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A B S T R A C T

Accurate segmentation of cerebrovascular structures from Computed Tomography Angiography (CTA), Mag-
netic Resonance Angiography (MRA), and Digital Subtraction Angiography (DSA) is crucial for clinical
diagnosis of cranial vascular diseases. Recent advancements in deep Convolution Neural Network (CNN)
have significantly improved the segmentation process. However, training segmentation networks for all
modalities requires extensive data labeling for each modality, which is often expensive and time-consuming.
To circumvent this limitation, we introduce an approach to train cross-modality cerebrovascular segmentation
network based on paired data from source and target domains. Our approach involves training a universal
vessel segmentation network with manually labeled source domain data, which automatically produces initial
labels for target domain training images. We improve the initial labels of target domain training images by
fusing paired images, which are then used to refine the target domain segmentation network. A series of
experimental arrangements is presented to assess the efficacy of our method in various practical application
scenarios. The experiments conducted on an MRA-CTA dataset and a DSA-CTA dataset demonstrate that the
proposed method is effective for cross-modality cerebrovascular segmentation and achieves state-of-the-art
performance.
1. Introduction

Cerebrovascular diseases, such as stroke, pose a significant threat
to human health worldwide due to their high morbidity and mor-
tality rates (Yasugi et al., 2018; Shao et al., 2022). Alterations in
the cerebral arterial system, including vessel stenosis and occlusion,
typify stroke. The assessment of arterial vessel status is pivotal for
diagnosing and managing cerebrovascular diseases. Such evaluations
are instrumental as biomarkers in chronic cerebrovascular conditions
that commonly precede stroke events, and the status of cerebrovas-
cular health is a prognostic indicator for the likelihood of subsequent
strokes (Gutierrez et al., 2015). In the clinical context, detailed knowl-
edge of cerebrovascular conditions is indispensable. Patients suffering
from cardiovascular diseases that result in stroke and myocardial in-
farction often necessitate comprehensive medical imaging across acute,
subacute, and chronic phases, which serves as a vital source of data
for clinical decision-making. These imaging techniques play a pivotal
role in determining suitability for and monitoring responses to treat-
ments, including thrombectomy and coiling (Birenbaum et al., 2011).
For neurosurgeons, the manual analysis of brain scans is a labor-
intensive process, particularly when tracing diminutive blood vessels in
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orthogonal views to elucidate vascular anatomy (Taher et al., 2020).
Consequently, the precise and automated segmentation of cerebral
vascular structures is critical for effective diagnosis and intervention
in vascular diseases.

Computed Tomography Angiography (CTA), Digital Subtraction An-
giography (DSA), and Magnetic Resonance Angiography (MRA) have
emerged as important imaging technologies to provide extensive data
on cerebral vessels, which have significantly advanced cerebrovascular
research (Zhang et al., 2020a). CTA is a contrast-based, minimally
invasive, and cost-efficient imaging modality, which has been clini-
cally employed in the diagnosis of many vascular diseases (Fu et al.,
2020). MRA, a non-contrast, non-invasive, and radiation-free technol-
ogy, is based on blood flow or inflow angiography. However, the
imaging quality of MRA is often reduced due to slow blood flow
and slender vessels (Chen et al., 2018). DSA is regarded as the gold
standard for the diagnosis of cerebrovascular diseases, since it of-
fers high-resolution assessment to image intuitive vascular structure
information (Barlinn and Alexandrov, 2011). Data from these three
modalities are widely employed in image-based cranial and peripheral
vascular disease diagnosis.
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Fig. 1. Due to significant differences between different modalities as shown in (a),
direct transfer of the vascular segmentation network results in poor performance (b).
The same segmentation network (Çiçek et al., 2016) was trained using the training
dataset of each of the three modalities. Subsequently, it was tested on the same CTA
test dataset. The higher scores for 𝐷𝑆𝐶 and 𝐶𝑙𝐷𝑖𝑐𝑒 indicate better performance, and
reverse for 𝐴𝐻𝐷.

Manual annotation of cerebral vessels is an arduous and complex
task, characterized by a high degree of anatomical variation and in-
tricate cerebral vascular structure (Almi’ani and Barkana, 2012). With
the development of deep Convolution Neural Network (CNN), many
automatic segmentation algorithms (Çiçek et al., 2016; Milletari et al.,
2016; Qu et al., 2023; Chen et al., 2023) have been proposed to extract
vessels with remarkable success. Nevertheless, these methods have a
modality-specific limitation since they are trained and tested with data
from the same modality. Their performance often declines significantly
when tested on images of different modalities or even different devices
within the same modality, which is called domain shift (Xu et al.,
2018). A clear example of this challenge is presented in Fig. 1, where
cerebrovascular images from three modalities (MRA, CTA, and DSA)
exhibit significantly different appearances. Collecting annotations in
the new domain is a straightforward solution, but it is expensive and
time-consuming, even for professional experts.

Unsupervised Domain Adaptation (UDA) method presents an alter-
native approach to addressing this issue by transferring of knowledge
from a labeled source domain to an unlabeled target domain, thereby
eliminating the need for further manual annotation in the target do-
main (Toldo et al., 2020). Recently, most UDA methods have employed
Generative Adversarial Networks (GANs) to minimize the differences
in image appearances (Zhu et al., 2017; Xu et al., 2023) or latent
features (Dou et al., 2019; Tzeng et al., 2017) between the source
and target domains. However, for 3D medical images, most GAN-based
UDA algorithms treat 3D voxels as a sequence of 2D slices in image
synthesis due to hardware limitations and time-consuming training
processes (Sun et al., 2020). Consequently, these methods are difficult
to apply to 3D cerebrovascular images, where vascular features are not
explicitly evident in 2D slice images, complicating the preservation of
small vessel integrity and vascular network continuity.

In addition to GAN-based methods, pseudo label generation tech-
niques are also employed in UDA (Chen et al., 2021; Wu et al., 2022).
Typically, these methods use a network trained on source domain data
to generate initial segmentation results for target domain data. These
results are subsequently refined and utilized as pseudo labels to train
the network of target domain. However, the performance of these
methods is heavily dependent on the quality of the initial segmentation
2

results of target domain images. Consequently, significant discrepancies
between the source and target domains, typically in cerebrovascular
images, can significantly affect the efficacy of these methods.

To tackle the challenges outlined above, we present a framework
to achieve cross-modality cerebrovascular segmentation using paired
images of different modalities acquired from the same patient. The
central idea of our approach is to obtain high-quality pseudo-labels
for the target domain images based on the source domain labels, a
challenging task due to the significant differences between modalities
and the potential variability in vessels across different imaging sessions.
Our framework consists of three phases (as shown in Fig. 2). First, we
enhance blood vessels by Hessian matrix-based filtering (Frangi et al.,
1998) to reduce the discrepancy between two modalities and train
the source domain segmentation network (𝑓s). Subsequently, given
paired images, pseudo labels of target domain images are generated
by applying a registration algorithm to align the source domain labels
with the initial target domain segmentation results obtained via 𝑓s.
Finally, we train the target domain segmentation network (𝑓t) with the
generated pseudo labels.

This paper is an extension of our conference paper (Guo et al.,
2023). We propose an improved pseudo-label generation module to
address the issue that over-segmentation process leads to thickened
blood vessels in the prior framework. Furthermore, the experiments are
more comprehensive, covering a wider range of application scenarios,
which includes cases without/with labels in the target domain, and
instances of multi-domain migration. The efficacy of each framework
component, as well as its influence on final segmentation outcomes, is
meticulously evaluated. Additionally, we have augmented the experi-
mental databases and test images for more robust analysis. Our main
contributions are summarized as follows:

• We present an unsupervised domain adaptation framework based
on paired data. To the best of our knowledge, it is the first frame-
work to address the UDA segmentation task of 3D vessel image.
Leveraging characteristics of blood vessels, we employ vascular
enhancement methods to reduce discrepancy between different
domains, thereby facilitating more effective transfer learning pro-
cesses. We also introduce two different methods to generate
high-quality pseudo labels for target domain images.

• We present a series of experimental arrangements for assessing
the efficacy of UDA method across various practical application
scenarios, including target domain without or with labels, as
well as transfer learning between multiple domains. Through
meticulous experimentation, we have substantiated the efficiency
of the proposed approach by comparing it with the widely uti-
lized unsupervised domain transfer techniques, under a range of
experimental settings.

2. Related work

2.1. Vessel segmentation

With the development of deep CNN, many automatic segmentation
algorithms (Guo et al., 2021; Qu et al., 2023; Weng et al., 2023; Chen
et al., 2023; Guo et al., 2024) have been developed to extract vessels
from complex medical images. Ronneberger et al. (2015) proposed
the U-Net, which has been widely used in the field of medical image
segmentation. Focusing on MRA images, Zhang et al. (2020b) presented
a cerebrovascular segmentation framework that removed redundant
features and retained edge information in shallow features to obtain
better cerebrovascular segmentation. Meng et al. (2020) proposed a
Multiscale Dense CNN based on encoder–decoder architecture to au-
tomatically segment cerebral vessel in DSA images. And Fu et al.
(2020) proposed a reconstruction system, supported by an optimized
physiological anatomical-based, to automatically achieve CTA cere-
brovascular reconstruction. However, the success of these methods is
limited to training and testing with single modality data due to vast
differences between data from different modalities.
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Fig. 2. The proposed cross-modality training framework consists of three phases. First, the source domain network 𝑓s is trained with labeled images (𝑥s, 𝑦s) from the source domain.
Thereafter, the segmentation outcome �̂�t(0) of the target domain training image 𝑥t is acquired using 𝑓s (trained), and then transformed into the pseudo label �̂�t by registering it with
paired label 𝑦s (paired) from the source domain. Lastly, the target domain segmentation network 𝑓t is trained with the images 𝑥t from the target domain and their corresponding
pseudo labels �̂�t .
2.2. UDA based on GAN

Previous work has demonstrated that GAN has great potential in
image style transfer (Zhu et al., 2017; Azadi et al., 2018), image
generation (Li et al., 2023; Sharan et al., 2022) and other computer
vision tasks (Al Khalil et al., 2021; Guerreiro et al., 2023). Recently, it
has been widely used in UDA task to align the distributions of different
domains due to its great superiority in capturing data distribution.
Achieving domain adaptation based on GAN mainly focuses on aligning
image appearance, feature or a combination of both.

The alignment of image appearance converts the original images
of the source domain into the same style as those of target domain,
inspired by great success in image-to-image translation (Hoffman et al.,
2018; Lei et al., 2021). The target-style images, inheriting labels from
the source domain, are then used to train the target domain seg-
mentation network, which is tested with real images from the target
domain (Bousmalis et al., 2017). Huo et al. (2018) proposed to trans-
late source images to target domain by cycle generative adversarial
networks to achieve cross-modality segmentation, and combined the
generation and segmentation networks to implement end-to-end pro-
cessing. Additionally, aligning the appearance of latent feature focuses
on learning the invariant features across different domains by minimiz-
ing their distance metric (Dou et al., 2019; Tzeng et al., 2017). Sankara-
narayanan et al. (2018) performed adversarial learning in latent feature
space to achieve a compact embedding.

Recently, studies are increasingly exploring combined image and
feature appearance alignment to more effectively mitigate the domain
shift (Han et al., 2021; Pei et al., 2021). For example, Chen et al. (2020)
presented Synergistic Image and Feature Alignment (SIFA) to effec-
tively adapt a segmentation network to an unlabeled target domain for
cardiac substructure and abdominal multi-organ segmentation. How-
ever, these GAN-based approaches for domain adaptation segmentation
are limited to 2D images, and even for 3D medical images, they operate
on 2D slices due to the complexity and instability of 3D GAN structures.
Unfortunately, limited studies focus on utilizing 3D GAN for unsuper-
vised domain adaptation in segmentation. Zhang et al. (2018) proposed
a 3D image synthesis approach using large amounts of CT data to
achieve realistic heart images. However, this approach is infeasible for
3

most medical image segmentation tasks due to the lack of available
data. Yao et al. (2022) developed a three-step framework incorporating
a quartet self-attention module to achieve 3D UDA segmentation in
brain structures and multi-organ abdominal segmentation. The require-
ment for image details in vascular segmentation, however, exacerbates
the difficulty of 3D vessel image synthesis.

2.3. UDA based on pseudo label

Besides GAN-based methods, pseudo-label generation methods are
also used in UDA (Xing et al., 2019; Huynh et al., 2022). These methods
typically use networks trained on source domain data to generate the
initial results for target domain training data, which are then adjusted
to serve as the pseudo-labels of the target domain images. Chen et al.
(2021) introduced a complementary pixel-level and class-level denois-
ing scheme with uncertainty estimation to reduce noisy pseudo-labels,
and achieved good performance in optic disc and cup segmentation.
Furthermore, an uncertainty-based filtering was proposed to select
high-quality pseudo-labels during the training of target domain seg-
mentation network (Wu et al., 2022). However, the effectiveness of
these methods is heavily reliant on the quality of their initial target
domain segmentation outcomes. When significant differences exist be-
tween the source and target domains, their performance is severely
compromised. This issue is particularly evident in cerebrovascular UDA
segmentation, where data from different modalities exhibit substantial
disparities, as illustrated in Fig. 1. Therefore, we propose a frame-
work that utilizes paired data to address these issues. Specifically,
we employ a Hessian matrix-based vascular enhancement technique
to minimize differences between the source and target domains, and
subsequently employ image registration to obtain more precise and
reliable pseudo-labels.

3. Method

Let 𝐷s = {(𝑥s𝑖 )}
𝑁
𝑖=1 and 𝐷t = {(𝑥t𝑖)}

𝑁
𝑖=1 denote the 𝑁 paired im-

ages from source and target domains, respectively. Images from 𝐷s
possess either manual labels or automatic segmentation labels, with
the acquisition method detailed below. We aim to exploit 𝐷 and 𝐷
s t



Computerized Medical Imaging and Graphics 115 (2024) 102393Z. Guo et al.

m
l
t
d
i
u
t
s
d

3

d
r
n
d
F

c
i
d
p
l
t
m
a
b
a

b
i
N
u
a
i
n
D

3

t
s
s

t
s
p
p
t
t
t
v
l
t
s

F
c

w
o
f
v
f
T
t

3

t
b
n
f
r
d
i
I
f
d
V
m
S
o
a

t
e
f
T

𝐿

I
p

𝐿

w
o

𝐿

to improve the performance of the segmentation model within the
target domain. As illustrated in Fig. 2, our framework encompasses
three phases. Initially, the segmentation network 𝑓s is trained utilizing
data from the source domain, which encompass paired data (if 𝐷s has

anual labels) or annotated unpaired data. Additionally, segmentation
abels for 𝐷s are obtained if manual labels are absent. Subsequently,
he preliminary segmentation results of the target domain data 𝐷t are
erived from 𝑓s. The Iterative Closest Point (ICP)-based method or the
mproved VoxelMorph (Balakrishnan et al., 2019) (ImVM) method is
tilized to obtain pseudo-labels for the target domain data. Finally, in
he third stage, these pseudo labels are used to train the target domain
egmentation network, whose structure is identical to that of the source
omain network but with different parameters.

.1. Vessel enhancement and source domain segmentation network (𝑓s)

As mentioned above, the images from different domains are of great
ifference due to the different imaging principles (Zhang et al., 2020a),
esulting in significant performance deterioration when segmentation
etworks trained on source domain images 𝐷s are tested on target
omain images 𝐷t . To alleviate this challenge, we propose to employ
rangi filtering (Frangi et al., 1998) for vessel enhancement (𝑥 →

�̃�) prior to inputting the images into the segmentation network. We
omputed statistics on the gray-values of the same blood vessel and
ts surroundings in the paired images from source and target domains,
enoted as 𝑃𝑥s , 𝑃𝑥t ; similarly, the gray value distribution at the same
osition in the enhanced images is denoted as 𝑃�̃�s , 𝑃�̃�t . We calcu-
ated the KL divergence and the earth mover’s distance (EMD) of the
wo modal gray distributions before and after vessel enhancement to
easure the distance between two distributions. The KL divergence

nd EMD of the two modal gray distributions are 1.001 and 8.266
efore vessel enhancement, and 0.157 and 4.672 afterward, indicating
reduced discrepancy between the source and target domains.

The source domain segmentation network (𝑓s) is trained using
oth original images and their corresponding enhanced versions as
nputs. The network architecture is customized from the basic 3D U-
et network (Çiçek et al., 2016), with 3D convolution, max pooling,
p-sampling and a shortcut connection that bridges the down-sampling
nd up-sampling paths. (The detailed design of the network structure
s shown in Section 3.5 and Fig. 4.) In fact, most popular segmentation
etworks can also serve as backbones for our proposed UDA framework.
ice loss is used during the training of the segmentation network.

.2. ICP-based pseudo-label generation

Given the target domain image 𝑥t𝑖, the segmentation network 𝑓s
rained during the first stage can produce the probability map of vessel
egmentation. Different threshold values are selected to generate initial
egmentation result �̂�t(0)𝑖 and over-segmentation result �̂�t(1)𝑖 :

�̂�t(0)𝑖 = (𝑓s(𝑥t𝑖) > 𝛼1), (1)

�̂�t(1)𝑖 = (𝑓s(𝑥t𝑖) > 𝛼2). (2)

(𝑥s𝑖 , 𝑦
s
𝑖 ) represents the source domain image and label paired with

he target domain image 𝑥t𝑖, and 𝑦s𝑖 is the manual label or automatic
egmentation label, as mentioned above. We regard the foreground
oints in the initial segmentation outcome �̂�t(0)𝑖 and the source domain
aired label 𝑦s𝑖 as point clouds and utilize the ICP algorithm to acquire
he registration result (𝑦s→t

𝑖 ). Due to the accuracy limitation in registra-
ion, differences in imaging modalities and variations in blood vessels,
he registration result may not integrate precisely with authentic blood
essels of 𝑥t𝑖 in detail. However, it discloses probable blood vessel
ocations. Therefore, we exploit the trustworthy blood vessels from
he over-segmentation result depending on the registration outcome to
erve as pseudo label during the fine-tuning procedure, as illustrated in
4

o

ig. 3(a). Specifically, at the point 𝑝, the value of the pseudo-label is
alculated as follows:

�̂�t𝑖[𝑝] =
{

1 �̂�t(1)𝑖 [𝑝] = 1 and 𝑑(𝑝, 𝑦s→t
𝑖 ) < 𝜖

0 otherwise,
(3)

here 𝑑(𝑝, 𝑦s→t
𝑖 ) is the minimum distance from point 𝑝 to the point set

f 𝑦s→t
𝑖 , and 𝜖 is the threshold of distance. The point 𝑝 is selected as

oreground in pseudo label when two conditions are satisfied: (i) the
alue at point 𝑝 in the over-segmentation result is 1; (ii) the distance
rom point 𝑝 to the registered resulting image 𝑦s→t

𝑖 is close enough.
he acquired pseudo-label is reliable, as the over-segmentation result
ypically encompasses most blood vessels.

.3. ImVM-based pseudo-label generation

To ensure comprehensive inclusion of all blood vessels, a minuscule
hreshold is necessary in Eq. (4), yet this procedure results in thicker
lood vessels in the over-segmentation results, leading to thicker-than-
ormal blood vessels in the pseudo-labels. Thus, we offer an alternative
ine registration method that allows for the use of the registration
esults combined with initial segmentation outcomes as pseudo-labels,
enoted as ImVM. As shown in Fig. 3(b), we use VoxelMorph (Balakr-
shnan et al., 2019) as the backbone of the registration framework.
n accordance with our task, we make two crucial changes to the
ramework. First, due to the distinct differences in data gray level
istributions across different imaging modalities, the performance of
oxelMorph could be impeded. To counteract this, vascular enhance-
ent images are used for supervision as opposed to the original images.

econd, due to the lack of annotated data for a given modality in
ur task, the segmentation result acquired from Phase I replaces the
nnotation for supervision.

The paired source domain vascular enhancement image �̃�s𝑖 and
arget domain vascular enhancement image �̃�t𝑖 are fed into the feature
xtraction network 𝑓vm to obtain the displacement field 𝑢. The de-
ormed image and label are represented by �̃�s𝑖◦𝑢 and 𝑦s𝑖◦𝑢, respectively.
he registration results are supervised via MSE loss and Dice loss:

sim = MSE(�̃�t𝑖 , �̃�
s
𝑖◦𝑢) + 𝜆1Dice(�̂�

t(0)
𝑖 , 𝑦s𝑖◦𝑢). (4)

n addition, similar to the work of Balakrishnan et al. (2019), we su-
ervise the spatial gradients of displacement 𝑢 to ensure its continuity:

smooth =
∑

𝑝∈𝛺
‖∇𝑢(𝑝)‖2, (5)

here 𝛺 is the collection of all points in the image. The overall
bjective loss function is as follows:

f inal = 𝐿sim + 𝜆2𝐿smooth. (6)

Upon performing inference, the trained network uses paired vas-
cular enhancement images as input to obtain the corresponding de-
formation field 𝑢. The warping label �̂�t(w)𝑖 is obtained by applying
the deformation field 𝑢 to the source domain label, mathematically
expressed as:

�̂�t(w)𝑖 = 𝑦s𝑖◦𝑢, 𝑢 = 𝑓vm(�̃�s𝑖 , �̃�
t
𝑖). (7)

Given the constraints associated with registration performance, we
amalgamate the initial segmentation outcome �̂�t(0)𝑖 with the warping
result �̂�t(w)𝑖 to yield pseudo-labels for the target domain images. Specif-
ically, we consider each interconnected domain 𝑐 in �̂�t(0)𝑖 to be a blood
vessel if its concurrence proportion with �̂�t(w)𝑖 exceeds a predefined
threshold 𝛽. The pseudo-label is calculated as follows:

�̂�t𝑖 = �̂�t(w)𝑖 ∪ 𝐶, 𝐶 = {𝑐|𝑐 ∈ �̂�t(0)𝑖 ,
|𝑐 ∩ �̂�t(w)𝑖 |

|𝑐|
> 𝛽}. (8)

In the ImVM-based module, pseudo-label generation primarily relies
n initial segmentation result of target domain (�̂�t(0)) and deformed
𝑖
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Fig. 3. Pseudo-label generation module based on ICP (a) and Pseudo-label generation module based on ImVM (b). In (a), the initial segmentation result �̂�t(0)𝑖 from stage I is aligned
with the paired source domain label 𝑦s𝑖 (paired) using the ICP algorithm. The over-segmentation result �̂�t(1)𝑖 is then fine-tuned using the registration results 𝑦s→t

𝑖 to derive the desired
pseudo label �̂�t𝑖 . In (b), the paired vascular enhancement images (�̃�s𝑖 (paired), �̃�t𝑖) are fed into the registration network to obtain a deformation field. The paired source domain
label 𝑦s𝑖 (paired) is then deformed and fine-tuned to produce the pseudo label �̂�t𝑖 .
Fig. 4. The structure of network 𝑓s , 𝑓m and 𝑓vm. The size and channel of features are displayed on the left side. The step and kernel size in Max Pooling are both set to 2. In the
convolution layer labeled as Conv(a, b), ‘a’ and ‘b’ represent the number of input and output feature channels, respectively.
source domain label (�̂�t(w)𝑖 ), foregoing the use of over-segmentation
result (�̂�t(1)𝑖 ) in the ICP-based module. This approach ensures that the
thickness of blood vessels in the pseudo-label closely resembles that of
real blood vessels, consequently enhancing the precision of the pseudo
label.

3.4. Target domain segmentation network (𝑓t )

The target domain images and generated pseudo labels {(𝑥t𝑖 , �̂�
t
𝑖)}

𝑁
𝑖=1

are used to train the target domain segmentation network 𝑓t , which
has the same structure as the source domain segmentation network 𝑓s.
The parameters of 𝑓s obtained during Phase I are implemented for the
initialization of 𝑓t . During the inference stage, the target domain image
𝑥t and the enhanced image �̃�t are fed into 𝑓t to obtain the definitive
segmentation outcome.

3.5. Network configurations and implementation details

3.5.1. Network configurations
The source domain segmentation network 𝑓s, target domain seg-

mentation network 𝑓 , and feature extraction network 𝑓 have the
5

t vm
same structure, which is customized from the basic 3D U-Net net-
work (Çiçek et al., 2016). The detailed structure of the network is
shown in Fig. 4.

3.5.2. Implementation details
Our segmentation network is implemented with PyTorch frame-

work. During the training phase, a NVIDIA GeForce GTX 3090 GPU
is used to train the network. We employ adaptive moment estimation
(Adam) with an initial learning rate of 0.001. Additionally, a poly
learning rate policy (Zhao et al., 2017) with power 0.9 is used. The
hyperparameter 𝜖 is set to 4 pixels. The threshold values 𝛼1 and 𝛼2 are
0.5 and 0.03 respectively, and both the balancing weight 𝜆1 and 𝜆2
are 0.01. The predefined threshold 𝛽 is 0.4. Our code is available at:
https://github.com/gzq17/Cross-Modality-Vessel-Segmentation.

4. Experiments and results

4.1. Dataset and evaluation metrics

4.1.1. Dataset
The data utilized in this study were retrospectively collected from

Xuanwu Hospital of Capital Medical University, China. The collected

https://github.com/gzq17/Cross-Modality-Vessel-Segmentation
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ata include four categories: paired MRA and CTA data from the same
atient, paired DSA and CTA data from the same patient, unpaired CTA
ata, and unpaired MRA data. They form two multi-modal datasets:
i) MRA-CTA, comprising paired MRA and CTA data of 21 patients,
npaired MRA images of 65 patients and unpaired CTA images of
7 patients. (ii) DSA-CTA, which consists of paired DSA and CTA
ata of 26 patients and unpaired CTA images of 27 patients. The
npaired CTA data in two datasets are the same, and the CTA data
ave undergone skull-stripping to remove the bright skull regions that
ffect segmentation (Najm et al., 2019). All images are labeled with
lood vessels and have a voxel spacing of 0.5 ×0.5 × 0.75 mm3. During

annotation, we use Frangi filtering (Frangi et al., 1998) to generate the
initial segmentation results for the vessels. Then, fine corrections are
made by two radiologists to obtain the final vascular label. This study
got ethical approval of Xuanwu Hospital of Capital Medical University
(2020009) for using the clinically collected datasets.

In the experiments, we randomly crop patches of size 96 × 96 × 96
to be fed into the network during training. It should be noted that DSA
data contain only one vessel branch. As such, when the experiment of
DSA-CTA dataset is conducted, the paired DSA and CTA images are
separated into two halves along the middle sagittal plane, retaining the
half that contains the same vessels as those in the DSA images. During
testing, the CTA data annotation does not include the branch of the
basilar artery, as this branch is not included in the DSA dataset.

4.1.2. Evaluation metrics
We evaluate the results based on the following metrics: (i) Dice

Similarity Coefficient (DSC), (ii) ClDice (Shit et al., 2021), taking
into account vascular connectivity, (iii) Average Hausdorff Distance
(AHD), which takes voxel localization into consideration. Furthermore,
to indicate the statistical significance of improvements of the proposed
method, we also present the p-values for DSC using a paired t-test with
each comparison method.

4.2. Experimental settings

In this paper, we report the evaluation of the proposed method
in various cases in addition to the basic UDA experiment, where the
target domain has no labels. The experiments are carried out in the
cases where the target domain features a small and a large number
6

of annotations. The efficacy of the proposed method is assessed using
both CTA and MRA data as the target domain on the MRA-CTA dataset.
Validation is also carried out on the DSA-CTA dataset, where CTA alone
is utilized as the target domain. DSA data are excluded as the target
domain because the performance of the unsupervised DSA segmenta-
tion schemes is acceptable due to the high quality of the DSA data.
For clarity, the target domain image set 𝐷t = {(𝑥t𝑖)}

𝑀
𝑖=1 is categorized

into paired and unpaired dataset, represented by 𝐷t(p) = {(𝑥t(p)𝑖 )}𝑁𝑖=1
and 𝐷t(u) = {(𝑥t(u)𝑖 )}𝑇𝑖=1, respectively (𝐷t = 𝐷t(p) ∪ 𝐷t(u), 𝑀 = 𝑁 + 𝑇 ).
Except for the investigations conducted in Section 4.9, the labeled
images in the source domain have paired data in the target domain,
that is 𝐷s = {(𝑥s𝑖 , 𝑦

s
𝑖 )}

𝑁
𝑖=1, in all remaining experiments. Via the proposed

method, the pseudo-labels of target domain paired images (𝐷t(p)) can
be generated from the source domain 𝐷s.

4.2.1. The case without label in target domain
We train source domain segmentation network 𝑓s with 𝐷s. The

seudo labels {�̂�t(p)𝑖 }𝑁𝑖=1 of 𝐷t(p) are generated by 𝑓s during Phase II. Sub-
sequently, the target domain network 𝑓t is trained with {(𝑥t(p)𝑖 , �̂�t(p)𝑖 )}𝑁𝑖=1.

he unpaired images of target domain (𝐷t(u)) are used to test the
etwork.

To evaluate the effectiveness of our proposed framework, we re-
roduced several popular UDA algorithms, including methods based on
AN (SIFA (Chen et al., 2020), DDSeg (Pei et al., 2021)) and methods
ased on pseudo-label generation (DPL (Chen et al., 2021), FPL (Wu
t al., 2022)).

Furthermore, comprehensive studies are conducted to evaluate the
fficacy of each module within our proposed framework. The specific
xperimental settings are shown in Fig. 5(a). It is noteworthy that
he segmentation network trained with the target domain images and
orresponding labels serves as the upper limit to gauge the performance
f the unsupervised domain adaptation segmentation methods (𝑈𝑝𝑝𝑒𝑟).

.2.2. The case with n labels in target domain
Assuming the presence of 𝑛 labeled images 𝐷l

t(u) = {(𝑥t(u)𝑖 , 𝑦t(u)𝑖 )}𝑛𝑖=1
𝐷l

t(u) ⊂ 𝐷t(u), 𝑛 < 𝑇 ) in the target domain, the network 𝑓t is trained
ith 𝐷l

t(u). This differs from other experiments where the network 𝑓s
s trained with labeled data from the source domain. Subsequently,
he network outputs initial segmentation results for the paired target
omain images (𝐷t(p) = {(𝑥t(p)𝑖 )}𝑁𝑖=1), whose pseudo labels {�̂�t(p)𝑖 }𝑁𝑖=1 are
obtained in Phase II. Finally, the target domain segmentation network



Computerized Medical Imaging and Graphics 115 (2024) 102393Z. Guo et al.
Table 1
Segmentation performance on MRA-CTA dataset when there is no label in the target domain, with the best performance highlighted in bold. The
𝑝 of 𝐷𝑆𝐶(𝑝) represents the p-value calculated by the t-test, and ∗ indicates the statistical difference between 𝑂𝑢𝑟𝑠(𝐼𝑚𝑉𝑀) and other methods.

Method 𝐶𝑇𝐴2𝑀𝑅𝐴 𝑀𝑅𝐴2𝐶𝑇𝐴

DSC ClDice AHD DSC ClDice AHD
(%, ↑) (%, ↑) (mm, ↓) (%, ↑) (%, ↑) (mm, ↓)

Upper 86.60 (∗∗∗) 89.30 0.445 84.43 (∗∗∗) 84.63 0.335

SIFA (Chen et al., 2020) 63.85 (∗∗∗) 70.35 0.629 56.35 (∗∗∗) 55.63 0.950
DDSeg (Pei et al., 2021) 53.15 (∗∗∗) 61.09 2.706 59.15 (∗∗∗) 56.32 3.037
DPL (Chen et al., 2021) 74.27 (∗∗∗) 74.88 1.361 66.75 (∗∗∗) 68.80 1.757
FPL (Wu et al., 2022) 75.04 (∗∗∗) 70.09 1.513 72.59 (∗) 74.81 1.262

Baseline 72.81 (∗∗∗) 65.56 1.234 70.31 (∗∗) 71.43 1.599
B+E 72.94 (∗∗∗) 64.09 1.052 71.16 (∗∗) 72.08 1.613
B+E+P(III) 72.84 (∗∗∗) 78.08 0.679 69.82 (∗∗∗) 77.46 1.771
Ours(ICP) 77.59 (∗) 81.45 0.600 72.22 (∗∗∗) 80.76 0.653
Ours(ImVM) 77.88 (–) 78.76 0.532 75.04 (–) 82.58 0.518

∗∶ 𝑝 < 0.05, ∗∗∶ 𝑝 < 0.01, ∗∗∗∶ 𝑝 < 0.001.
Table 2
Segmentation performance on DSA-CTA dataset when there is no label in the target
domain, with the best performance highlighted in bold. The 𝑝 of 𝐷𝑆𝐶(𝑝) is consistent
with Table 1.

Method 𝐷𝑆𝐴2𝐶𝑇𝐴

DSC (%, ↑) ClDice (%, ↑) AHD (mm, ↓)

Upper 75.93 (∗∗∗) 73.48 1.514

SIFA (Chen et al., 2020) 58.67 (∗∗∗) 55.62 2.394
DDSeg (Pei et al., 2021) 49.04 (∗∗∗) 39.94 5.340
DPL (Chen et al., 2021) 46.64 (∗∗∗) 46.68 7.056
FPL (Wu et al., 2022) 54.57 (∗∗∗) 52.38 6.552

Baseline 55.33 (∗∗∗) 50.81 6.562
B+E 56.17 (∗∗∗) 53.14 5.891
B+E+P(III) 54.02 (∗∗∗) 51.72 6.797
Ours(ICP) 65.03 (∗∗) 62.50 2.590
Ours(ImVM) 69.90 (–) 63.85 1.734

is trained using 𝑛 images with real labels from 𝐷l
t(u), combined with

paired images that have generated pseudo labels. The remainder of the
unpaired dataset (𝐷t(u) ⧵𝐷l

t(u)) is reserved for testing purposes.
We carry out a series of comparative experiments to evaluate the

efficiency of our proposed method in the cases where there are 𝑛
labels in the target domain. And the experimental settings are shown
in Fig. 5(b).

4.3. Target domain without label

4.3.1. State-of-the-art comparison
As the experimental results are summarized in Tables 1 and 2,

the proposed framework improves the vessel segmentation accuracy in
terms of DSC, ClDice and AHD when compared with both GAN-based
methods and pseudo-label-based methods. Notably, the GAN-based
approaches yield suboptimal results relative to the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. This is
due to the inconspicuous characteristics of vascular features in the 2D
slices, which lead to significant artifacts and noise in the results. More-
over, the pseudo-label-based approaches show trivial improvement in
comparison to the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, because the pseudo-label generation based
on uncertainty selection is difficult to solve the wrong segmentation
of vascular-like structures across different domains. These findings are
consistent with the results in Fig. 6. The proposed framework leverages
paired source domain images to generate high-quality pseudo-labels
for vascular structures. Additionally, vascular enhancement images are
integrated into both the segmentation and pseudo-label generation
stages to counteract the inherent domain differences that can degrade
performance. Therefore, the proposed approach enhances the accuracy
and robustness of target domain segmentation results in medical images
7

with vascular structures.
Table 3
Comparison of the number of parameters and inference time.

Methods Param (M, ↓) Time (s, ↓)

SIFA (Chen et al., 2020) 43.7 10.84
DDSeg (Pei et al., 2021) 47.9 16.56
DPL (Chen et al., 2021) 8.08 3.18
FPL (Wu et al., 2022) 8.08 3.18
Ours(ICP/ImVM) 8.08 3.18

4.3.2. Inference speed and memory
To underscore the broader benefits of our proposed methodology,

we have detailed the model’s parameter count and the average in-
ference time per image in Table 3. It is important to highlight that
to ensure fair comparison, the pseudo-label generation methods (DPF,
FPL) utilize the same backbone as our approach, ensuring that both
the parameters and inference times are aligned across these models.
However, as delineated in Section 4.3.1, the segmentation efficacy
of these methods significantly trails that of our model. Furthermore,
compared to GAN-based methods (SIFA, DDSeg), our approach not
only demonstrates superior segmentation performance but also exhibits
advantages in terms of reduced parameter count and faster inference
time, thus reaffirming the strengths of the proposed framework.

4.3.3. Ablation study
The result of ablation experiment presented in Table 1 shows that

the inclusion of vascular enhancement images can effectively reduce
the influence of domain differences and enhance the accuracy of seg-
mentation results, as evidenced by the comparison between 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
and 𝐵+𝐸. Additionally, the performance of 𝐵+𝐸+𝑃ℎ𝑎𝑠𝑒(𝐼𝐼𝐼) is deteri-
orating in contrast to 𝐵+𝐸. This degradation is potentially attributable
to the utilization of noisy labels, impeding the network’s ability to
learn the correct information. Our proposed approach yields significant
improvements in comparison to the 𝐵 + 𝐸 + 𝑃ℎ𝑎𝑠𝑒(𝐼𝐼𝐼), indicating
the reliability and effectiveness of our approach in generating high-
quality pseudo-label for vascular structures. Moreover, the result using
ImVM-based module outperforms that of ICP-based method, which
could be attributed to the fact that the pseudo-label generated from
over-segmentation result leads to thicker blood vessels. This can also be
verified by the MIP results in Fig. 6 (the results of 𝑂𝑢𝑟𝑠(𝐼𝐶𝑃 ) include
more false positives).

4.4. Comparison of different machine learning methods as backbone

In this subsection, we compare our framework with more deep
learning-based fully supervised segmentation methods. Our scheme
can leverage most fully supervised methods as backbones, thereby
facilitating an analysis of their impacts on our proposed framework.
Specifically, we integrate 3D U-Net (Çiçek et al., 2016), DVN (Tet-

teh et al., 2020), and nnU-Net (Isensee et al., 2021) as backbone
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Fig. 6. Segmentation results on three testing images from three experiments in the case where there is no label in target domain. The segmentation outcomes are presented for
each image in a two-row format, displaying the 3D results and Maximum Intensity Projection (MIP) results in the transverse plane. The Dice score (%) is incorporated in the
upper right corner of the 3D result image. In the MIP results, true positives, false negatives, and false positives are represented by red, blue, and green pixels, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. The segmentation results in the 𝑀𝑅𝐴2𝐶𝑇𝐴 experiment with different backbones.
Table 4
The number of parameters and inference time of different backbones.

The backbone of method Param (M, ↓) Time (s, ↓)

3D U-Net (Çiçek et al., 2016) 8.08 3.18
DVN (Tetteh et al., 2020) 4.69 2.83
nnU-Net (Isensee et al., 2021) 30.78 9.32

architectures of our method and assess their performance in three
contexts: direct application for migration (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒), utilization within
our framework (𝑂𝑢𝑟𝑠(𝐼𝑚𝑉𝑀)), and direct training with the labeled
8

data from target domain (𝑈𝑝𝑝𝑒𝑟). The results in the 𝑀𝑅𝐴2𝐶𝑇𝐴 exper-
iment, delineated in Fig. 7, illustrate the performances across different
backbones, while Table 4 details the computational requirements, in-
cluding the number of parameters and the inference time for each
backbone. Our method consistently outperforms the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 across
various backbones, with a particularly marked improvement when
employing DVN. This enhancement is likely attributable to DVN’s
heightened sensitivity to domain variances, which adversely affects
the performance of 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. Furthermore, a horizontal comparison
across different backbones reveals that nnU-Net outperforms the others,
aligning with expectations due to nnU-Net’s ability to fully exploit the
dataset characteristics. However, this comes at the cost of increased
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Table 5
Segmentation performance when there are a few labels in the target domain (𝑛 = 2), with the best performance shown in bold. The 𝑝 of 𝐷𝑆𝐶(𝑝) is
consistent with Table 1.

Method 𝐶𝑇𝐴2𝑀𝑅𝐴 𝑀𝑅𝐴2𝐶𝑇𝐴 𝐷𝑆𝐴2𝐶𝑇𝐴

DSC ClDice AHD DSC ClDice AHD DSC ClDice AHD
(%, ↑) (%, ↑) (mm, ↓) (%, ↑) (%, ↑) (mm, ↓) (%, ↑) (%, ↑) (mm, ↓)

Upper 86.68 (∗∗∗) 89.98 0.429 85.48 (∗∗) 85.09 0.324 83.62 (∗∗) 82.33 1.113

Baseline 77.94 (∗∗∗) 80.65 0.637 72.86 (∗∗∗) 79.02 1.755 76.65 (∗∗) 78.41 2.884
B+E 82.45 (∗∗∗) 81.98 0.928 77.17 (∗∗∗) 75.98 1.404 77.84 (∗) 78.70 2.514
B+E+P(III) 82.69 (∗) 83.61 0.620 78.92 (∗∗) 78.78 1.332 77.85 (∗∗∗) 78.21 2.749
Ours(ICP) 83.92(0.096) 86.18 0.479 78.85 (∗∗) 80.27 0.628 79.85 (∗∗∗) 80.50 1.345
Ours(ImVM) 84.06 (–) 84.05 0.445 82.33 (–) 83.00 0.393 82.36 (–) 79.90 0.773
Table 6
Segmentation performance when there are many labels in the target domain (𝑛 = 15), with the best result shown in bold. The 𝑝 of 𝐷𝑆𝐶(𝑝) is consistent
with Table 1.

Method 𝐶𝑇𝐴2𝑀𝑅𝐴 𝑀𝑅𝐴2𝐶𝑇𝐴 𝐷𝑆𝐴2𝐶𝑇𝐴

DSC ClDice AHD DSC ClDice AHD DSC ClDice AHD
(%, ↑) (%, ↑) (mm, ↓) (%, ↑) (%, ↑) (mm, ↓) (%, ↑) (%, ↑) (mm, ↓)

Upper 86.91 (∗∗∗) 90.24 0.300 86.06(0.093) 85.96 0.272 85.87(0.106) 85.99 0.672

Baseline 85.25 (∗∗∗) 88.67 0.314 82.35 (∗) 83.87 1.129 83.40 (∗∗∗) 83.33 0.899
B+E 85.38 (∗∗∗) 88.92 0.367 82.74 (∗) 83.95 0.902 83.21 (∗∗) 84.10 0.852
B+E+P(III) 86.14 (∗∗) 89.33 0.323 83.57 (∗) 84.88 0.769 82.51 (∗) 83.28 1.772
Ours(ICP) 85.67 (∗∗∗) 89.27 0.378 84.67(0.074) 85.56 0.287 85.51 (∗) 85.84 0.599
Ours(ImVM) 86.35 (–) 89.68 0.285 85.33 (–) 86.28 0.276 86.05 (–) 86.16 0.534
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computational load, as evidenced by its larger parameter count and
extended inference time presented in Table 4.

4.5. Target domain with n labels

Fully utilizing labeled data from the source domain to improve
segmentation in the target domain is crucial, especially when limited
labeled data are available in the target domain. Table 5 displays
the outcomes acquired by each method when two target domain im-
ages have labels (𝑛 = 2). It is evident that our proposed method
significantly improves the segmentation results across all three ex-
perimental categories in comparison to the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The use of the
ImVM-based module within our framework shows noteworthy improve-
ment of DSC by 6.12%, 9.47%, and 5.71% for 𝐶𝑇𝐴2𝑀𝑅𝐴, 𝑀𝑅𝐴2𝐶𝑇𝐴,
nd 𝐷𝑆𝐴2𝐶𝑇𝐴, respectively. These outcomes indicate the robust per-
ormance of our proposed framework when dealing with scarcity of
abeled data in the target domain.

When the target domain already possesses a significant number
f labeled data, our proposed approach has proven to still effectively
tilize the labels from the source domain to further enhance the seg-
entation outcomes in target domain. Our methodology achieves re-
arkable outcomes as indicated in Table 6, where the results when

here are 15 labeled images (𝑛 = 15) in the target domain are shown. It
an be seen that the labels from the source domain can be effectively
sed, irrespective of whether the ICP-based module or the ImVM-based
ethod is employed to generate pseudo-labels. Direct utilization of

nitial segmentation results as pseudo-labels combined with the existing
abeled data to train the target domain segmentation network (𝐵 +
𝐸 + 𝑃 (𝐼𝐼𝐼)) shows little effect. This is attributed to the difficulty of
removing noise in the pseudo-labels resulting from the same network
structure. Conversely, our method effectively optimizes the initial seg-
mentation outcomes by utilizing paired labels from source domain to
generate high-quality pseudo-labels, ultimately contributing to superior
segmentation results in the target domain.

4.6. The effect of the number of labeled images in target domain

In this study, we examine the influence of the number of labeled
images in the target domain on segmentation results, in conjunction
with the experimentation outlined in earlier sections. Fig. 8 demon-
strates the performance of the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑂𝑢𝑟𝑠(𝐼𝐶𝑃 ), 𝑂𝑢𝑟𝑠(𝐼𝑚𝑉𝑀), and
9

𝑈𝑝𝑝𝑒𝑟 while controlling for equivalent test data on MRA-CTA dataset
(𝑀𝑅𝐴2𝐶𝑇𝐴). As expected, the performance of both the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and
theoretical upper limit (𝑈𝑝𝑝𝑒𝑟) increases with 𝑛. The performance
tilizing the ImVM-based module outperforms that of the ICP-based
ethod due to its ability to generate higher-quality pseudo-labels and

o better address the issue of thicker blood vessels in the pseudo-label
bserved with the latter. In addition, while our proposed framework
isplays smaller improvements as 𝑛 increases compared to the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒,

this is to be anticipated given the limited learning capacity of the
network, leading to a faster rate of improvement for 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in com-
parison to the upper limit (the performance of network no longer
increases once the number of training images reaches a certain quan-
tity). Another notable finding is that as 𝑛 continues to increase, our
proposed method approaches the upper limit, showcasing the potential
for our framework to achieve improved results with less annotated data.

4.7. The effect of the quality of generated pseudo-label

4.7.1. Analysis of the pseudo-label generation parameter
In the ImVM-based module, the generation of pseudo labels is

predominantly predicated on the initial segmentation outcome and the
deformed source domain label through registration. The combination
of these outcomes, as outlined by Eq. (8), yields pseudo labels, with 𝛽
erving as a primary parameter governing the reliance on segmentation
esults. Fig. 9 shows the impact of 𝛽 on the generated pseudo labels
nd the final segmentation results in the 𝐶𝑇𝐴2𝑀𝑅𝐴 experiment. The
omparison of Fig. 9(a) and Fig. 9(b) demonstrates that variations
n 𝛽 lead to similar trends in the quality of the pseudo labels and
he performance of segmentation results, which is intuitive as the
egmentation network is trained using the generated pseudo labels.
dditionally, a large 𝛽 places greater reliance on the deformed source
omain annotation to generate pseudo labels. However, due to regis-
ration errors, there may be an offset between the generated pseudo
abels and the real labels, as well as vascular discontinuity, ultimately
eading to suboptimal segmentation results. Conversely, a small 𝛽 in-
orporates segmentation results directly with the registration outcomes
s foreground labels, introducing noise from the initial segmentation
esults and consequently reducing performance. An appropriate 𝛽 (𝛽 =
.4 in our experiments) can effectively merge the registration results
ith reliable regions from the segmentation outcomes to produce high-
uality pseudo labels, subsequently leading to enhanced segmentation
utcomes in the target domain.
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Fig. 8. Performance of each method versus the number of labeled images (𝑛) in the target domain on MRA-CTA dataset with the CTA as target domain (𝑀𝑅𝐴2𝐶𝑇𝐴).
Fig. 9. The impact of parameter 𝛽 on generated pseudo labels and the segmentation results.
Fig. 10. Registration results in the local area of the 2D slice. Figure (a) shows the unaligned real label and initial segmentation result. Figure (b–d) show the registration results,
where the real labels are represented in red and the registration results in green. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 7
Registration and segmentation performance in the 𝐷𝑆𝐴2𝐶𝑇𝐴 experiment. The results
are evaluated by DSC and AHD, and the best performance is highlighted in bold. The
𝑝 of 𝐷𝑆𝐶(𝑝) is consistent with Table 1.

Method Reg (Pseudo-label) Seg (Result)

DSC(%, ↑) AHD (mm, ↓) DSC (%, ↑) AHD (mm, ↓)

ICP-based 62.31 (∗∗∗) 2.639 65.03 (∗∗) 2.590

I(o) 46.07 (∗∗∗) 2.160 49.92 (∗∗∗) 2.178
I(o)+Dice 65.66 (∗∗∗) 1.490 65.25 (∗∗∗) 1.918
I(e)+Dice 69.73 (–) 1.154 69.90 (–) 1.734

4.7.2. Analysis of registration result
Table 7 presents the outcomes of the ablation experiment on the

pseudo-label generation module, where the registration performance of
the ICP-based method is evaluated using generated pseudo labels, and
highlights the influence of registration outcomes on the target domain
segmentation results. Notably, in our framework that incorporates the
ImVM module, the registration outcomes are used to generate pseudo
labels, thus making the quality of the resulting pseudo labels reliant
upon the performance of the registration process. Among them, 𝐼(𝑜)
10
utilizes only MSE for supervision and uses the original image as input.
𝐼(𝑜)+𝐷𝑖𝑐𝑒 builds on 𝐼(𝑜) and supplements MSE with Dice loss, compar-
ing the source domain label to the initial segmentation outcome of the
target domain image. 𝐼(𝑒) +𝐷𝑖𝑐𝑒 treats vascular enhancement maps as
inputs and ensures the supervision consistency with 𝐼(𝑜) +𝐷𝑖𝑐𝑒.

Table 7 presents compelling evidence that a positive correlation
exists between the quality of the generated pseudo labels and segmen-
tation performance in the target domain, a finding that aligns with
common intuition. Furthermore, Fig. 10 provides detailed insights into
the registration outcomes within specific areas of the 2D slice. With the
ImVM-based module, more precise registration results can be obtained,
which can translate into an enhancement of the segmentation outcomes
in the target domain when employed to generate pseudo labels.

4.8. Comparison of results between MRA2CTA and DSA2CTA

In the experiment of 𝐷𝑆𝐴2𝐶𝑇𝐴 and 𝑀𝑅𝐴2𝐶𝑇𝐴, the same CTA
testing dataset is used, with the exception of the basilar artery in the
𝐷𝑆𝐴2𝐶𝑇𝐴 experiment due to its absence in the DSA dataset. A detailed
examination of the vascular extraction outcomes derived from CTA data
for both experiments is illustrated in Fig. 11.
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Fig. 11. The segmentation results of one testing CTA sample. (a) shows the corresponding labels, while (b) and (c) show the results of 𝑂𝑢𝑟(𝐼𝑚𝑉𝑀) method in the 𝑀𝑅𝐴2𝐶𝑇𝐴 and
𝐷𝑆𝐴2𝐶𝑇𝐴 experiments (𝑛 = 15), respectively. The first row shows a blood vessel straightened with Curved Projection Reformation (CPR) on the plane. The second row displays a
partial view of a 2D slicer.
Table 8
Segmentation performance of MRA2CTA when there are labels of unpaired data in source domain. The best performance is
highlighted in bold. The 𝑝 of 𝐷𝑆𝐶(𝑝) is consistent with Table 1.

Method 𝑀𝑅𝐴2𝐶𝑇𝐴(𝑈𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝐿𝑎𝑏𝑒𝑙𝑠)

DSC (%, ↑) ClDice (%, ↑) AHD (mm, ↓)

Upper 84.43 (∗∗∗) 84.63 0.335

SIFA (Chen et al., 2020) 58.25 (∗∗∗) 52.36 1.516
DDSeg (Pei et al., 2021) 60.59 (∗∗∗) 59.60 1.949
DPL (Chen et al., 2021) 64.01 (∗∗∗) 66.27 1.715
FPL (Wu et al., 2022) 68.76 (∗∗∗) 74.47 1.207

Baseline 65.70 (∗∗∗) 71.11 1.582
B+E 67.31 (∗∗∗) 65.05 2.146
B+E+P(III) 70.95 (∗∗∗) 72.00 1.441
Ours(ICP) 72.74 (∗∗∗) 79.29 0.694
Ours(ImVM) 75.01 (–) 80.85 0.539
The findings indicate that employing DSA annotated data for train-
ing CTA in vascular segmentation enables the delineation of more
intricate blood vessels than utilizing MRA data. This is attributed to
the capability of DSA in imaging thinner blood vessels. Consequently,
using DSA for segmentation training in the CTA domain incorporates
a higher number of blood vessels in the outcomes, albeit potentially
generating increased vascular-like noise within the vasculature, which
is shown in the orange circle in the second row of Fig. 11.

4.9. The case with labels of unpaired data in source domain

In another practical application scenario, the presence of labeled
data (denoted as 𝐷s(u) = {(𝑥s(u)𝑖 , 𝑦s(u)𝑖 )}𝐾𝑖=1) in the source domain lacks
corresponding paired data in the target domain. To evaluate the per-
formance of the proposed method in this situation, 𝐷s(u) is employed
to train the source domain segmentation network 𝑓s, subsequently
yielding segmentation results, which serve as labels, for paired data
from source domain. The proposed method is then implemented. The
ablation experimental design utilized in this experiment is shown in
Fig. 5(c). Notably, the pseudo labels are generated using paired source
domain labels, which are derived from the network trained on the 𝐵+𝐸
model.

In this experiment, we set 𝐾 = 20. Table 8 presents the outcomes
when MRA is considered as the source domain and CTA as the target
domain. Despite the absence of paired labeled data in the source
domain, the proposed method continues to deliver commendable re-
sults. The experimental findings suggest a reduction in the reliance on
paired data in our proposed framework. Furthermore, comparing these
results with those in Table 1 reveals a slight decline in performance
(𝑂𝑢𝑟𝑠(𝐼𝐶𝑃 ) and 𝑂𝑢𝑟𝑠(𝐼𝑚𝑉𝑀)) due to the use of source domain paired
data labels generated through the network, which inherently harbor
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certain inaccuracies.
4.10. The result of DSA2CTA2MRA

In this study, we evaluate our proposed approach for three-domain
transfer segmentation that combines the MRA-CTA and DSA-CTA
datasets. Specifically, we assume the availability of annotated data in
DSA, paired data in DSA-CTA and MRA-CTA, but the unavailability of
paired data between DSA and MRA. By employing our proposed frame-
work twice, we successfully achieve transfer segmentation from DSA to
MRA. In the first step, we use DSA-CTA data to train the segmentation
network for the target domain (CTA). Next, we utilize the segmentation
results of the paired CTA data in the MRA-CTA dataset as the labels
for the CTA data, before proceeding with transfer segmentation from
the CTA domain to the MRA domain. Our approach demonstrates
effective transfer learning between various medical imaging modalities,
highlighting the potential use of modalities with greater commonality
or quantity as a bridge for achieving transfer segmentation across
modalities. Notably, when implementing the comparative methods,
we refrain from utilizing CTA data as a bridge since paired data is
not a prerequisite for these approaches. Similar to the 𝐷𝑆𝐴2𝐶𝑇𝐴
experiment, the testing MRA dataset has also excluded the basilar
artery. In this experiment, the setting of the ablation experiment is
consistent with Fig. 5(a), with the sole difference being it involves
two migrations. Additionally, the present study’s experimental scope is
limited by dataset availability, although it is reasonable to expect that
the method employed could also be adapted for any cases with two-
step migration, such as the case of 𝐷𝑆𝐴2𝑀𝑅𝐴2𝐶𝑇𝐴. The use of DSA
as either the second or third modality is unlikely to be of significant
worth, given the already high level of segmentation accuracy in DSA.

Table 9 presents the outcomes of the conducted experiment. In
agreement with earlier experimental findings, GAN-based UDA tech-
niques exhibit suboptimal performance. Pseudo-label generation-based
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Table 9
Segmentation performance of DSA2CTA2MRA experiment when there is no label in the target domain. The best performance
is highlighted in bold. The 𝑝 of 𝐷𝑆𝐶(𝑝) is consistent with Table 1.

Method 𝐷𝑆𝐴2𝐶𝑇𝐴2𝑀𝑅𝐴

DSC (%, ↑) ClDice (%, ↑) AHD (mm, ↓)

Upper 87.73 (∗∗∗) 90.66 0.334

SIFA (Chen et al., 2020) 55.69 (∗∗∗) 53.62 3.254
DDSeg (Pei et al., 2021) 51.03 (∗∗∗) 42.19 5.942
DPL (Chen et al., 2021) 56.21 (∗∗∗) 56.86 5.404
FPL (Wu et al., 2022) 57.63 (∗∗∗) 56.24 4.900

Baseline 56.43 (∗∗∗) 56.44 5.498
B+E 60.79 (∗∗∗) 57.89 4.401
B+E+P(III) 62.47 (∗∗∗) 58.97 3.944
Ours(ICP) 73.44 (∗∗) 73.75 1.066
Ours(ImVM) 72.12 (–) 72.93 0.958
Fig. 12. The segmentation results of two testing MRA samples. For both the 𝐶𝑇𝐴2𝑀𝑅𝐴 and 𝐷𝑆𝐴2𝐶𝑇𝐴2𝑀𝑅𝐴 experiments, identical test data are employed. The accompanying
figure exhibits the local 3D visualization results for the same region of the identical test image.
methods demonstrate a marginal enhancement over the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. No-
tably, the proposed framework surpasses the comparative approaches,
even after two domain migrations, highlighting its efficacy and poten-
tial for multiple domain transfers. A further observation reveals that the
performance of the ICP-based module marginally exceeds that of the
ImVM-based module. This discrepancy may be attributed to the height-
ened errors introduced by the latter’s dual fine registrations, while
the former employs over-segmentation results derived from the DSA
training model on MRA data during pseudo-label generation. Moreover,
the testing images utilized in the 𝐷𝑆𝐴2𝐶𝑇𝐴2𝑀𝑅𝐴 and 𝐶𝑇𝐴2𝑀𝑅𝐴
(𝑛 = 0) experiments remain consistent, barring the exclusion of the
basilar artery evaluation in the former. Fig. 12 juxtaposes the outcomes
obtained from both experiments on identical data, revealing that em-
ploying CTA annotated data for training the MRA segmentation model
yields superior results compared to 𝐷𝑆𝐴2𝐶𝑇𝐴2𝑀𝑅𝐴. This observation
aligns with the expected outcomes, as in the 𝐷𝑆𝐴2𝐶𝑇𝐴2𝑀𝑅𝐴 experi-
ment, the CTA labels used in the second step (CTA2MRA experiment)
are generated through the first step (DSA2CTA experiment), which
inherently contain errors.

5. Discussion

In this study, we introduce an unsupervised domain adaptation
approach that leverages paired data. We employ a Hessian matrix-
based vessel enhancement method on images to reduce domain dis-
crepancy. Subsequently, a registration method is employed to create
high-quality pseudo-labels for training the segmentation network on
the target domain. The findings presented in Table 1 illustrate that
the proposed method significantly outperforms existing domain transfer
segmentation approaches on vascular datasets.
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The popular GAN-based UDA methods (Hoffman et al., 2018; Han
et al., 2021; Pei et al., 2021; Chen et al., 2020) have shown disap-
pointing outcomes in the task of 3D cerebral vascular segmentation
due to the limited salience of blood vessel features in the 2D sections
incorporated in these approaches. In light of this, we present an alter-
native method that eschews GAN-based feature alignment in favor of a
multi-stage strategy for blood vessel segmentation in 3D space, which
yields impressive results. Moreover, our proposed approach effectively
capitalizes on the paired data to reduce the adverse influence of strong
dependency on initial segmentation results, a common issue in some
current pseudo-label generation methods (Chen et al., 2021; Wu et al.,
2022).

Furthermore, we validate our method in the cases where there are
various numbers of labels in the target domain, as presented in Tables 5
and 6. The outcomes show that our approach is not only appropriate
for unsupervised domain migration but also performs well when some
labels are present in the target domain. In addition, as demonstrated
in Fig. 8, the performance of our method approaches that of using
all real labels when the number of labels in the target domain is
relatively large, indicating the potential of our method to achieve better
performance with fewer labeled images. By examining Fig. 8 and the
findings in Section 4.9, it can be inferred that when labeled data is
available in the source domain, our proposed framework can produce
acceptable segmentation outcomes. This is achieved by utilizing data
paired with the source domain that is available in the target domain,
while eliminating or significantly reducing labeling requirements in the
target domain.

We recognize there are some limitations to our proposed approach.
Specifically, the training process requires paired data, which constrains
our method’s applicability to a certain extent. Additionally, the training
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phase is segmented into three stages rather than an end-to-end proce-
dure, though the resultant inference is indeed end-to-end. This division
of the training phase may constitute a limitation to the effectiveness
of our approach. Thus, as future work, we aim to explore methods for
optimizing the training process to streamline the training phase and
mitigate these limitations.

6. Conclusion

In this paper, we propose an unsupervised domain adaptation
methodology that hinges on paired data. The crux of our approach is
the generation of reliable pseudo labels for the target domain using
paired images from source and target domains. During each training
stage, we incorporate vascular enhancement images in conjunction
with the original images to mitigate the influence of domain shifts. The
experimental results demonstrate that our proposed method effectively
achieves unsupervised domain adaptation of segmenting blood vessels.
Importantly, we establish the efficacy of our approach in the presence
of labeled data in the target domain, thereby offering the prospect of
improved performance with reduced labeled data. Future studies will
focus on extending the proposed method to other vessel datasets.
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