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Orientation Field Estimation
for Latent Fingerprint Enhancement

Abstract—Identifying latent fingerprints is of vital importance for law enforcement agencies to apprehend criminals and terrorists.
Compared to live-scan and inked fingerprints, the image quality of latent fingerprints is much lower, with complex image background,
unclear ridge structure, and even overlapping patterns. A robust orientation field estimation algorithm is indispensable for enhancing
and recognizing poor quality latents. However, conventional orientation field estimation algorithms, which can satisfactorily process
most live-scan and inked fingerprints, do not provide acceptable results for most latents. We believe that a major limitation of
conventional algorithms is that they do not utilize prior knowledge of the ridge structure in fingerprints. Inspired by spelling correction
techniques in natural language processing, we propose a novel fingerprint orientation field estimation algorithm based on prior
knowledge of fingerprint structure. We represent prior knowledge of fingerprints using a dictionary of reference orientation patches.
which is constructed using a set of true orientation fields, and the compatibility constraint between neighboring orientation patches.

925

Orientation field estimation for latents is posed as an energy minimization problem, which is solved by loopy belief propagation.
Experimental results on the challenging NIST SD27 latent fingerprint database and an overlapped latent fingerprint database
demonstrate the advantages of the proposed orientation field estimation algorithm over conventional algorithms.

Index Terms—Fingerprint matching, fingerprint enhancement, latent fingerprint, orientation field, dictionary, spelling correction

1 INTRODUCTION

LATENT fingerprints refer to the impressions unintention-
ally left on items handled or touched by fingers. Such
fingerprints are often not directly visible unless some
physical or chemical technique is applied to enhance them
[1]. Since the early 20th century, latent fingerprints have
served as important evidence for law enforcement agencies
to apprehend and convict criminals [2].

Compared to fingerprints captured using inking or live-
scan techniques (see Fig. 1), the quality of most latent
fingerprints is very low, with unclear ridge structure, uneven
contrast, and overlapping patterns, such as printed letters,
handwriting, or even other fingerprints [3]. Because of the
poor image quality, features (such as minutiae) in latents
need to be manually marked by latent examiners so that they
can be searched against large fingerprint databases by
Automated Fingerprint Identification Systems (AFISs).

Automatic latent feature extraction is desirable for
several reasons:

1. Reducing the time spent by latent examiners in
manual markup. A crime scene can contain as many
as hundreds of latents. However, only a small portion
of them can be processed simply because law
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enforcement agencies do not have sufficient man-
power. It can take 20 minutes or even longer to mark
the minutiae in a single latent. Automatic feature
extraction can improve the efficiency of processing
latents, leading to more identifications quickly [4].

2. Improving the compatibility between minutiae in
latent and full fingerprints. In current practice,
minutiae in latents are manually marked while
minutiae in full fingerprints are automatically
extracted. This can cause a compatibility problem.
Although this compatibility issue is not a severe
problem for full fingerprint matching, this problem
cannot be underestimated in the case of latent
matching since, in a tiny and smudgy latent, every
minutia plays an important role. To address this
issue, AFIS vendors usually provide training courses
to latent examiners on how to better mark minutiae
for their particular AFIS system since different
vendors’ systems are not very consistent in extract-
ing minutiae. However, it takes time for fingerprint
examiners to get familiar with a system. This
problem can be alleviated provided features in
latents are also extracted by automatic algorithms.

3. Improving repeatability/reproducibility of latent
identification. The minutiae in the same latent
marked by different latent examiners or even by the
same examiner (but at different times) may not be the
same. This is one of the reasons why different latent
examiners or even the same examiner (but at
different times) make different matching decisions
on the same latent-exemplar pair [5], [6]. The Daubert
standard, which specifies the admissibility of scien-
tific testimony in United States courts, requires that
the error rate of latent matching should be known.
However, lack of repeatability/reproducibility
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Fig. 1. Fingerprints obtained using three types of techniques. (a) Inked
fingerprint. (b) Live-scan fingerprint. (c) Latent fingerprint.

makes estimating the error rates of latent examiners
very difficult [7]. Even if an error rate can be
estimated by a “black box” test' [5], it cannot apply
to a different examiner’s decision on a new latent-
exemplar pair. The only viable solution appears to be
to keep improving automated fingerprint systems’
performance so that the role of latent examiners is
limited to very difficult latents. Hence, automating
latent feature extraction is an indispensable step
toward this long-term goal.

To enable reliable feature extraction, a latent fingerprint
image, which is often of very poor quality, needs to go
through an image enhancement stage which connects
broken ridges, separates joined ridges, and removes over-
lapping patterns. After the latent is enhanced, conventional
minutiae extraction algorithm can be used [8]. Contextual
filtering (or directional filtering) is the most widely used
fingerprint enhancement technique [9], [10], [11]. Although
different contextual filters differ in details, the intended
behavior is the same: 1) performing low-pass filtering along
the ridge in order to fill gaps and pores, and 2) performing
bandpass filtering across the ridges in order to separate
joined ridges [8].

The contextual filtering techniques require reliable
estimation of local ridge orientation, which is not a trivial
task for poor quality fingerprints. That is why orientation
field estimation and a very related topic, singularity
detection, are two of the most active topics in the fingerprint
recognition literature [10], [11], [12], [13], [14], [15], [16],
(171, [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37]. However, all
these algorithms were developed for plain or rolled
fingerprints. As shown in Fig. 2, the performance of
representative orientation field estimation algorithms on
latents is far from satisfactory. Realizing the gap between
human and machine performance in extracting orientation
field for latents, a few recent studies have focused on latent
orientation field estimation [38], [39]. However, these
algorithms require manually marked singular points in
order to obtain a reasonable performance.

In this paper, a robust orientation field estimation
algorithm is proposed to process poor quality fingerprints,
especially latents. Given prior knowledge of fingerprint
structure, which is represented by a dictionary of reference
orientation patches and compatibility constraints between

1. In a black box test [5], the latent matching process of examiners is
treated as a black box and only the final accuracy in making the decisions is
studied.

adjacent orientation patches, the proposed algorithm obtains
better performance for latents than published algorithms
(see Fig. 2). For some latents, the match scores using minutiae
automatically extracted from latents enhanced by the
proposed algorithm are even higher than the match scores
using manually marked minutiae.

The rest of the paper is organized as follows: In Section 2,
published orientation field estimation algorithms are re-
viewed. In Section 3, the motivation of the proposed
algorithm is discussed. The details of the proposed algo-
rithm are presented in Section 4. Experimental results are
reported and analyzed in Section 5. Finally, we conclude the
paper and suggest future research directions for this topic.

2 REeLATED WORK

In this section, we review published algorithms for
orientation field estimation, which are coarsely classified
into three categories.

2.1 Local Estimation

Local estimation approaches compute a local ridge orienta-
tion at pixel x = (z,y) using only the neighborhood around
x, which is typically 32 x 32 pixels for 500 ppi fingerprints.

The most well-known local estimation approach is
gradient-based [13], [14], [41], [42]. Since gradient operators,
such as Prewitt or Sobel operators [43], are sensitive to noise
and pores (regularly placed on the ridges), a dominant
orientation is computed using the gradients in the local
neighborhood.

Slit-based approach is another widely used orientation
field estimation method [30]. This approach explicitly
utilizes the fact that the variation of intensity is the smallest
along the ridge orientation and largest along the orthogonal
orientation. By testing such a hypothesis along a number of
different orientations, the best orientation is chosen.

Ridge pattern in a local area of a finger can be
approximated by a 2D sine wave [44]. Thus, the magnitude
spectrum of the Fourier transform of a local fingerprint
image will contain a pair of peaks whose location corre-
sponds to the parameters of the sine wave. The magnitude
spectrum can be mapped to the polar coordinate system. The
normalized magnitude spectrum can be viewed as a
probability distribution [11]. The best orientation can be
estimated as the most probable orientation or the mean.

Orientation fields obtained by local estimation ap-
proaches for poor quality fingerprints are usually very
noisy. To deal with this problem, two types of algorithms
have been adopted to regularize the noisy orientation field,
namely, orientation field smoothing and global parametric
model fitting. Typically, some constraints or knowledge
about the fingerprint orientation field are utilized in the
regularization algorithm.

2.2 Smoothing

Many orientation field regularization techniques have been
proposed to deal with noise present in the fingerprint. The
most commonly used smoothing method is based on low-
pass filtering [14]. Although the low-pass filtering method
is simple and effective, the size of the filtering window is a
critical parameter. A large window can suppress the noise
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(a)

(d)

Fig. 2. A latent fingerprint (a), its mated rolled fingerprint (b) with the corresponding region marked by a green box, and its enhanced latents using
three different orientation field estimation algorithms: (c) FOMFE [25], (d) STFT [11], (e) proposed. Minutiae in (a) are manually marked by latent
examiners, minutiae in (b) are automatically extracted using VeriFinger SDK 6.2 [40], while minutiae in (c), (d), (e) are automatically extracted from
the enhanced images using VeriFinger. The minutiae match scores (computed by VeriFinger) between (a), (c), (d), (e) and the mated rolled

fingerprint (b) are 39, 35, 24, and 54, respectively.

better while a small window can preserve the true
orientation in a high curvature region. Several authors
have suggested using multiresolution orientation fields to
address this problem [9], [21], [30], [45]. However, when the
noise is severe, as in latents, smoothing techniques are not
able to recover the true orientation field.

Several researchers have implemented orientation field
smoothing by using the Markov Random Field (MRF)
model or energy minimization approach [16], [19], [31]. A
well-known limitation of these algorithms is that the
orientation variable corresponds to a very small image
region so that it can be represented by a single dominant
orientation. However, an MRF model with small neighbor-
hood or context is able to exploit only limited prior
knowledge about fingerprint structure [46], [47] and thus
cannot deal with fingerprints of very poor quality.

2.3 Global Parametric Models

Researchers have proposed several mathematical models to
represent the whole fingerprint orientation field. Some of
the models are quite general, such as polynomials [22] and
Fourier series [25], while the others are more specific to
fingerprints [12], [20], [29]. Without invoking constraints on
the parameters [22], [25], general models tend to have
overfitting (e.g., if the order of the polynomial is high) or
underfitting problems (e.g., if the order of the polynomial is
low), especially when the initial orientation field is very
noisy. Models which explicitly consider singular points [12],

[20], [29] rely on reliable extraction of singular points.
However, extracting singular points in latents is a very
challenging problem itself. That is why the orientation field
estimation approaches in [38] and [39] require manually
marked singular points as input.

3 MOTIVATION

Although conventional orientation field estimation algo-
rithms can satisfactorily process most live-scan and inked
fingerprints, their performance on most of the latents is far
from satisfactory (see Fig. 2). We believe that a major
limitation of conventional algorithms is that they do not
adequately incorporate prior knowledge of fingerprints. It
is now widely recognized that representing and learning
prior knowledge is of fundamental importance in many
natural language processing and computer vision tasks [47],
[48]. However, in the fingerprint recognition area, it has
received little attention.

We can draw an analogy between a fingerprint orienta-
tion field and a sentence in a natural language. A sentence is
comprised of words which are further comprised of letters.
Similarly, a fingerprint orientation field is comprised of
orientation patches which are further comprised of orienta-
tion elements. Hence, a fingerprint orientation field can be
viewed as a sentence, an orientation patch can be viewed as
a word, and an orientation element can be viewed as a
letter. These definitions are illustrated in Fig. 3.
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fingerprints. An orientation patch contains 10 x 10 orientation elements and an orientation element represents the dominant direction in a block of

Fig. 4. Orientation patches sampled from a uniform distribution of orientation element. None of these orientation patches is likely to appear in real
16 x 16 pixels.
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Initial Dictionary
¥ estimation lookup

Initial orientation field

Input fingerprint

—>
Dictionary
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Fig. 5. The proposed system consists of an offline dictionary construction stage and an online orientation field estimation stage.

patch. Contextual information is then used to determine a
single candidate for each patch.

4 PROPOSED ALGORITHM

4.1 Overview

The proposed orientation field estimation algorithm con-
sists of an offline dictionary construction stage and an
online orientation field estimation stage (see the flowchart
in Fig. 5). In the offline stage, a set of good quality
fingerprints of various pattern types (arch, loop, and whorl)
is manually selected and their orientation fields are used to
construct a dictionary of orientation patches. In the online
stage, given a fingerprint image, its orientation field is
automatically estimated using the following steps:

1. Initial estimation. The initial orientation field is
obtained using a local orientation estimation method
such as local Fourier analysis [44].

2. Dictionary lookup. The initial orientation field is
divided into overlapping patches. For each initial
orientation patch, its six nearest neighbors in the
dictionary are viewed as candidates for replacing the
noisy initial orientation patch.

3. Context-based correction. The optimal combination of
candidate orientation patches is found by consider-
ing the compatibility between neighboring orienta-
tion patches.

In the following sections, we first describe the offline

dictionary construction and then present the three steps in
the online orientation field estimation algorithm.

4.2 Dictionary Construction

The dictionary consists of a number of orientation patches
of the same size. An orientation patch consists of b x b
orientation elements and an orientation element refers to
the dominant orientation in a block of size 16 x 16 pixels.

We construct a dictionary of orientation patches from a
set of high-quality fingerprints (referred to as reference
fingerprints). The orientation fields (defined on blocks of
size 16 x 16 pixels) of these fingerprints are estimated using
a state-of-the-art algorithm, VeriFinger 6.2 SDK [40]. High-
quality fingerprints and the state-of-the-art algorithm are
used to ensure that the dictionary does not contain invalid
words. A number of orientation patches, whose orientation
elements are all available, are obtained by sliding a window
(whose size is b x b blocks) across each reference orientation
field and its mirrored version. Considering that the
direction of the latent fingerprint is unknown, each
orientation patch is rotated by 21 different angles {i-
5°,—10 < i < 10} to generate additional orientation patches.

Given these orientation patches, a greedy algorithm is
employed to construct a set of reference orientation patches,
which forms the dictionary (see Fig. 6 for a few examples).
The greedy algorithm is described below.

1. The first orientation patch is added into the
dictionary, which is initially empty.

2. Then we test whether the next orientation patch is
sufficiently different from all the orientation patches
in the dictionary. If yes, it is also added into the
dictionary; otherwise, the next orientation patch is
tested. Here, the similarity measure between two
orientation patches of b x b blocks is computed as
ns/b?, where n, denotes the number of orientation
elements whose difference is less than 10 degrees.

3. Repeat step 2 until all orientation patches have
been tested.

The number of reference orientation patches in the
dictionary depends on the number of reference orientation
fields and the size of the patch. When the size of the patch is
10 x 10 blocks and 50 reference orientation fields are used,
the number of reference orientation patches is around 23K.
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Fig. 6. Examples of reference orientation patches in the dictionary. Recall that an orientation patch contains 10 x 10 orientation elements and an

orientation element corresponds to a block of 16 x 16 pixels.

The size of the orientation patch has a direct impact on
the ability of correcting errors in the initial orientation field.
However, a large patch also requires a large dictionary,
which takes more time to search. An example is given in
Fig. 7 to demonstrate the impact of patch size on dictionary-
based correction performance. If the patch is of size 3 x 3 or
5 x 5 blocks, the closest reference orientation patch (simi-
larity measure is described in the next section) is incorrect.
However, when a 9 x 9 patch is used, the closest reference
orientation patch is very close to the true orientation field.
To further demonstrate the impact of patch size, we apply a
simple nearest neighbor approach to correct the initial
orientation field of two latent fingerprints. Here, the initial
orientation patches are directly replaced by the closest
reference orientation patches without considering compat-
ibility between neighboring patches. As we can see from
Fig. 8, the performance of this approach improves with the
increase in patch size. The estimation errors close to the
finger boundary are due to border effect (those patches
contain very few foreground blocks).

4.3 Initial Orientation Field Estimation

The initial orientation field is obtained using a simple
algorithm [44]. Other local estimation algorithms, such as
gradient-based and slit-based, should also suffice for this
initial step. The dominant orientation in a 16 x 16 block is
computed by detecting the peak in the magnitude spectrum
of the local image. Due to the poor quality of latents, the
initial orientation field is usually very noisy (see Fig. 9).
However, orientation field smoothing should be avoided in
this stage since correct orientation elements may even be
degraded by strong noise in the neighboring regions. The

problem of correcting a noisy orientation field is left to the
later stages, which utilize prior knowledge of fingerprints.

4.4 Dictionary Lookup

Given an initial orientation patch that contains at least one
foreground block, we retrieve a list of candidate reference
orientation patches from the dictionary, which are sorted
according to their similarity with the initial patch. In order
to retrieve the correct orientation patches at high rank,
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Fig. 7. Nearest neighbors of different patch sizes.
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Fig. 8. Orientation fields of two latents ((a) and (b)) estimated using different patch sizes (increasing from left to right: 3 x 3, 5 x 5, 7x 7, 9 x 9,

11 x 11). Contextual information is not utilized here.

proper similarity measure and retrieval strategy need to be
designed.

The similarity S(®,®) between an initial orientation
patch © and a reference orientation patch ® is computed by
comparing corresponding orientation elements. Let n; be
the number of orientation elements in the initial orientation
patch. Let ng be the number of orientation elements whose
differences are less than a predefined threshold (empiri-
cally set as 7/12). The similarity between two patches is
defined as

S(O©,®) = ng/ng. (1)

Orientation field correction is posed as a combinational
optimization problem. The total number of possible solu-
tions is n."», where n, is the length of candidate list and n,
is the number of patches in the input fingerprint. While

N = ==\N\N
N/~ ZN=ANN NSNS~
N=/=~ N/ ~N\A=NrSL
I~z 1
/
4
b3
/
\

!

J/NSSSSNN

YL VAN

N \—[ /o A AN
N=ININ/ZAt=/N/ T
NN/ /Nce~sN2 |
SONNN=S NN
~INNN=/7-21 0N

1 ~

INSAS==Nsw~| s
R A R N BN
e R N e ]

LU=/ Ve [ NN
==/ UNNS 7SS ISNNNN

N
|
\
1
\

e
/

~

~

(@ (b)

Fig. 9. A latent fingerprint (a) and its initial orientation field (b).

a shorter list makes the search more efficient, a longer list
will more likely contain the optimal solution.

After observing the top candidate orientation patches of
many initial orientation patches, we determined that the top
candidates of the same initial orientation patch are quite
similar to each other (see Fig. 10c). However, to increase the
probability of including the correct patches in a short
candidate list, it is better to have a diverse set of candidates.
Hence, a diverse set of n, (empirically set as 6) candidates is
selected from the top 10n. initial candidates using the
following greedy strategy:
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(d) Retrieved candidate patches with diversity rule

Fig. 10. Candidate orientation patches obtained without (c) and with
(d) diversity rule.
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Fig. 11. Compatibility between neighboring orientation patches. (a) A
pair of orientation patches (one shown in blue and the other in red) with
high compatibility value (0.92). (b) A pair of orientation patches with low
compatibility value (0.69).

Choose the first initial candidate.

The next initial candidate is compared to each of the
chosen candidates. If its similarity to all the chosen
candidates is below a predefined threshold (empiri-
cally set as 0.8 in our experiment), it is chosen. Note
that similarity is measured using only the fore-
ground blocks in the initial orientation patch.

3. Repeat step 2 for all the initial candidates until
n. candidates have been chosen or all initial
candidates have been checked.

DN —

Fig. 10 compares the candidates obtained without and
with this diversity rule. With the diversity rule, the
candidates contain more variations. As a result, when
the initial orientation patch is very noisy or incomplete, the
possibility that correct orientation patches appear in the
candidate list is larger.

4.5 Context-Based Orientation Field Correction
After dictionary lookup, we obtain a list of ¢; (1 < ¢; < n,)

candidate orientation patches, ®; = {®,1, ®;2,..., ®;, }, for
TABLE 1
Fingerprint Databases Used in This Study
Database Description Purpose
NIST SD4 2,000 pairs of rolled fingerprints; | dictionary
http://www.nist.gov/srd/nistsd4. construction
cfm
NIST 27,000 pairs of rolled fingerprints; | background
SD14 http://www.nist.gov/srd/nistsd 14. database
cfm
NIST 258 pairs of latent fingerprints and | algorithm
SD27 mated rolled fingerprints; http:/ | evaluation
www.nist.gov/srd/nistsd27.cfm
Tsinghua 100 overlapped latent fingerprints | algorithm
OLF and 12 mated plain fingerprints; | evaluation
http://ivg.au.tsinghua.edu.cn

Candidate orientation patches of the right image patch

\\\\\

Candidate orientation patches of the left image patch

SRS TT T T RS SS======TTT

Fig. 12. Compatibility matrix between the candidate orientation patches
for two neighboring patches. The compatibility value between two
candidates is depicted by the brightness of the corresponding square.

an initial orientation patch ©;. To resolve the ambiguity,
i.e., determine a single candidate for each patch, contextual
information needs to be utilized.

We address this problem by searching for a set of
candidates, r*, which minimizes an energy function E(r).
Let r; denote the index of the selected candidate for patch
i,and r = {ry,r,...,7,, } be the vector of the indices of the
selected candidates for all n, foreground patches. The
solution space for r is all possible combinations of
candidate indices, which is very large. The choice of a
proper energy function is crucial for the success of this
method. We consider two factors in designing the energy
function: 1) the similarity between the reference orientation
patches and the corresponding initial orientation patches,
and 2) the compatibility between neighboring reference
orientation patches.

The energy function is defined as

E(r) = Ey(r) + weEe(r), (2)

where E(r) denotes the similarity term, E.(r) denotes the
compatibility term, and w, (empirically set to 1) is the weight
of compatibility term. The similarity term is defined as

E(r)=Y (1-5(©; %)), (3)
iev
TABLE 2

Average Estimation Error (in Degrees) of the Proposed
and Two Published Orientation Estimation Algorithms
on the NIST SD27 Database

Algorithm All Good Bad Ugly
Proposed 18.44 14.40 19.18 21.88
FOMEFE [25] | 28.12 22.83 29.09 32.63
STFT [11] 32.51 27.27 34.10 36.36
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Fig. 13. CMC curves comparing three orientation field estimation algorithms and the manual approach on the NIST SD27 latent database: (a) all (258
latents), (b) good quality (88 latents), (c) bad quality (85 latents), and (d) ugly quality (85 latents).

where V denotes the set of foreground patches and S(-) is
defined in (1). The compatibility term is defined as

Y 1-C(®i,®)0)), (4)

(BJ)eN

E.(r)=

where N denotes the set of adjacent foreground patches
which are four-connected neighbors.

The compatibility between two neighboring orientation
patches ®;,, and @;, is measured by the similarity of
orientations in the overlapping blocks. Let {a,}° and
{B.}2, be the set of orientations in the N, overlapping
blocks of two orientation patches. The compatibility is
computed as

No

1
O ®y) = S feos(an —A)l. (5)
0 n=1

Two examples are given in Fig. 11 to illustrate the
compatibility between two neighboring patches. The two
reference orientation patches in Fig. 1la are compatible,
while the two reference orientation patches in Fig. 11b are
not compatible. Fig. 12 shows the compatibility matrix

between two neighboring patches. Due to the fact that
relatively large size orientation patches are treated as a
whole and adjacent patches contain an overlapping region,
the compatibility constraint holds in both low curvature
regions as well as high curvature regions (such as core and
delta). However, in previous work [16], [19], [31], compat-
ibility constraint did not hold in high curvature regions.
To minimize the energy function in (2), a number of
optimization algorithms can be employed. Since this is not
the focus of this study, we adopt the well-known loopy
belief propagation algorithm [47]. It was originally pro-
posed to perform exact inference on trees (e.g., graphs
without closed loops) [49], but many empirical studies have
shown that it also yields good approximate results on
graphs with closed loops, such as Markov random field [47].

5 EXPERIMENTS

In this section, we first describe the databases used in this
study. We report the orientation field estimation perfor-
mance and the resulting matching performances on the
NIST SD27 latent fingerprint database and an overlapped
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Fig. 14. Enhanced images of three latent fingerprints in (a) using orientation fields estimated by three algorithms (FOMFE, STFT, and the proposed

algorithm).

fingerprint database. Finally, we discuss the impact of
reference fingerprints on orientation field estimation.

5.1 Databases

To construct a dictionary of reference orientation patches,
we used a set of 50 good quality fingerprints in the NIST
SD4 database.” All five major pattern types (plain arch,
tented arch, left loop, right loop, and whorl) are covered by
these 50 fingerprints. The distribution of different pattern
types in this sample is not necessarily similar to the
distribution in large population or the NIST SD27 database.

The latent orientation field estimation and subsequent
matching experiments are conducted on the public domain
latent fingerprint database, NIST SD27, which contains
258 latent fingerprints and their corresponding rolled
fingerprints. Each latent image in this database was
assigned one of three (subjective) quality levels—“good,”
“bad,” and “ugly”—by latent examiners. The numbers of

2. The filename list of these fingerprints is available as supplemental
material, which can be found online.

“good,” “bad,” and “ugly” latents are 88, 85, and 85,
respectively.

We also tested this algorithm on the Tsinghua OLF
database,” which consists of 100 overlapped latent finger-
prints. These overlapped latent fingerprints were obtained
using the following procedure: 1) press two fingers at
roughly the same location on a white paper, 2) enhance the
latent prints using black powder and brush, and 3) convert
the enhanced prints into electronic version using a general
purpose scanner. For each of the 12 different fingers used to
form the latents, one flat fingerprint obtained using an
optical fingerprint scanner was used as the template
fingerprint.

To make the latent matching problem more realistic and
challenging, 27,000 rolled fingerprints (file fingerprints) in
the NIST SD14 database were used as the background
database. Details of databases used in this study are
summarized in Table 1.

3. Available at http://ivg.au.tsinghua.edu.cn.
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Fig. 15. Orientation fields estimated by the proposed algorithm for 12 latent fingerprints in the NIST SD27 database.

5.2 Performance Evaluation
The direct goal of an orientation field estimation algorithm
is to obtain an accurate estimation of fingerprint orientation
field, while its final goal is to improve the fingerprint
matching accuracy. Thus, we conducted experiments to
evaluate the accuracy of orientation field estimation and the
accuracy of fingerprint matching, respectively.

In addition to the proposed orientation field estimation
algorithm, two other approaches were included:

1. Combination of gradient-based local estimation and
FOMEFE-based global model [25].

2. Combination of STFT-based local estimation and
low-pass filtering [11].

The accuracy of orientation field estimation algorithm is
measured using the average Root Mean Square Deviation
(RMSD) from the ground truth suggested in [37]. The
ground truth was established based on the manual marking
of the orientation field by one of the authors. Average
RMSD of the proposed algorithm and FOMFE and STFT are
computed on all the 258 latents in the NIST SD27 database

and also on the subsets of NIST SD27 belonging to three
quality levels (Good, Bad, and Ugly). As shown in Table 2,
the proposed algorithm outperforms the other two algo-
rithms on latents of all three quality levels. To facilitate
comparison by other interested researchers, the manually
marked orientation fields and the orientation fields esti-
mated by the three algorithms are available as supple-
mental material, which can be found in the Computer
society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2012.155.

To evaluate the matching accuracy, we need to integrate
an orientation field estimation approach with the other
modules in the matching system, namely, fingerprint
enhancement, feature extraction, and matching. Latent
fingerprints are enhanced using a Gabor filter whose
frequency parameter is fixed at 1/9 cycles per pixel,
standard deviations of the Gaussian envelope are fixed as
4, and the orientation parameter is tuned to the estimated
orientation field [10]. VeriFinger SDK 6.2 [40] is used to
extract features from enhanced latents and original full
fingerprints. The same SDK is then used to compute the
match scores between latents and full fingerprints.
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Fig. 16. Three latent examples where the proposed orientation field
estimation algorithm performs slightly better than the manual approach.
Regions showing the difference in orientation field estimation are
marked with red boxes.

The Cumulative Match Characteristic (CMC) curves on
the NIST SD27 latent database corresponding to the three
algorithms and the manual markup are shown in Fig. 13. The
proposed algorithm consistently outperforms the two
published algorithms on latents of all three quality levels.
Three examples are given in Fig. 14 to compare the enhanced
latents using the orientation fields obtained by the three
algorithms (proposed, FOMFE, and STFT). Orientation
fields estimated for 12 additional latents of various qualities
by the proposed algorithm are given in Fig. 15.

For many latents of good quality, the proposed algorithm
even outperforms the manual ground truth (see Fig. 13b).
Our analysis of these examples (see Fig. 16) shows that the
proposed algorithm has smaller deviation from true ridge
orientation for good quality latents. It is difficult and time-
consuming for a fingerprint expert to accurately mark the
complete orientation field in a latent. However, fingerprint
experts still perform better than the proposed algorithm in
estimating the orientation field of poor quality latents, but
the proposed algorithm has narrowed the performance gap.

5.3 Overlapped Latent Fingerprints

Some latents may contain overlapped texture with regular
direction and high contrast (see Fig. 17). For such latents,
the initial orientation field can be completely wrong,
making it difficult to recover the true orientation field.
Although several specific orientation field estimation
algorithms have been developed for overlapped finger-
prints [50], [51], [52], we will show that, with a minor
modification, the proposed algorithm can also deal with
overlapped latent fingerprints. Given a region mask for the
fingerprint of interest and the region mask for the over-
lapped pattern, the following changes are needed in initial
orientation field estimation and similarity computation.

~
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\\\\\\
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Fig. 17. Estimated orientation fields for two fingerprint images with
overlapping textures using the proposed method.

1. The initial orientation field estimation algorithm
detects one dominant orientation element in the
nonoverlapped fingerprint region and two dominant
orientation elements in the overlapped region. This
is under the assumption that the true ridge pattern is
the first or the second strongest component in the
overlapped image.

2. While the similarity between an initial orientation
patch and a reference orientation patch is still
computed using (1), in counting the number n, of
similar blocks between two orientation patches a
block with at least one similar orientation element is
viewed as a similar block.

Fig. 17 shows that the modified algorithm can correctly
estimate orientation fields of fingerprints with overlapped
texture. To perform a systematic comparison between the
proposed algorithm and the constrained relaxation labeling
algorithm in [52], which was specially designed for
separating overlapped fingerprints, a matching experiment
was conducted using 100 overlapped latents in the
Tsinghua OLF database. All 27,000 rolled fingerprints in
the NIST SD14 database are used as the background
database. The CMC curves in Fig. 18 show that the
proposed algorithm performs as well as the specially
designed overlapped fingerprint separating algorithm.
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Fig. 18. CMC curves of the proposed algorithm and the constrained
relaxation labeling algorithm [52] on the Tsinghua overlapped latent
fingerprint database.
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Fig. 19. Enhancement results using the dictionary constructed from reference orientation fields of the same pattern type is better than the results

from different pattern types. Major differences are marked by red boxes.

5.4 Impact of Reference Fingerprints

A proper choice of corpus is very important in natural
language processing. Since reference fingerprints used to
construct the dictionary serve a similar role in our problem,
we conducted two experiments to study the impact of
reference fingerprints.

First, we examine whether orientation field estimation
performance is related to the type of the latent fingerprints
(e.g., arch, whorl, loop) and the reference fingerprints used
for constructing the dictionary. Two reference fingerprints
(one left loop and one whorl) were used to construct a

dictionary, respectively. For a subset of 26 latents in the
NIST SD27 database, two orientation fields were estimated
using these two dictionaries and then used to enhance
the latent. Fig. 19 shows that the enhancement result is
better when the pattern types of reference and latent
fingerprints are the same. This indicates that reference
fingerprints should include fingerprints of all five major
pattern types that are most commonly observed in practice.

We also tested different combinations of patch size
(ranging from 4 x 4 to 12 x 12 blocks) and the number of
reference fingerprints (ranging from 5 to 50). When more
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than 10 reference fingerprints (containing all five pattern
types) were used, we did not observe any significant
difference in the orientation field estimation performance.
But the speed of the proposed orientation field estimation
algorithm is clearly related to patch size and dictionary size,
which depends on the number of reference fingerprints. On
a PC with 2.93 GHz CPU, the average time for processing a
latent by the proposed orientation field estimation algo-
rithm (implemented in MATLAB) ranges from 4 seconds
(for patch size 8 x 8) to 50 seconds (for patch size 4 x 4).

The implementation using smaller patch size is slow
because the number of patches is large and the clustering-
based diversifying algorithm for each patch is computa-
tionally intensive. For large patch size (12 x 12), dictionary
lookup is slow because of the large size of the dictionary.
The implementation based on medium patch size (ranging
from 7 x 7 to 10 x 10 blocks) is better in terms of both
matching accuracy and efficiency. The CMC curves in
Fig. 13 are obtained using 8 x 8 patches. However, con-
sidering the small number of latents in the NIST SD27
database, this experiment is just a qualitative study on the
parameters of the algorithm. In order to make quantitative
and more reliable conclusions about the impact of various
parameters (including patch size, the number of reference
fingerprint, parameters of energy function, parameters of
similarity measure, etc.) on accuracy and efficiency, we
need to utilize a much larger latent database.

6 SuMMARY AND FUTURE WORK

Although automatic fingerprint recognition technology has
evolved over the past 40 years, fingerprint matching is far
from a fully solved problem. There is a consensus in the
fingerprint community that the capability of state-of-the-art
fingerprint recognition systems is still not comparable to the
ability of fingerprint examiners. This is particularly true for
low-quality latent fingerprint matching. For this reason,
manual markup of various features (such as minutiae) in
latents is a common practice in forensics.

There has been growing interest in improving automatic
latent fingerprint encoding and matching capabilities [4].
Law enforcement agencies have shown great interest in
supporting the development of “lights-out” latent identifi-
cation techniques [53]. Government sponsored performance
evaluations have been organized by NIST to evaluate
automatic latent feature extraction and matching algo-
rithms [54].

To significantly improve the performance of automatic
systems, it is necessary to examine which specific capability
of fingerprint examiners is lacking in the systems. We
believe that, at the fundamental level, it is the prior
knowledge of fingerprints acquired through observing a
large number of fingerprints that gives fingerprint exam-
iners an edge over automatic algorithms in accurately
identifying features (e.g., marking minutiae) in latent prints
of poor quality. However, there have only been a few
attempts in the literature to incorporate such prior knowl-
edge into fingerprint recognition algorithms.

Inspired by spelling correction techniques in natural
language processing, we have proposed a robust orienta-
tion field estimation algorithm for latent fingerprint

enhancement. A simple local estimation approach is used
to obtain an initial orientation field of the latent
fingerprint. For each patch in the initial orientation field,
candidate patches are found in an orientation patch
dictionary learned from a set of true fingerprint orienta-
tion fields. The final orientation field for the latent is
obtained by finding the combination of candidates that
minimizes an energy function. The experimental results
on the challenging NIST SD27 latent fingerprint database
showed that the proposed algorithm outperformed two
well-known orientation field estimation algorithms. With a
minor modification, the proposed algorithm can also
estimate the orientation field of overlapped latent finger-
prints and its performance is comparable to the state-of-
art special purpose algorithm.

However, the proposed algorithm is still inferior to
manual marking, especially on low-quality latents, and its
speed is slow. The following aspects should be considered
to improve the current algorithm:

1. Developing an indexing algorithm for fast retrieval
of candidate orientation patches from a large
dictionary.

2. Using a multiresolution approach to construct
orientation patch dictionaries for both small and
large fingerprint regions.

3. Developing an automatic region segmentation
algorithm.

4. Conducting a comprehensive study of various
algorithmic parameters using large latent fingerprint
databases.
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