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Phase-Aggregated Dual-Branch Network for
Efficient Fingerprint Dense Registration
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Abstract— Fingerprint dense registration aims to finely align
fingerprint pairs at the pixel level, thereby reducing intra-class
differences caused by distortion. Unfortunately, traditional meth-
ods exhibited subpar performance when dealing with low-quality
fingerprints while suffering from slow inference speed. Although
deep learning based approaches shows significant improvement
in these aspects, their registration accuracy is still unsatisfactory.
In this paper, we propose a Phase-aggregated Dual-branch
Registration Network (PDRNet) to aggregate the advantages of
both types of methods. A dual-branch structure with multi-stage
interactions is introduced between correlation information at high
resolution and texture feature at low resolution, to perceive local
fine differences while ensuring global stability. Extensive experi-
ments are conducted on more comprehensive databases compared
to previous works. Experimental results demonstrate that our
method reaches the state-of-the-art registration performance in
terms of accuracy and robustness, while maintaining considerable
competitiveness in efficiency.

Index Terms— Fingerprint, registration, distortion, deep neu-
ral network, phase.

I. INTRODUCTION

B IOMETRIC systems identify individuals through anatom-
ical or behavioral characteristics. Over the past few

decades, many biometric traits have been suggested such as
fingerprint, face, iris, vein, signature, and voice. Among them,
fingerprint is widely used in civil and criminal applications due
to its high distinguishability and stability. Although researchers
have proposed many fingerprint matching algorithms, it is still
a challenging task to deal with intra-class differences resulting
from fingerprint distortion [1].

Fingerprint dense registration algorithms aims to establish
dense correspondences at the pixel-level between fingerprint
pairs. Ridge curves of the registered fingerprint pairs can
be strictly aligned, thus significantly reducing the negative
impact of skin distortion and improving matching accuracy [2].
Additionally, multiple fingerprints of the same finger can be
mosaicked into a complete image after registration, thereby
reducing storage requirements and expanding the effective
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Fig. 1. Flowchart of proposed two-step fingerprint dense registration. Green
areas indicate overlapping ridges, gray and red indicate non-overlapping ridges
of the two fingerprints respectively.

matching area (especially important for small fingerprints) [3].
Moreover, the registration results can serve as ground truth for
certain tasks, such as distortion rectification [4] or modality
transformation [5], which can conveniently obtain precise real
data instead of synthetic.

Early conventional fingerprint registration algorithms com-
monly employ spatial transformation models based on
matched minutiae pairs [6], [7], [8]. However, these methods
cannot achieve precise alignment at ridge level and exhibit
instability in regions with sparse minutiae or low quality.
In subsequent studies, it is developed and subdivided into
two steps: first, a coarse alignment is conducted using rigid
transformation or Thin Plate Spline transformation (TPS),
then a fine alignment is performed to make local precise
adjustments on ridge curves. Although traditional dense reg-
istration methods [2], [9], [10] are theoretically able to
align local ridges strictly, they are very slow and susceptible
to noise in practice. On the other hand, dense registration
methods based on convolutional neural networks [3], [11]
shows significant advantages in efficiency and robustness, but
still needs to be improved in accuracy. Therefore, we are
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motivated to design an innovative fingerprint dense registration
method to integrate the advantages of both types of fingerprint
dense registration solutions. Phase features [9], which can
be easily obtained through 2D complex Gabor filters and
accurately describe the offset of ridge points, meets our
demands conceptually. Inspired by multi branch networks [12],
[13], [14], [15], we explicitly introduce the phase feature
and make it as a branch of proposed network to better
express the dense mapping relationship between fingerprint
pairs.

In this paper, we propose a Phase-aggregated Dual-branch
Registration Network (PDRNet) to combine the strengths of
traditional fingerprint dense registration methods and deep
learning. The flowchart of our registration algorithm is shown
in Fig. 1. For a fingerprint pair, named input fingerprint and
reference fingerprint respectively, we first apply the TPS trans-
formation based on matching minutiae for coarsely alignment
(a robust rigid transformation method is used as the guarantee),
then estimate the dense deformation field through PDRNet and
perform fine alignment. In contrast to previous deep learning
methods that simply use pass-through [11] or encoder-decoder
structures [3], PDRNet introduces a dual-branch structure with
multi-stage interactions between correlation features (specif-
ically referred to phase in this paper) at high resolution
and texture features at low resolution, to perceive local fine
differences while ensuring global stability. Moreover, the
deformation field is estimated based on probability distribution
of discretized intervals instead of previous direct regression
methods, inspired by [16], [17], and [18].

We conducted extensive experiments on databases con-
taining different types of fingerprint impressions, including
different sensing technologies (optical, thermal wiped, latent,
non-contact) and different skin conditions (normal, dry, wet,
distorted, incomplete, aged). Experimental results demonstrate
that the proposed algorithm achieves state-of-the-art registra-
tion performance, while also having great competitiveness in
terms of model size and inference speed.

The main contributions of this work can be summarized as
follows:

• Phase features that perform well in traditional fingerprint
registration [9] are introduced into the proposed convolu-
tional neural network, enabling it to perceive more refined
correlation information;

• We introduce a multi-stage feature interaction mechanism
to handle dual-branch information, which can combine
the robustness of low-resolution texture features and the
sensitivity of high-resolution correlation features.

• The numerical regression task in previous works is trans-
formed into interval classification, further improving the
performance of deformation field estimation.

• Extensive experiments are conducted on more abundant
datasets compared to previous studies. Comprehensive
evaluation of registration and matching performance is
performed across multiple fingerprints impressions.

The paper is organized as follows. Section II reviews the
related works. Section III introduces the proposed dense reg-
istration algorithm. Section IV describes experiment datasets

we used in training and evaluation, and implementation details.
Section V presents the experimental results and discussions.
Finally, we make conclusions in Section VI.

II. RELATED WORK

Briefly, fingerprint registration aims to establish the cor-
respondence between input fingerprints and reference finger-
prints, and then transform the fingerprint pairs to align them
as closely as possible. According to the transformation model,
fingerprint registration can be divided into two categories: rigid
transformation and elastic registration. From the distribution
density of control points, elastic registration can be further
subdivided into sparse or dense registration.

A. Fingerprint Rigid Transformation

Early fingerprint registration studies mostly utilize rigid
transformations, which only consider the relative translation,
rotation, or scaling relationships between image pairs. These
algorithms commonly estimate transformation parameters by
minimizing the projection error of matching minutiae [7], [19],
[20], [21], orientation field [22], [23] or image correlation [24],
[25]. On the other hand, some researchers recently utilize Spa-
tial Transformer Network (STN) combined with subsequent
recognition tasks to estimate affine transformation parameters
of each input fingerprint [26], [27], or use more complex
networks to directly estimate the fingerprint pose [28], [29].
Although these algorithms are applied to a single fingerprint,
they have a certain ability to roughly align fingerprint pairs.
Obviously, these models lack the capability to handle the
nonlinear distortion of fingerprints.

B. Fingerprint Sparse Registration

Sparse registration models calculates transformation param-
eters based on the position of control points. Among them,
TPS based models that use minutiae correspondences are
widely used [6], [8], [30], [31] because it can align the
extracted stable feature points while ensuring smooth map-
ping relationships. However, these methods cannot accurately
register areas without or far from minutiae. Researchers have
introduced various extended features, such as the orientation
field [32], period map [33], ridge curve [34] and network
descriptor [17], [35], to improve the accuracy of feature point
extraction and matching. Nevertheless, these advancements do
not fully address the issue of unreliable results in low-quality
areas. Furthermore, it poses a significant challenge to establish
dense correspondence between featureless ridge points solely
based on sparsely distributed control points in space.

C. Fingerprint Dense Registration

Fingerprint dense registration aims to establish pixel by
pixel correspondence between fingerprint pairs. Researchers
typically use methods introduced in Section II-A or
Section II-B to roughly align fingerprints and then make fine
adjustments in the following stage.

Si et al. [2] proposed a dense registration method based
on block-based image correlation and Markov optimiza-
tion, which performs better than sparse registration methods.
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Fig. 2. An overview of our dense deformation estimation network. ‘Fp.’ and ‘Reg.’ are the abbreviations of ‘fingerprint’ and ‘registration’ respectively. The
network includes two encoder branches for extracting features of texture and correlation information, a multi-stage interaction module for fusing multi-scale
and multi-semantic features, and an registration estimation module to predict the pixel-wise deformation field. The specific details of block architectures and
image preprocessing flow are shown in Fig. 3 and Fig. 4 respectively.

Cui et al. [9] introduced the concept of phase demodulation
into fingerprint registration, resulting in substantial improve-
ments in both speed and accuracy. Lan et al. [10] also
proposed a simple but effective registration algorithm, which
implements iterative optimization based on correlation and
orientation field, but sometimes be unstable on images with
significant grayscale variations. This kind of methods all
depend on manually designed image features and are suscep-
tible to areas with low quality or large distortion. In addition,
their optimized ways of iteration or traversal are computation-
ally expensive.

Convolutional neural networks are used to regress
pixel-wise displacements in methods of Cui et al. [3], [11].
Compared with traditional algorithms, deep learning based
methods show desirable advantages in terms of robustness and
efficiency. However, their works simply connected a siamese
network with straight network [11] or encoder-decoder [3]
without incorporating additional constraints on the learned
features, which might not be sensitive enough to differences
in fingerprint pairs.

III. METHOD

In this paper, we estimate the pixel-level displacement
fields between fingerprint pairs in two stages to perform
dense registration. Fig. 1 gives the complete flowchart of the
proposed algorithm. For a pair of fingerprints, our algorithm
first apply the TPS model based on matching minutiae for
coarse alignment. A robust rigid transformation method based
on orientation and period map is used as a fallback. The
preliminarily aligned fingerprints are then preprocessed as
enhancement images and correlation information (determined
as phase in final approach) and input into the proposed
network, whose structure is shown in Fig. 2, so as to obtain
a dense displacement field from the input fingerprint to the

reference fingerprint. Finally, the input image is moved pixel
by pixel according to the network prediction result to approx-
imate the reference fingerprint.

A. Coarse Alignment

Same as previous works [2], [9], [3], [11], we perform
coarse registration based on fingerprint minutiae. VeriFin-
ger [36], a widely used commercial software, is utilized
for minutiae extraction and matching. The paired points are
subsequently used as control points for TPS transformation to
coarsely align the input and reference fingerprints. It should
be noted that the TPS model may not be reliable when the
number of paired minutiae is small. Therefore, we switch to
conduct a global search for the optimal rigid transformation
based on orientation and period maps in order to obtain a
more accurate alignment result, due to their advantages in
registration robustness in these cases [37]. The function for
parameter search is defined as

argmax
x,y,θ

∥OriDiff (OR, OI(x, y, θ)) ≤ θt &

PedDiff (PR, PI(x, y, θ)) ≤ pt ∥0 , (1)

where x , y and θ represent the translation and rotation
parameters, O is the orientation map, P is the period map,
subscripts I and R represent the input and reference fingerprint
respectively, functions OriDiff () and PedDiff () calculate the
difference of orientation and period maps at the corresponding
location. Fixed thresholds θt and pt are set to 10◦ and 1 pixel.
Both orientation and period map are sampled on blocks of
8 × 8 blocks. We perform the above rigid transformation
when paired minutiae are less than 4, otherwise use TPS-based
sparse elastic registration.
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Fig. 3. The specific architecture of blocks utilized in the proposed fingerprint
dense registration network. ‘*’ indicates that this layer connects convolution,
batch normalization and ReLU in series. Numbers on the right side of
each module and arrows represent the stride and current channel number
respectively.

B. Image Preprocessing

Image quality of fingerprints greatly affects the performance
of subsequent algorithms. Researchers have proposed several
enhancement methods in the preprocessing stage to improve
the clarity of ridge structures. Among them, context filter-
ing in the spatial domain based on Gabor filters [38] can
effectively remove undesired noise while retaining the true
ridge structure, which is currently one of the most popular
technologies [1]. On the other hand, phase features can also
be calculated through Gabor filter banks [17]. In other words,
we can naturally obtain phase feature from the intermediate
results of enhancement without additional complex operations.
Therefore, we integrate fingerprint enhancement and phase
feature extraction in the same module. For convenience, this
module is shown in Fig. 2 as the first module of the proposed
network, but it can also be executed independently of PDRNet.

The 2-D Gabor filter combines Gaussian waves and sine
waves. Its expression in the complex domain after adjustment
for fingerprints is:

G(x, y) = exp

(
−

(
x ′2

2σ 2
x

+
y′2

2σ 2
y

))
exp

(
i · 2π f0x ′

)
, (2)

where σx and σy are the standard deviation of corresponding
direction, x ′ and y′ are the original coordinates x and y
rotated by angle θ , f0 is the filtering frequency. The θ and
f0 parameters should be adjusted according to the orientation
and period of local ridges in practical. Let Z(x, y) denote the
filtered result with G(x, y), the enhanced fingerprint E and
phase φ of the original image can be calculated as

E = Norm (Re [Z ]) ,

φ(x, y) = atan2
(
Re
[
Z(x, y)

]
, Im

[
Z(x, y)

])
, (3)

where Norm () is to perform global normalization, Re [Z ] and
Re [Z ] are the real and imaginary components of the complex
signal Z respectively.

A partial structure of FingerNet [17] is isolated and adjusted
(according to Equation 3) for this task because it can obtain the
above features quickly and accurately. As show in Fig. 5, this
network converts the Gabor filter bank as a set of convolution
kernels with fixed parameters and estimates the orientation

field through another branch to select appropriate filtering
results. The mask of the fingerprint is also estimated. Other
enhancement methods based on Gabor filtering can also be
used to obtain similar results.

In addition to enhancement images E and phases φ, mask M
is also utilized to reduce interference in non-overlapping areas.
For the input fingerprint I and reference fingerprint R, the final
results of image preprocessing is

E ′
I = EI · MI, E ′

R = ER · MR,

ψ = (φI − φR) · MI · MR, (4)

where ψ represents the correlation information, E ′
I and E ′

R
represent the enhanced input and reference fingerprint respec-
tively. An example is given in Fig. 4, which visualizes the
intermediate and final results in the image preprocessing stage.

C. Network for Dense Displacement Field Estimation

For a pair of fingerprints, our proposed network predicts
the dense deformation field from the input fingerprint to the
reference fingerprint. A two-branch structure is introduced,
which extracts features of different semantics at different res-
olutions respectively and performs information interaction in
multiple stages, to understand local ridge differences finely and
robustly. In this paper, phase feature are utilized as correlation
information because it is easy to obtain and can accurately
describe the displacement relationship at pixel level [9]. The
complete structure of PDRNet is given in Fig. 2, which
can be divided into four parts: image preprocessing, fea-
ture extraction, feature interaction and registration estimation.
In Section III-B, we have described how to perform image
preprocessing on fingerprint pairs. The following mainly intro-
duces the design motivation and specific implementation of
remaining architectures and loss functions of PDRNet.

1) Feature Extraction: A natural idea is to extract tex-
ture features directly from images. In work [3] and [11],
a siamese network with shared parameters was applied,
which first extracts the respective texture features from each
image separately and then merges and analyzes them. These
implementations are similar to the control points based
elastic registration in traditional methods. As analyzed in
Section II-B, even if stable feature points can be extracted
and matched, their number is not enough to establish a
pixel-wise dense connections. Therefore, we introduce correla-
tion information that can accurately represent the displacement
relationship and explicitly use it as network input, while retain-
ing the previous disposal mode of texture features. As shown
in Fig. 3, downsampled convolutions are stacked as feature
encoders in order to balance registration accuracy and model
parameters. For features of correlation information, we only
downsample them to 1/8 size to retain richer spatial details.
On the other hand, texture features are calculated using a
deeper encoder (1/16 of the original size) to extract more
abstract semantic information to increase the robustness of
registration.

Heatmap of features extracted by the respective encoders
are shown in Fig. 6. It can be seen that the texture branch
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Fig. 4. A visual example of image preprocessing. Red rectangles represent the intermediate results of fingerprint enhancement. Blue rectangle represents the
final result of image preprocessing, which corresponds to the output of the same module in Fig. 2. The structure of ‘EnhNet’ is shown in Fig. 5.

Fig. 5. A simplified schematic of fingerprint enhancement network. The main
structure is separated from FingerNet [17], and only the output is adjusted
according to Equation 3.

without additional constraints pays more attention to point-
level features, and the high corresponding areas are sparsely
distributed and relatively rough; while features inferred from
correlation information pay more attention to regional prop-
erties, and the high-response areas are densely distributed
and relatively fine. This case strongly demonstrates that the
proposed two branches effectively capture information with
distinct semantics. One reasonable explanation is that the
input to texture feature branch is the respective enhanced
result and there is no information exchange between enhanced
fingerprint pairs during feature extraction, which will make
the corresponding encoder tend to focus on stable features
from a single image in the form of points (such as minutiae
and singular points) and ignore low-texture areas that are
highly repetitive or easily confused. On the other hand, the
input to correlation information branch is the phase difference
between fingerprint pairs, whose value of each pixel clearly
characterizes the offset of ridge alignment [9], resulting in a

Fig. 6. Examples of heatmap visualized from extracted features, which
reflects the interesting areas of encoders from different branches. Each row,
from left to right, is the background of subsequent images and attention maps
from three channels output by the respective encoders. The background from
bottom to top is the binary image of two fingerprints and the XOR result
between them.

regional response in the feature distribution due to the spatial
continuity of fingerprint deformation.

2) Feature Interaction: Previous works [3], [11] have ver-
ified that networks can establish the relationship between
fingerprint pairs from extracted texture features. Furthermore,
the studies conducted by [9] and [39] proved that networks
have the ability to unwrap phase and thus resolve the displace-
ment between fingerpints. Therefore, it is theoretically feasible
to analyze the displacement through dual-branch features in
PDRNet. Inspired by other multi-branch network structure
designs [12], [13], [14], [15] and multi-stage feature iteration
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strategies [40], [41], we introduce a bilateral structure to
analyze and interact the information from two branches in
several iterations. Residual blocks [42] are exploited to further
express features and avoid gradient problems, while simple
convolution and sampling layers are used for information
exchange between branches. It should be noted that the shape
of each feature is not changed in order to facilitate arbitrary
adjustment of iterations.

3) Registration Estimation: The iterated results are first fed
into a residual bottleneck [42] to further integrate features,
where the channels are doubled to carry denser information.
The ASPP module [43] (with dilated ratio of 1,2,4 and average
pooling) is connected next to capture texture information
at multiple scales and fuse features. Here we perform such
a transformation flow because phase is used as correlation
information in this paper, which can be mapped to displace-
ment more directly and interpretably than texture features [9].
Fig. 3 shows the specific structure of the registration head.
Inspired by [16], [17], and [18], we use interval classification
to express the deformation field, which can limit the range
to avoid unreasonable output and characterize the numerical
distribution thus reduce the learning difficulty, instead of
previous direct regression [3], [11]. Let pt and zt represent
the numerical value and predicted probability corresponding
to t-th category, the final deformation field D is calculated as

D =
1∑
T pt

∑
T

pt zt , (5)

and subsequently interpolated to the full size. Considering that
large relative distortions are basically removed through the
coarse alignment in Section III-A, we set the value range
of displacement in both directions to [−30, 30] pixels and
divide it into 25 equal intervals, that is, 50 channels are
output with 1/8 size of original image. The deformation
field in non-overlapping regions can be approximated by TPS
interpolation based on estimated results in overlapping regions.

4) Loss Function: Considering that directly using 0-1 labels
cannot accurately express values especially at the boundaries
of intervals, we use Gaussian smoothing label strategy to
generate the ground truth of class probability pgt as

pt
gt (z) =

1∑
t pt

gt (z)
exp

(
−

z − zt

2σ 2

)
, (6)

where z represents the real displacement, zt represents the
discrete value corresponding to the t-th category. The variance
σ is set to 2.0 empirically. Focal loss [44] is applied to
optimize these imbalanced multi-class distributions, which is
defined as

Lcla = −
1

|M |

∑
M

T∑
t=1

α
(
1 − q t)γ log

(
q t) ,

q t
= pt

gt pt
+

(
1 − pt

gt

) (
1 − pt) , (7)

where M is the mask of the common area of fingerprint pairs,
pt is the probability that the deformation is inferred in t-th
category, T is the total number of intervals. Hyperparameters
α and γ are fixed to 1.0 and 2.0 respectively. Another

objective function Lsmo is also performed to constrain the
spatial smoothness of probability distribution:

Lsmo = −
1

|M |

∑
M

T∑
t=1

∣∣1pt ∣∣ , (8)

where 1 is the standard Laplacian filter. Overall, the complete
loss function is

L = Lcla + λ · Lsmo. (9)

The weight λ is fixed to 1.0 in this paper.

IV. DATASET DESCRIPTION

Extensive experiments are conducted on multiple databases
containing fingerprints with different impressions, including
wildly used public datasets FVC2004 DB1_A & DB3_A [45],
NIST SD27 [46], Tsinghua Distorted Fingerprint Database
(TDF) [47] and several private datasets Hisign Latent, THU
Old, Hisign Multi-pose Plain Fingerprint Database (Hisign
MPF), Hisign Contact-based 2D to Multi-pose Contactless
2D Fingerprint Database (Hisign C2CL). Table I provides a
comprehensive description about the composition and usage of
these datasets. In the following we will introduce the details
of training and test data used in experiments.

A. Training Data Building

Similar to previous deep learning methods [3], [11],
we extract the real distortion field from TDF and use it to
transform fingerprints in Hisign Latent, which enables us to
obtain a large number of fingerprint pairs in two impressions
and the ground truth of corresponding displacements. Specif-
ically, we use VeriFinger [36] to extract and track minutiae
of distorted fingerprint videos in TDF, and calculate TPS
transform as the distortion field through paired points of first
and last frames. For a certain fingerprint I in Hisign Latent,
a deformation field D in TDF is randomly selected and used
for synthesis as:

I ′
(
x + Dx , y + Dy

)
= I (x, y),

F (x, y) = D(x, y),

F ′
(
x + Dx , y + Dy

)
= −D(x, y), (10)

where I ′ is the conjugate fingerprint, x and y represent the
corresponding direction components, F and F ′ represent the
displacement field registered from I to I ′ and the opposite
scenario respectively. In this way, a total of 20, 918 sets similar
to
{

I, I ′, F
}

are conveniently generated and used for network
training. In order to increase the diversity of fingerprint poses
and categories, data augmentation strategies are used in the
training stage, which include mirror flipping, rotation (by 90,
180 or 270 degree) and swapping (as

{
I ′, I, F ′

}
).

B. Matching Protocols in Testing

In order to balance the number of genuine and imposter
matches, specific protocols are set for different databases,
as shown in Table I. There are also some other settings:
(i) considering FVC2004 DB1_A contains some strongly dis-
torted fingerprints that may affect the accuracy of coarse
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TABLE I
ALL FINGERPRINT DATASETS USED IN EXPERIMENTS

alignment, we implemented a fingerprint distortion rectifica-
tion process [4] marked with * in experiments to distinguish
from the original dataset. (ii) we do not evaluate the match-
ing performance in Hisign MPF, because the genuine and
impostor scores of original images are already perfectly sepa-
rated; (iii) considering efficiency or fingerprint quality, subsets
of Hisign C2CL and THU Old are selected and used in

experiments; (iv) in all datasets containing three poses, the
genuine matching between the left and right side poses is
not calculated because their overlapping area is too small;
(v) contactless-contactless (CL-CL) and contact-contactless
(C-CL) matching experiments are implemented in Hisign
C2CL to evaluate the performance of fingerprint registration
on multi-modality.
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TABLE II
REGISTRATION ACCURACY OF DIFFERENT FINGERPRINT REGISTRATION ALGORITHMS

V. EXPERIMENTS

In this section, we compare the proposed method with state-
of-the-art algorithms. TPS transformation based on matching
minutiae is used as a benchmark for comparison due to its
simplicity and practicality. In addition, we compared phase
registration [9], which is representative of traditional meth-
ods, and two typical deep learning methods that estimate
displacement locally [11] (called DRN (local)) or globally [3]
(called DRN (global)). The performance of fingerprint dense
registration schemes are comprehensively evaluated in terms
of registration accuracy, matching performance, and efficiency.
Moreover, ablation experiments are conducted to demonstrate
the effectiveness of modules and strategies in PDRNet.

A. Evaluation Protocols

Image correlator and VeriFinger [36] are used to reflect the
similarity between two fingerprints, consistent with previous
works [2], [3], [9], [10], and [11]. Let I and M represent
the image and mask of fingerprints, for any two finger-
prints 1 and 2 the correlation score is calculated as

NCC =

∑
M
(
I1 − I1

)
·
(
I2 − I2

)√∑
M
(
I1 − I1

)2
·
∑

M
(
I2 − I2

)2 , (11)

where M is the common area of M1 and M2, I represents
the mean value of image I in M . This metric can sensi-
tively reflect the degree of ridge overlapping and is easy to
implement. Since the experiments mainly focus on the relative
improvement brought by registration algorithms rather than the
absolute performance, the image correlator can be regarded as
a representative of image-based matchers. On the other hand,
we choose to employ VeriFinger SDK 12.0 [36], a widely used
commercial software, to measure the alignment of minutiae
due to its superior performance in this type of matchers. For
convenience, the matching score of VeriFinger is referred to
as VF in the following. It should be noted that matching
methods based on global descriptors, such as [5] and [26],
are not applied in this paper because they may not pay equal
attention to every local fine structures, that is to say, the scores
obtained in this manner lack sufficient interpretability for the
performance of dense fingerprint registration. Furthermore,
fixed-length global descriptors have limited capability in dis-
tinguishing relative translation differences of ridges compared
to image correlation, which is precisely concerned in dense
fingerprint registration.

B. Registration Accuracy

In this subsection, genuine matching are conducted using
image correlator and VeriFinger matcher to quantitatively
evaluate the contribution of dense registration algorithms to
the alignment of ridges and minutiae. We utilize databases
FVC2004 DB1_A, Hisign MPF, THU Old and Hisign C2CL
because they fit the scenarios in practical applications, such
as fingerprint mosaicking and cross-modal comparison.

As shown in Table II, the proposed method significantly
outperforms other learning based methods in all datasets
and maintains advantages over conventional methods. This
suggests that our network is capable of establishing dense
relationships between fingerprint pairs more precisely while
ensuring high stability of relative structures in space.

Several typical examples are given in Fig. 7 in order to show
the effect of fingerprint registration methods more intuitively.
From the comparisons on the left, it can be seen that phase
registration [9] is difficult to deal with scenes of incomplete
(low-quality areas in row 1), complex texture structures (sin-
gular regions in rows 2 and 3) and interlaced ridges (folds and
distortion in row 4). On the other hand, the local displacement
registration network [11] is more robust in the above areas, but
it only gives a local optimal solution which is burr in space and
obviously reflected in registration results. Subsequent improve-
ments proposed by Cui et al. [3] significantly improved the
global smoothness, but there are still misalignments in some
ridge areas. One reasonable explanation is that the network
tends to learn features of point structures without additional
guidance (see Fig. 6), which are just lacking in these problem
regions. Our method integrates the advantages of traditional
algorithm and deep learning, showing higher accuracy and
stability in registration.

Meanwhile, the representative failure cases on the right of
Fig. 7 show that our algorithm still needs to be improved in
some extreme scenarios, such as: (i) image defects caused by
low contrast or extensive wrinkles (row 1 and 2); (ii) lack
of sufficient reference information due to limited overlap
(row 3); (iii) severe spatial structural dislocation caused by
large distortion (row 4).

It should be mentioned that the performance of phase based
registration [9] in this paper is higher than those reported in
previous papers [3], [9], [10], [11]. This is because we use a
newer version of VeriFinger (from 6.2 to 12.0) which performs
better in extracting binary images. Fig. 8 shows the impact of
software version on phase registration.
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Fig. 7. Examples of fingerprint registration for genuine matching fingerprints. The left side compares the performance of different registration methods in
typical scenarios. Some representative cases where our approach fails are shown on the right. The beginning of each row gives the name of corresponding
datasets, and numbers in brackets are matching scores by image correlator and VeriFinger. Green indicates overlap, while red and gray indicate non-overlapping
areas of respective fingerprints.

TABLE III
MATCHING PERFORMANCE BY IMAGE CORRELATOR WITH DIFFERENT FINGERPRINT REGISTRATION ALGORITHMS

TABLE IV
MATCHING PERFORMANCE BY VERIFINGER MATCHER WITH DIFFERENT FINGERPRINT REGISTRATION ALGORITHMS

C. Matching Performance
Further experiments are conducted on several databases

with multiple modalities, including three widely used public
datasets FVC2004 DB1_A, FVC2004 DB3_A, NIST SD27
and two additional private datasets THU Old, Hisign C2CL,

to examine the assistance of fingerprint registration algo-
rithms on matching performance. Similar to previous works,
we evaluate the similarity score of mated or non-mated
fingerprint pairs using image correlator and VeriFinger
matcher.
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Fig. 8. Registration results based on phase information with binary images
extracted by different versions of VeriFinger. Green indicates overlap of two
fingerprint ridges, while gray and red indicate no overlap.

Fig. 9. Distribution of genuine and imposter matching scores on FVC2004
DB1_A by image correlator (top) and VeriFinger matcher (bottom). The scale
on vertical axis is not displayed because we are more concerned with the
relative values of probability density.

We first present the score distribution of genuine and
imposter matches on FVC2004 DB1_A to qualitatively assess
the performance of different registration algorithms. As shown
in Fig. 9, our proposed method outperforms the others in
improving genuine matching scores. In addition, our method
obviously has more concentrated distribution and lower aver-
age score on imposter matches of image correlation. DRN
(local) [11] exhibits the poorest performance because it lacks
global constraints. Other suboptimal methods [3], [9] may
align local blocks of non-mated fingerprints although global
information exchange are introduced explicitly or implicitly.
As analyzed above, our network aggregates the advantages of
traditional method and deep learning, which simultaneously
focuses on the characteristics of ridge lines and anchor points
while conducting global information interaction in multiple
stages, thus achieving the highest precision and stability.

Table III and Table IV show the comparison of matching
performance after different registration methods. Three repre-
sentative indicators True Accept Rate (TAR), False Match Rate
(FMR) and Equal Error Rate (EER), which are commonly used
in biometric recognition systems, are listed to briefly reflect
the accuracy in identification scenarios. The corresponding

TABLE V
ABLATION STUDY OF THE PROPOSED NETWORK WITH DIFFERENT

MODULES AND STRATEGIES ON HISIGN MPF

TABLE VI
ABLATION STUDY OF THE PROPOSED NETWORK WITH DIFFERENT

NUMBERS OF STACK STAGES OF FEATURE INTERACTION
MODULE ON HISIGN MPF

Detection Error Tradeoff (DET) curves are shown in Fig. 10
and Fig. 11 for more complete information. Experimental
results demonstrate that the proposed method surpasses other
methods in almost all evaluation aspects, and its advantages
in TAR and EER are particularly obvious.

Furthermore, we calculate the Cumulative Matching Char-
acteristic (CMC) curves on latent fingerprint database NIST
SD27 to evaluate the performance of registration algorithms
on low-quality fingerprints. As shown in Fig. 12, our method
is most robust to these complex and difficult samples. It is
worth mentioning that deep learning based method [3] perform
better than traditional method [9], which is different from the
results on other datasets. This phenomenon occurs because
the dense presence of incomplete or contaminated areas in
latent fingerprints disrupts normal feature extraction, which
usually leads to misjudgments by those algorithms. In contrast,
deep learning methods can reduce the interference of local
misinformation by selectively using more stable features.

D. Ablation Study

We perform ablation studies on Hisign MPF and use
Equation 11 to examine the performance in registration accu-
racy. Table V presents the experiment results of specific
modules and strategies in our proposed network, where “cla”
and “reg” denote the construction of registration head in form
of classification (introduced in Section III-C3) or regression
(same as previous works [3], [11]). The information exchange
part between two branches in the feature interaction stage
is called “information interaction”, and ASPP used in the
registration estimation stage for improving compatibility is
represented by “fusion block”. These comparisons first ver-
ify the effectiveness of correlation information compared to
directly extracting texture feature without constraints, while
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Fig. 10. DET curves by image correlator. Solid and dotted lines represent deep learning methods and traditional methods respectively.

Fig. 11. DET curves by VeriFinger matcher. Solid and dotted lines represent deep learning methods and traditional methods respectively.

proving that integrating the two can achieve better perfor-
mance. In particular, using phase as correlation information
is significantly superior to image difference because phase
contains richer information about the direction and value
of displacement at each pixel [9]. The results also strongly
validate the positive effects of specific designs in our network,
including dual semantic feature fusion strategy, corresponding

auxiliary module ASPP and the decision of output format.
In our proposed network, the stack number of information
interaction module can be freely adjusted according to actual
data scale. Table VI shows corresponding ablation results
under the data protocol of this paper, where the accuracy keeps
improving with more stacking stages until the model overfits
after 4 steps.
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Fig. 12. CMC curves by image correlator and VeriFinger matcher with different fingerprint registration algorithms on NIST SD27. Solid and dotted lines
represent deep learning methods and traditional methods respectively.

TABLE VII
MODEL SIZE AND AVERAGE TIME COST OF DIFFERENT FINGERPRINT

REGISTRATION ALGORITHMS FOR PROCESSING A 640 × 640
FINGERPRINT PAIR IN HISIGN MPF

E. Efficiency Analysis

Model size and inference speed of different fingerprint
registration algorithms on Hisign MPF are listed in Table VII.
The time covers the process from inputting a pair of 640 ×

640 fingerprints to outputting the corresponding deforma-
tion field, which is measured on a single NVIDIA GeForce
RTX 3090 GPU by setting the batch size to 1, with a 2.4 GHz
CPU. All algorithms are implemented in Python. It can be
seen that all deep learning based methods are significantly
faster than traditional methods [9]. As can be observed from
Table VII and Section V-B, V-C, our proposed fingerprint
registration algorithm is quite competitive in efficiency while
leading in accuracy and robustness.

VI. CONCLUSION

In this paper, we propose a fingerprint registration algorithm
to estimate the dense deformation field between two finger-
prints. Both high-resolution phase information extracted by
Gabor filters and low-resolution texture information extracted
by convolutional layers are utilized in our proposed network.
A multi-stage dual-branch information interaction mechanism
is introduced to aggregate features of these two semantics at
different resolutions. Moreover, we use discrete classification
in the output header instead of the previous direct regression,
which implicitly introducing the correlation between numer-
ical distributions. Extensive experiments demonstrate that
our method surpasses state-of-the-art fingerprint registration
algorithms in accuracy and robustness, while also exhibiting

notable efficiency advantages. On the other hand, current
solution are still not ideal in some extreme scenarios where
fingerprints are severely contaminated or barely overlap. In the
future, we will further explore the design of feature extraction
and multi-information fusion to overcome these difficulties.
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