. 6a, which is a plane
slanted along the y direction. The gradient of the
continuous phase is a constant vector field (Fig. 6b). Since
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Fig. 4. Continuous phase for a whorl pattern. (a) Continuous phase given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, (b) continuous phase modulo 2�, (c) grayscale image given

by cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ, and (d) gradient of the continuous phase.

Fig. 5. (a) The spiral phase and (b) its gradient.



the gradient of the spiral phase (Fig. 5b) is a rotational
vector field, the gradient magnitude of the composite
phase on the left side of the spiral is smaller than f and
the gradient magnitude of the composite phase on the
right side of the spiral is larger than f . In other words,
ridge frequency decreases on the left side and increases on
the right side. This causes the formation of a minutia with
a direction of 0 degree (Fig. 6e). Adding a negative spiral
to the same position marked by “r” forms a minutia with a
direction of 180 degrees (Fig. 6f). Given the polarity of the
spiral, the minutia type (namely, bifurcation or termina-
tion) is determined by the position of the spiral. A positive
spiral added on the ridge marked by “r” results in a
termination (Fig. 6e), while a bifurcation is generated
when the positive spiral is added in the valley marked by
“v” (Fig. 6g). A negative spiral added on the ridge marked

by “r” results in a bifurcation (Fig. 6f), while a termination
is generated when the negative spiral is added in the
valley marked by “v” (Fig. 6h).

Fig. 6 shows that the local ridge orientation in the
neighborhood of the spiral is slightly changed after the
spiral is added. In fact, the addition of the spiral also
affects the local ridge orientation in the entire image. This
phenomenon is not obvious in Fig. 6, but it becomes
evident in Fig. 7, where local ridge orientations far from
spirals are significantly changed when a large number of
spirals with the same polarity are added. This phenomen-
on is very common in the area close to the delta of
fingerprints and in the funnel area of palmprints.

Fig. 8a shows a synthesized fingerprint that only contains
the continuous phase. Adding seven spirals to the contin-
uous phase leads to the synthesized fingerprint in Fig. 8b.

FENG AND JAIN: FINGERPRINT RECONSTRUCTION: FROM MINUTIAE TO PHASE 213

Fig. 6. Relationship among minutia, continuous phase, and spiral. (a) Continuous phase given by 2�fy, (b) gradient of the continuous phase,
(c) continuous phase modulo 2�, (d) grayscale image given by cosð2�fyÞ (spiral locations are marked), (e) composite image with a positive spiral at “r,”
(f) composite image with a negative spiral at “r,” (g) composite image with a positive spiral at “v,” and (h) composite image with a negative spiral at “v.”

Fig. 7. Effect of spirals on local ridge orientation. (a) Grayscale image of the continuous phase given by ð2�fyÞ and (b) grayscale image of the
composite phase after adding eight positive spirals.



3 FINGERPRINT RECONSTRUCTION

3.1 Problem Statement

Given a set ofN fingerprint minutiae fxn; yn; �ng, 1 � n � N ,
where ðxn; ynÞ and�n denote the location and direction of the
nth minutia, respectively, the goal is to reconstruct the
original fingerprint image modeled by (1). In terms of the FM
model, this input means that we are given 1) the spiral phase
and 2) the direction of instantaneous frequency of the
composite phase at the locations of the N minutiae. This is
an ill-posed problem since the important information
required to reconstruct the continuous phase of fingerprints,
namely, the ridge frequency, is unknown. Information
needed to reconstruct realistic fingerprints, such as bright-
ness, contrast, the background noise of fingerprint sensor,
and detailed ridge features (pores, ridge contours, etc.) is also
not available. Thus, a more practical goal is to first estimate
the FM representation of the original fingerprint, cosð�ðx; yÞÞ.
The 8-bit grayscale fingerprint image is then computed as:

Iðx; yÞ ¼ 1þ cosð�ðx; yÞÞ
2

� 255: ð6Þ

To obtain the phase �ðx; yÞ, the following four steps are
performed:

1. orientation field reconstruction,
2. estimation of gradient of continuous phase,
3. continuous phase reconstruction, and
4. combination of the spiral phase and the continuous

phase.

The flow chart of the proposed fingerprint reconstruction
algorithm is depicted in Fig. 9.

3.2 Reconstruction of Orientation Field

Ross et al. [13] used selected minutiae triplets to estimate
the orientation field in triangles. Cappelli et al. [14]
estimated orientation field by fitting an orientation field
model to the orientations at minutiae. We propose a novel
orientation field reconstruction algorithm that can work
even when only one minutia is available.

The image is divided into nonoverlapping blocks of 8� 8
pixels and an orientation value is computed for each
foreground block. A foreground mask for the fingerprint
image is obtained by dilating the convex hull of minutiae

using a disk-shaped structuring element of 8� 8 pixels. The
local ridge orientation at block ðm;nÞ is predicted by using
the nearest minutia in each of the eight sectors (see Fig. 10).
The minutia direction �k is doubled to make �k equivalent
to �k þ �. The cosine and sine components of 2�k of all of
the K selected minutiae are summed as:

u ¼
XK
k¼1

cosð2�kÞwk; ð7Þ

v ¼
XK
k¼1

sinð2�kÞwk; ð8Þ

where wk is a weighting function. In our experiment, the
reciprocal of the euclidean distance between the block center
and the kth minutia is used in order to make minutiae
direction dominate the ridge orientation of neighboring
blocks. Other weighting functions, such as the Gaussian
function [27], can also be used. Then, the orientation at block
ðm;nÞ is computed as:

Oðm;nÞ ¼ 1

2
arctan

v

u

� �
: ð9Þ

In the event that fingerprint singular points (core, delta)
are also provided, a different approach is used to
reconstruct the orientation field in order to avoid a possible
shift of singularity [17].

1. The directions of minutiae are modified by subtract-
ing the direction field of Ns singular points [18], [28]:

Dsðm;nÞ ¼
1

2

XNs

i

tsi arctan
n� nsi
m�msi

� �
; ð10Þ

where msi , nsi , and tsi (core: 1, delta: �1) denote the
location and type of the ith singular point.

2. The algorithm described in the preceding paragraph
is used to reconstruct the continuous direction
Dcðm;nÞ at all foreground blocks.

3. The orientation field Oðm;nÞ is computed as
ðDsðm;nÞ þDcðm;nÞÞ.

Fig. 11 shows the reconstructed orientation fields for two
fingerprints when singular points are provided and not
provided, respectively. The reconstructed orientation fields
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Fig. 8. Synthetic fingerprint (a) without minutiae and (b) with seven minutiae.



in these two cases are quite similar except for the small
difference in the singularity area. The direction of singular
points is not used here because it is a redundant feature as
long as a few minutiae in the neighborhood of singularity are
known, which is almost always the case in our data set.1 As
shown in Fig. 11, the reconstructed orientation field matches
the original fingerprint very well, even if the singularity
direction is not used.

To evaluate the proposed orientation field reconstruction
algorithm (using minutiae-only templates) quantitatively,
an experiment was done using all the 2,000 file fingerprints
in the NIST SD4 database. The mean of the difference (in
degree) between the reconstructed and original orientation
fields in the foreground region is computed and the
histogram is obtained. The original orientation field is
estimated from the skeleton image of the original image
output by VeriFinger SDK because it is found to be
more robust to noise than the direct estimation from
grayscale image. The foreground mask is also obtained
from the skeleton image. To evaluate the robustness of the
proposed algorithm to the number of available minutiae,
this experiment was repeated using a randomly chosen
subset (80 percent, 60 percent, 40 percent, and 20 percent) of
all minutiae in each fingerprint. The same foreground mask
is used for all five experiments to make the comparison fair.
The histograms of difference in orientation fields are given
in Fig. 12. When all of the minutiae are available, the
average orientation difference is around 5 degrees for most
of the fingerprints and, for no fingerprint is the difference

greater than 8 degrees. We also observed that the
performance does not drop much even when only 60 percent
of all the minutiae are available for reconstruction.

3.3 Estimation of Gradient of Continuous Phase

The gradient of the continuous phase Gcðm;nÞ at block
ðm;nÞ can be computed as:

Gcðm;nÞ ¼ Gðm;nÞ �Gsðm;nÞ; ð11Þ
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Fig. 10. Local ridge orientation is predicted by using the nearest minutiae
(denoted by filled squares) in each of the eight sectors.

Fig. 9. Flow chart of the proposed fingerprint reconstruction algorithm. The reconstructed fingerprint image shown here is NIST SD4, F0285.

1. It is well known that minutiae density is very high in the singularity
region of a fingerprint.



where Gðm;nÞ and Gsðm;nÞ represent the gradients of the
composite phase and of the spiral phase, respectively.
Gsðm;nÞ can be easily computed from the spiral phase in
(5). Although Gðm;nÞ is normal to local ridge orientation,
its direction cannot be simply computed as Oðm;nÞ þ �=2
for two reasons. First, this may produce discontinuity in
phase gradient since the orientation field is wrapped in the
range ½0; �Þ. Second, both ridge orientation and frequency
are not well defined in the neighborhood of minutiae.

To deal with the first problem, we unwrap the initial
orientation field, Oðm;nÞ, to obtain an unwrapped orienta-
tion field, Ouðm;nÞ. This is basically a phase unwrapping
problem [26], except for the trivial difference that phase is
wrapped in the range ½0; 2�Þ, while orientation is wrapped
in the range ½0; �Þ. Starting from the top left-most fore-
ground block, say block ðm;nÞ, whose initial orientation is
directly set as its unwrapped orientation, the orientation at
an adjacent block, say block ðmþ 1; nÞ, is unwrapped by
adding k� to its initial orientation Oðmþ 1; nÞ. Here, k is an
integer number that makes the following inequality hold:

jOuðmþ 1; nÞ �Ouðm;nÞj � �=2: ð12Þ

The above operation is performed in a specific order until all
of the foreground blocks have been unwrapped. For
fingerprints without singularity, depth-first, breadth-first,

216 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 11. Orientation field reconstructed for two different fingerprint images in NIST SD4. (a) F0086 using minutiae, (b) F0086 using minutiae and
singular points, (c) F0025 using minutiae, and (d) F0025 using minutiae and singular points.

Fig. 12. Histograms of the average difference (in degree) between the
reconstructed and original orientation fields of 2,000 file fingerprints in
NIST SD4. The orientation field is reconstructed by using 100 percent,
80 percent, 60 percent, 40 percent, and 20 percent of all minutiae in
each fingerprint, respectively.



or other strategies can be adopted to visit and unwrap blocks,
since the result,Ouðm;nÞ, is independent of the order [26]. As
shown in Fig. 13a, the discontinuity of orientation value2 in
the initial/wrapped orientation field of an arch-type finger-
print disappears in the unwrapped orientation field.

However, when fingerprints contain singular points
which are detected from the reconstructed orientation field
using the Poincaré index method [17], orientation unwrap-
ping is not path/order independent. In this case, we use the
well-known branch cut phase unwrapping algorithm [29].

1. Branch cuts are obtained by tracing the orientation
field starting from each singular point until the
border of the foreground region or meeting another
singular point, as suggested in [25], [30].

2. Starting from the top left-most foreground block,
foreground blocks are visited and unwrapped in the
same manner as in fingerprints without singularity,
except that here branch cuts cannot be crossed.

3. The blocks on the branch cuts are unwrapped.

An example is given in Fig. 13b to show the result of
orientation unwrapping for a loop-type fingerprint. Note
that while discontinuity in the area without singularity

disappears in the unwrapped orientation field, the disconti-
nuity caused by singularity is unavoidable.

Based on the unwrapped orientation field, Ouðm;nÞ,
Gðm;nÞ is computed as:

Gðm;nÞ ¼ 2� f expðiðOuðm;nÞ þ �=2ÞÞ; ð13Þ

where f denotes the ridge frequency. Since it is not possible to
estimate the ridge frequency from minutiae (if the ridge count
information between minutiae is provided, then it is suitable
to estimate the ridge frequency), we have used a constant
frequency value 0.12 for the whole image, which corresponds
to a ridge wavelength of 8.3 pixels in 500 ppi images.

To deal with the second problem, we compute Gcðm;nÞ
according to (11) in blocks that contain no minutiae. Then,
Gcðm;nÞ in the remaining blocks is interpolated using the
neighboring values.

3.4 Reconstruction of Continuous Phase

The continuous phase of a fingerprint is modeled by

piecewise planes at each foreground block ðm;nÞ of 8� 8

pixels:

�Cðx; yÞ ¼ Gcxðm;nÞxþGcyðm;nÞyþ P ðm;nÞ;
8ðm� 1Þ � x < 8m; 8ðn� 1Þ � y < 8n;

ð14Þ

whereGcxðm;nÞ andGcyðm;nÞdenote the two components of
Gcðm;nÞ, andP ðm;nÞdenotes the phase offset at block ðm;nÞ.
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Fig. 13. Orientation field unwrapping for (a) an arch-type fingerprint (NIST SD4, F0006) and (b) a loop-type fingerprint (F0019). From left to right:
orientation field with singular points and branch cuts marked, wrapped orientation field shown as grayscale image, and unwrapped orientation field
shown as grayscale image.

2. Although the initial orientation field in Fig. 13a is continuous
everywhere when it is shown as a line map, the orientation value is not
continuous in the middle of the fingerprint when it is shown as a grayscale
image.



The only unknown value in (14), the phase offset P ðm;nÞ, is
estimated by the following algorithm.

Starting with a queue containing the top left-most block
(whose phase offset is assumed to be 0), in each iteration a
block is obtained from the queue and each of its four-
connected neighbors is checked to see if it has been
reconstructed (namely, the phase offset has been estimated).
If one of the neighboring blocks has not been reconstructed,
the phase offset of this block is estimated and it is put into
the queue. This procedure is performed until the queue is
empty (which means that the continuous phase has been
reconstructed at all of the foreground blocks). An ancillary
image is used to record the reconstructed blocks.

Here, we describe how to estimate the phase offset of a
block using all of the already reconstructed four-connected
neighbors. Consider one of the neighbors, say block
ðm� 1; nÞ, of block ðm;nÞ. The phase images of these two
blocks are required to be continuous at the border pixels
fðx; yÞ : x ¼ 8ðm� 1Þ; 8ðn� 1Þ � y < 8ng. For each border
pixel ðx; yÞ, a phase offset of block ðm;nÞ is estimated:

 ¼ Gcxðm� 1; nÞxþGcyðm� 1; nÞyþ P ðm� 1; nÞ
�Gcxðm;nÞx�Gcyðm;nÞy:

ð15Þ

P ðm;nÞ is then estimated as the mean value of these phase
offsets. It should be noted that phase values cannot be
averaged directly, but should be first converted to complex
numbers which are averaged and reconverted to phase.

After the continuous phase is reconstructed, the recon-
structed fingerprint can be obtained by combining the
continuous phase and the spiral phase. In Fig. 14, the
reconstructed fingerprint is overlaid on the skeleton image
of the original fingerprint and of a different impression of
the same finger. The reconstructed fingerprints match the
original fingerprints well. But, due to distortion, the
reconstructed fingerprint does not match the different
impression as well as the original fingerprint (Figs. 14a
and 14b). The reconstructed fingerprints do contain a few
spurious minutiae, especially in the region of singularity.
The main cause for the spurious minutiae is the assumption
of a fixed ridge frequency for the whole image, which is not
true for real fingerprints.

The piecewise planar model for the continuous phase
does introduce blocking effects in the reconstructed
fingerprints (see Fig. 15b). However, we have not yet been
able to find a better model for all types of fingerprints
because 1) it is very difficult to find an explicit function to
model the continuous phase of a whole fingerprint with
singularity and 2) splitting a fingerprint into many large
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Fig. 14. Reconstructed images for two fingerprints in NIST SD4. (a) The reconstructed image of F0086 and the original skeleton image of F0086,
(b) the reconstructed image of F0086 and the original skeleton image of S0086, (c) the reconstructed image of F0025 and the original skeleton image
of F0025, (d) the reconstructed image of F0025 and the original skeleton image of S0025.



regions and using higher order polynomials to model the
continuous phase in each region can only move the
discontinuity to the border between the adjacent regions.
However, for fingerprints without singularity (such as arch-
type fingerprints or partial fingerprints), a high order
polynomial (third order polynomial was used in our
experiments) can be used to approximate Gcðm;nÞ, the
gradient of the continuous phase of the whole fingerprint;
model parameters can be estimated using the least squares
method. Then, the explicit function of the continuous phase
can be simply obtained from the function of its gradient. As
shown in Fig. 15c, the reconstructed fingerprint using the
high order polynomial model is very smooth and does not
contain any spurious minutiae. Another method to reduce
blocking effects is Gabor filtering (see Fig. 15d).

4 EXPERIMENTS

The proposed fingerprint reconstruction algorithm was used

to reconstruct plain and rolled fingerprints,3 respectively. A

reconstructed fingerprint may be used to attack the system

that stores the original fingerprint template (termed type-I
attack) or other systems where the same finger has also been

enrolled with a different impression (termed type-II attack).
Such fingerprint recognition systems may work either in the

verification mode or in the identification mode. To evaluate

the performance of the proposed reconstruction algorithm in
these situations, VeriFinger 4.2 by Neurotechnology [24] was

assumed to be the fingerprint recognition system. To
understand the effect of additional features (besides minu-

tiae) on the reconstruction performance, we reconstruct
fingerprints based on three types of templates: 1) minutiae,

2) minutiae and singular points, and 3) minutiae and
orientation field. As a comparison, we also report the

matching accuracy when the original grayscale images are

directly used to attack the system, which may be thought of
as the fourth type of template.

4.1 Plain Fingerprints

The verification experiment was performed on FVC2002

DB1 A [31], which consists of 100 fingers and eight plain
impressions per finger. Fingerprints were reconstructed

from three types of templates of all the 800 images. For each
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Fig. 15. Blocking effect in reconstructed fingerprints (based on minutiae-only template). (a) Grayscale image (NIST SD4, S0006), (b) reconstructed
image using the piecewise planar model, (c) reconstructed image using third order polynomial fitting, and (d) enhanced image of (b) using Gabor
filtering.

3. Rolled fingerprints are obtained by rolling a finger from one side to the
other side in order to capture all of the ridge details of a finger. Plain
fingerprints are obtained by directly pressing the finger on a flat surface
[17].



type of template, each reconstructed fingerprint was
matched against all eight impressions of the same finger-
print in the database, which produced 800 type-I attacks
and 5,600 type-II attacks. Similarly, original fingerprints
were matched against all eight impressions of the same
fingerprint to produce 800 type-I attacks and 5,600 type-II
attacks. A total of 4,950 impostor matches were obtained by
cross matching the first impressions of different finger-
prints. By changing the decision threshold, the accept rates
of type-I attack, type-II attack, genuine match, and impostor
match were obtained. The four Receiver Operating Char-
acteristic (ROC) curves in Fig. 16a are plots of the true
accept rates (termed as TAR) of type-I attack using four
types of templates against the false accept rates (termed as
FAR) of impostor match.

It can be observed that even under a secure setting
(0.1 percent FAR) and using minutiae-only template, both
type-I attack and type-II attack have a reasonably high
accept rate (94.13 percent and 45.89 percent, respectively).
As expected, type-I attack has a higher chance than type-II
attack in successfully deceiving a fingerprint verification
system. But the impact of a type-II attack should not be
underestimated since it can be launched against all
fingerprint systems where the same finger has been
enrolled. While the availability of the orientation field can
significantly improve the reconstruction performance,
singular points have negligible impact on the reconstruction
performance, which was also observed in [14].

It should be noted that this performance cannot be
directly compared to the performance reported in [14] since

1. Only type-I attack was considered in [14].
2. Only the first impression (with large image size and

good image quality) of 120 fingers in FVC2002 DB1
was used for reconstruction in [14]. In contrast, we
have used all eight impressions of 100 fingers in
FVC2002 DB1_A, which contains many fingerprints
with a very small area.

3. Four fingerprints which are reconstructed using four
different ridge frequencies are matched against the
template and then the maximum score is adopted in
[14]; we generate only one reconstructed image by
using a fixed ridge frequency.

4. Different fingerprint matchers have very different
ability in dealing with artificial fingerprints, as
shown in [14, Table 4]. We have used a well-known
state-of-the-art commercial matcher [24].

4.2 Rolled Fingerprints

The identification experiment was performed on NIST SD4
[32], which consists of 2,000 pairs of ink-on-paper rolled
fingerprints (called file and search fingerprints, respec-
tively). Fingerprints were reconstructed from the templates
of 2,000 file fingerprints. For each of the four types of
templates, the reconstructed fingerprints were matched
against 2,000 file fingerprints and 2,000 search fingerprints
to obtain 2,000 type-I attacks and 2,000 type-II attacks,
respectively. The Cumulative Match Characteristic (CMC)
curves of type-I attack and type-II attack are given in Fig. 17.

The rank-1 identification rate of 99.70 percent indicates
that type-I attack with minutiae-only template has a very
high identification rate in deceiving a fingerprint identifica-
tion system, even higher than the identification rate of type-II
attack with the image template (92.5 percent). This indicates
that the reconstructed fingerprints are very similar to the
original ones. The rank-1 identification rate of type-I attack is
improved to 100 percent when the orientation field is used in
addition to minutiae. Similarly to the verification experiment
in Section 4.1, inclusion of singular points shows negligible
impact on the performance.

The rank-1 identification rate of type-I attack with
minutiae-only template reported in [13] is only 23 percent.
Since the same fingerprint database has been used and the
same minutiae extraction and matching algorithms have
been employed, we can conclude that the proposed
reconstruction algorithm performs better than the algorithm
of Ross et al. [13].
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Fig. 16. ROC curves of the proposed reconstruction algorithm on FVC2002 DB1_A. (a) Type-I attack and (b) type-II attack.



4.3 Computational Requirements

The reconstruction of fingerprints with the minutiae-only
template in FVC2002 DB1 and NIST SD4 takes around 1.40
and 4.16 seconds per image, respectively, when tested on a
PC with 3 GB of RAM and a 3 GHz Pentium 4 CPU. The
algorithm is currently implemented in MATLAB and we
expect the computational costs to be significantly reduced
after optimization.

5 CONCLUSION AND FUTURE WORK

A novel fingerprint reconstruction scheme has been
proposed which is based on converting the minutiae
representation to the phase representation. The phase is
composed of the continuous phase and the spiral phase. A
reconstructed fingerprint is obtained by reconstructing the
orientation field, reconstructing the continuous phase, and
combining the continuous phase with the spiral phase. The
experimental results show that the reconstructed image is
very consistent with the original fingerprint and that there
is a high chance of deceiving a state-of-the-art commercial
fingerprint recognition system.

The reconstructed fingerprints still contain a few spurious
minutiae, especially in the high-curvature regions. To over-
come this problem, a better model for the continuous phase of
fingerprints of any pattern type should be developed. To
obtain reconstructed images that are even more consistent
with the original fingerprints, ridge frequency and minutiae
type should be utilized. To make the reconstructed finger-
prints appear visually more realistic, brightness, ridge
thickness, pores, and noise should be modeled. The accept
rate of the reconstructed fingerprints can be further improved
by reducing the image quality around the spurious minutiae.
To reduce the risk of attacks using reconstructed fingerprints,
robust fingerprint template security [33] and spoof detection
techniques [34] should be developed.

Fingerprint reconstruction may also be used for improv-
ing the interoperability among minutiae encoders and
matchers from different vendors, which was identified as a
problem in the NIST MINEX testing [35]. By reconstructing

fingerprint images from standard templates encoded by
vendor A, vendor B may extract and utilize proprietary
features from the reconstructed images which have the
potential to provide better performance than standard
templates. But, we suggest that only the reconstructed
orientation field should be used since the additional features
generated by our current algorithm are less reliable.

While the proposed algorithm is designed for fingerprint
reconstruction, its underlying ideas, namely, representing
fingerprints using phase, decomposing phase into contin-
uous phase and spiral phase, and modeling the continuous
phase with piecewise polynomials, may also have use in
fingerprint enhancement and matching. Currently, we are
trying to apply the reconstruction method to the difficult
and important problem of latent fingerprint restoration. See
Fig. 18 for a direct use of the proposed reconstruction
algorithm to a latent fingerprint in NIST SD27. Both the
ridge flow and minutiae in the reconstructed fingerprint
match the original fingerprint well. But, apparently, the
reconstructed ridge pattern does not match the original
ridge skeleton exactly. The current reconstruction algorithm
has to be significantly modified to utilize all of the available
input in the latent fingerprint restoration problem, such as
the grayscale image and other features (such as ridge
orientation and skeleton) manually marked by the latent
expert.
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Fig. 17. CMC curves of the proposed reconstruction algorithm on NIST SD4. (a) Type-I attack and (b) type-II attack.



REFERENCES

[1] J. Feng and A.K. Jain, “FM Model Based Fingerprint Reconstruc-
tion from Minutiae Template” Proc. Second Int’l Conf. Biometrics,
pp. 544-553, June 2009.

[2] A.M. Bazen, G.T.B. Verwaaijen, S.H. Gerez, L.P.J. Veelenturf, and
B.J. van der Zwaag, “A Correlation-Based Fingerprint Verification
System,” Proc. 11th Ann. Workshop Circuits Systems and Signal
Processing, pp. 205-213, Nov. 2000.

[3] L.R. Thebaud, “Systems and Methods with Identity Verification
by Comparison and Interpretation of Skin Patterns Such as
Fingerprints,” US Patent No. 5,909,501, 1999.

[4] J. Feng, Z. Ouyang, and A. Cai, “Fingerprint Matching Using
Ridges,” Pattern Recognition, vol. 39, no. 11, pp. 2131-2140, 2006.

[5] M. Hara and H. Toyama, “Method and Apparatus for Matching
Streaked Pattern Image,” US Patent No. 7,295,688, 2007.

[6] N.K. Ratha, R.M. Bolle, V.D. Pandit, and V. Vaish, “Robust
Fingerprint Authentication Using Local Structural Similarity,”
Proc. Fifth IEEE Workshop Applications of Computer Vision, pp. 29-34,
2000.

[7] A.M. Bazen and S.H. Gerez, “Fingerprint Matching by Thin-Plate
Spline Modelling of Elastic Deformations,” Pattern Recognition,
vol. 36, no. 8, pp. 1859-1867, Aug. 2003.

[8] FVC2004, the Third Int’l Fingerprint Verification Competition,
http://bias.csr.unibo.it/fvc2004/, 2010.

[9] M. Tico and P. Kuosmanen, “Fingerprint Matching Using an
Orientation-Based Minutia Descriptor,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1009-1014,
Aug. 2003.

[10] J. Feng, “Combining Minutiae Descriptors for Fingerprint Match-
ing,” Pattern Recognition, vol. 41, no. 1, pp. 342-352, 2008.

[11] K. Asai, H. Izumisawa, K. Owada, S. Kinoshita, and S. Matsuno,
“Method and Device for Matching Fingerprints with Precise
Minutia Pairs Selected from Coarse Pairs,” US Patent No.
4,646,352, 1987.

[12] C. Hill, “Risk of Masquerade Arising from the Storage of
Biometrics,” master’s thesis, Australian Nat’l Univ., 2001.

[13] A. Ross, J. Shah, and A.K. Jain, “From Template to Image:
Reconstructing Fingerprints from Minutiae Points,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 544-560,
Apr. 2007.

[14] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, “Fingerprint
Image Reconstruction from Standard Templates,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1489-
1503, Sept. 2007.

[15] S.O. Novikov and G.N. Glushchenko, “Fingerprint Ridges
Structure Generation Models,” Proc. SPIE Int’l Workshop Digital
Image Processing and Computer Graphics, pp. 270-274, 1997.

[16] J.L. Araque, M. Baena, B.E. Chalela, D. Navarro, and P.R. Vizcaya,
“Synthesis of Fingerprint Images,” Proc. 16th Int’l Conf. Pattern
Recognition, pp. 422-425, Aug. 2002.

[17] D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. second ed. Springer-Verlag, 2009.

[18] B.G. Sherlock and D.M. Monro, “A Model for Interpreting
Fingerprint Topology,” Pattern Recognition, vol. 26, no. 7,
pp. 1047-1055, 1993.

[19] W. Bicz, “The Idea of Description (Reconstruction) of Fingerprints
with Mathematical Algorithms and History of the Development of
This Idea at Optel,” Optel, http://www.optel.pl/article/english/
idea.htm, 2003.

[20] P.R. Vizcaya and L.A. Gerhardt, “A Nonlinear Orientation Model
for Global Description of Fingerprints,” Pattern Recognition,
vol. 29, no. 7, pp. 1221-1231, 1996.

[21] A. Witkin and M. Kass, “Reaction-Diffusion Textures,” ACM
SIGGRAPH Computer Graphics, vol. 25, no. 4, pp. 299-308, 1991.

[22] M. Kücken and A.C. Newell, “Fingerprint Formation,”
J. Theoretical Biology, vol. 235, no. 1, pp. 71-83, 2005.

[23] H. Cummins and M. Midlo, Finger Prints, Palms and Soles: An
Introduction to Dermatoglyphics. Dover Publications, 1961.

[24] Neurotechnology Inc., VeriFinger, http://www.neurotechnology.
com, 2010.

[25] K.G. Larkin and P.A. Fletcher, “A Coherent Framework for
Fingerprint Analysis: Are Fingerprints Holograms?” Optics
Express, vol. 15, pp. 8667-8677, 2007.

[26] D.C. Ghiglia and M.D. Pritt, Two-Dimensional Phase Unwrapping:
Theory, Algorithms, and Software. John Wiley and Sons, 1998.

[27] J. Bigun and G.H. Granlund, “Optimal Orientation Detection of
Linear Symmetry,” Proc. First Int’l Conf. Computer Vision, pp. 433-
438, June 1987.

[28] J. Zhou and J. Gu, “Modeling Orientation Fields of Fingerprints
with Rational Complex Functions,” Pattern Recognition, vol. 37,
no. 2, pp. 389-391, 2004.

[29] R.M. Goldstein, H.A. Zebker, and C.L. Werner, “Satellite Radar
Interferometry: Two Dimensional Phase Unwrapping,” Radio
Science, vol. 23, no. 4, pp. 713-720, 1988.

[30] K.G. Larkin, “Natural Demodulation of 2D Fringe Patterns,” Proc.
Fourth Int’l Workshop Automatic Processing of Fringe Patterns, 2001.

[31] FVC2002, the Second Int’l Fingerprint Verification Competition,
http://bias.csr.unibo.it/fvc2002/, 2010.

222 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 18. Reconstruction of latent fingerprint. (a) Latent fingerprint (NIST SD27, G001) with manually marked minutiae, (b) reconstructed fingerprint
and the skeleton of the original fingerprint, and (c) the original fingerprint and the skeleton of the reconstructed fingerprint.



[32] NIST Special Database 4, NIST 8-Bit Gray Scale Images of
Fingerprint Image Groups (FIGS), http://www.nist.gov/srd/
nistsd4.htm, 2010.

[33] K. Nandakumar, A.K. Jain, and S. Pankanti, “Fingerprint-Based
Fuzzy Vault: Implementation and Performance,” IEEE Trans.
Information Forensics and Security, vol. 2, no. 4, pp. 744-757, Dec.
2007.

[34] K.A. Nixon and R.K. Rowe, “Multispectral Fingerprint Imaging
for Spoof Detection,” Biometric Technology for Human Identification
II, A.K. Jain and N.K. Ratha, eds., pp. 214-225. SPIE, 2005.

[35] NIST Minutiae Interoperability Exchange Test (MINEX), http://
fingerprint.nist.gov/minex04/, 2010.

Jianjiang Feng received the BS and PhD
degrees from the School of Telecommunication
Engineering, Beijing University of Posts and
Telecommunications, China, in 2000 and 2007,
respectively. From 2008 to 2009, he was a
postdoctoral researcher in the Pattern Recogni-
tion and Image Processing Laboratory at Michi-
gan State University. He is currently an assistant
professor in the Department of Automation at
Tsinghua University, Beijing. His research inter-

ests include fingerprint recognition, palmprint recognition, and structural
matching. He is a member of the IEEE.

Anil K. Jain is a university distinguished
professor in the Department of Computer
Science and Engineering at Michigan State
University. His research interests include pattern
recognition and biometric authentication. He
received the 1996 IEEE Transactions on Neural
Networks Outstanding Paper Award and the
Pattern Recognition Society Best Paper Awards
in 1987, 1991, and 2005. He served as the
editor-in-chief of the IEEE Transactions on

Pattern Analysis and Machine Intelligence (1991-1994). He is a fellow
of the AAAS, the ACM, the IEEE, the IAPR, and the SPIE, and a
member of the IEEE Computer Society. He has received Fulbright,
Guggenheim, Alexander von Humboldt, IEEE Computer Society
Technical Achievement, IEEE Wallace McDowell, and IAPR King-Sun
Fu Awards. The holder of six patents in the area of fingerprints, he is the
author of a number of books, including the Handbook of Biometrics
(2007), Handbook of Multibiometrics (2006), Handbook of Face
Recognition (2005), Handbook of Fingerprint Recognition (2009),
BIOMETRICS: Personal Identification in Networked Society (1999),
and Algorithms for Clustering Data (1988). ISI has designated him a
highly cited researcher. According to Citeseer, his book Algorithms for
Clustering Data (Prentice-Hall, 1988) is ranked #93 in the most cited
articles in computer science. He currently serves as an associate editor
of the IEEE Transactions on Information Forensics and Security and the
ACM Transactions on Knowledge Discovery in Data. He is a member of
the Defense Science Board and The National Academies committees on
Whither Biometrics and Improvised Explosive Devices.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FENG AND JAIN: FINGERPRINT RECONSTRUCTION: FROM MINUTIAE TO PHASE 223


