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ABSTRACT

Accurate segmentation of blood vessels is critical for diag-
nosing various diseases. However, the complexity of manu-
ally labeling vessels impedes the practical adoption of fully
supervised methods. To alleviate this challenge, we propose
a weakly supervised vessel segmentation framework. Our ap-
proach leverages scribble annotation to train the Unet and
identifies reliable foreground and background regions. Ad-
dressing the issue of insufficient boundary information inher-
ent in scribble annotation, we incorporate a conventional ap-
proach specifically designed to leverage the innate structural
attributes of vessels for edge detection, subsequently ensur-
ing effective edge supervision. In addition, a bilateral filter-
ing module is introduced to improve edge awareness of net-
work. Furthermore, to augment the quantity of annotated pix-
els, we employ an image mixing strategy for data augmenta-
tion, thereby enhancing the network’s segmentation capabil-
ity. The experimental results on three datasets show that our
framework outperforms the existing scribble-based methods.

Index Terms— Vessel Segmentation, Weakly-Supervised,
Edge Awareness

1. INTRODUCTION

Vascular structures exhibit wide prevalence within the human
body, encompassing notable instances such as retinal vessels
and coronary arteries. Automatic extraction of blood ves-
sels from vascular imaging assumes a vital role in clinical
diagnosis [1, 2]. The fully-supervised segmentation methods
[3, 4] based on deep convolutional neural networks (CNNs)
necessitate significant annotated images for effective train-
ing. Due to the complexity of objects, especially for the vas-
cular structure that is characterized by numerous diminutive
branches, the manual annotation process is exceedingly time-
consuming and arduous, even for professional experts [5].

The challenge of acquiring labeled data has led to sig-
nificant interest in weak supervision techniques for image
segmentation. Weak labels encompass various categories
such as image-level labels [6], bounding boxes [7], scrib-
bles [8, 9] and keypoints [10]. Image-level annotation is not
typically employed in segmentation tasks with fixed object
classes, such as vessels and background in our task [10]. Vas-
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Fig. 1. The process of annotating retinal vessels. The av-
erage time for a radiologist to perform weak label is 51.4s,
significantly less than the time (exceeding 10min) needed for
complete annotation from scratch.

cular structures exhibit extensive spatial extension, rendering
bounding boxes insufficient in providing abundant informa-
tive cues. Similarly, due to the complex nature of blood
vessels, the locating of keypoints becomes more cumber-
some. Compared with bounding boxes and points, scribble
annotation offers greater flexibility, particularly for segment-
ing irregularly shaped foregrounds [11]. Therefore, in our
study, we adopt graffiti as our weak annotation. Notably,
foreground scribble annotation is also time-consuming for
the smaller blood vessels located at the periphery. Therefore,
we mark N pairs of vessel foreground points (N = 12 for
retinal vessels and N = 6 for coronary arteries), encompass-
ing both major vessels and small branches to the maximum
extent feasible. And we employ the Dijkstra’s algorithm [12]
to obtain annotation lines, followed by manually selecting the
correct foreground lines as annotation, as shown in Fig. 1.

Scribble annotation, commonly applied in weakly su-
pervised segmentation, has garnered significant attention in
the segmentation of natural images and large organs [9, 13].
The utilization of a fully supervised network [3] and Cross-
entropy (CE) loss is the most intuitive training algorithm.
Based on it, Obukhov et al. [8] proposed gated Conditional
Random Field (CRF) loss for the unlabeled pixels to super-
vise the segmentation. Zhang et al. [13] proposed CycleMix
to adopt the mixup strategy with a dedicated design of ran-
dom occlusion to perform increments and decrements of
scribbles. And Luo et al. [14] employed a dual-branch net-
work and dynamically mixed the two decoders’ predictions
to generate pseudo labels for auxiliary supervision. However,
these methods primarily focused on the segmentation of nat-
ural images and large organs, whereas the identification of



blood vessel boundaries requires specific attention. Although
certain approaches integrated regularization functions to op-
timize boundaries [8], implicit constraints did not effectively
contribute to the accurate delineation of vessel edges.

To address the challenges mentioned above, we present
a novel weakly-supervised segmentation framework that em-
phasizes edge-attention awareness (as shown in Fig. 2). Ini-
tially, we employ the U-net [3] and CE loss for preliminary
training, utilizing predefined thresholds to acquire reliable
foreground and background regions. Subsequently, in re-
sponse to the deficiency of boundary information in scribble
annotation, a traditional algorithm incorporating vascular
structural properties is employed to identify reliable bound-
ary areas, which are then utilized to retrain the segmentation
network. To further enhance edge awareness, we integrate the
bilateral filter module into the network architecture. Addi-
tionally, drawing inspiration from [15], we adopt an improved
image mixup strategy to refine the network’s segmentation
performance. The effectiveness of our method is verified on
three public datasets.

2. METHOD

�f

�b �f �b

�1

�2

�12Mix

��1 ,  ��1,  ��1

��2 ,  ��2,  ��2

�1

�2

�12 ��12,  ��12,  ��12

ER

�edge

> �1

Mix Mixup Augmentation

Mix

BF Bilateral Filter ER Edge Refinement

Stage I

Stage II

BF

< �2

�edge

�edge

� �w �ce�

Fig. 2. Illustration of the proposed framework.

2.1. Initial Training and Edge Refinement (ER)

Let x ∈ RC×H×W denote the image, and yw denote the scrib-
ble annotation. Initially, the Unet g1 is trained with yw, under
the supervision of CE loss:

Lce = − 1

|ω0|
∑
i∈ω0

log(1− ŷi)−
1

|ω1|
∑
i∈ω1

log(ŷi), (1)

where ŷ = g1(x), ω0 is the set of labeled background pixels
and ω1 is the set of labeled foreground pixels. In this process,
the absence of boundary information in scribble annotations
poses a challenge, leading to inadequate learned boundary. To

address this issue, we incorporate the Edge Refinement (ER)
module, which enables the acquisition of precise blood vessel
boundaries. Specifically, we first establish a larger thresh-
old to obtain a credible foreground area (ŷf = (ŷ > α1))
and a smaller threshold to derive a reliable background area
(ŷb = (ŷ < α2)). And we employ sobel operators in vari-
ous directions to filter the image, followed by superposition
to generate the blood vessel boundary map, as illustrated in
Fig. 3(c). Furthermore, ŷf is refined to generate the skele-
ton map, where bifurcation points are eliminated, resulting in
Fig. 3(b). For each point within the skeleton map, the edge
enhancement map patch centered on it is cropped with the
size of 15 × 15. Subsequently, we calculate the tangent and
normal directions of the blood vessels based on the center line
using curve fitting techniques (Fig. 3(d)). By analyzing the
blood vessel enhancement map along the normal direction,
we identify the position with the highest gray gradient, the
sides of which are considered the foreground (ỹf ) and back-
ground (ỹb) regions, respectively. The final generated fore-
ground and background areas with boundary information are
yf = ỹf ∪ ŷf and yb = ỹb ∪ ŷb.

(a) (b) (c)

(f) (e) (d)

thinning

cropping

searchingcomposing

Fig. 3. The process of Edge Refinement. In (e) and (f), white
and black pixels represent the foreground and background
pixels, respectively, and gray pixels are unlabeled areas.

2.2. Bilateral Filter (BF) Module

In stage II, we retrain the network (g2) under the supervision
of graffiti annotations and generated boundary pseudo-labels:

Ledge = Lce+α · (−
∑

yb log(1− ŷ)∑
yb

−
∑

yf log(ŷ)∑
yf

), (2)

where ŷ = g2(x). Furthermore, within the domain of image
edge perception, the bilateral filter [16] stands as a widely em-
ployed technique known for its ability to preserve edge sharp-
ness while concurrently smoothing the image. To augment
the network’s edge awareness, we introduce the Bilateral Fil-
tering module into the jumper section of the Unet. Specif-
ically, for the feature f ∈ RC×H×W within the encoding
section, it undergoes conversion into a single-channel feature
map f̃ ∈ RH×W through the utilization of the 1× 1 convolu-
tion module. Subsequently, we apply bilateral filters to obtain



smoothed features while retaining edge-awareness:

fnew =

∑
(k,l)∈S(i,j)

f̃(i, j)ω(i, j, k, l)∑
(k,l)∈S(i,j)

ω(i, j, k, l)
, (3)

where

ω(i, j, k, l) =exp(− (i− k)2 + (j − l)2

2σ2
s

)·

exp(−||f̃(i, j)− f̃(k, l)||2

2σ2
r

),

(4)

and S(i, j) is a m × m area centered on (i, j), σs = σr =
0.15 × m + 0.35. Within each encode layer, the value of m
varies due to disparities in feature size. In our experiments,
the values of m in the first to fourth layers are 9, 7, 5, and 3.

The final feature obtained through BF module is calcu-
lated as follows:

ffin(c) = f(c) · [1 + Sigmoid(fnew)], c = 1, 2...C, (5)

which is seamlessly integrated into the decoder’s feature at
the corresponding position using skip connection.

2.3. Mixup Strategy

Image mixup augmentation is a strategy employed to merge
two images and corresponding labels, thereby augmenting
the pixel count for scribble annotations. Taking inspira-
tion from previous studies [13, 17], we employ an enhanced
variant of the Cutmix strategy [15] to mix images and la-
bels. Given two images and their corresponding labels
(x1, y1 = {y1w, y1b, y1f }) and (x2, y2 = {y2w, y2b, y2f }), the
resulting image obtained through the mix strategy is denoted
as (x12, y12 = {y12w , y12b , y12f }), and x12 is calculated as:

x12 = (1−M)⊙ x1 +M⊙ x2, (6)

where ⊙ is the element-wise multiplication; M ∈ RH×W

denotes a binary mask. Different from the random uniform
strategy in [15], to increase the number of labeled pixels, we
randomly select a point from the pre-existing scribble anno-
tation and utilize it as the center for M. The height (h) and
width (w) of M are generated using random uniform sam-
pling: h ∼ Unif(H8 ,

H
2 ), w ∼ Unif(W8 , W

2 ). The calculation
of y12 is consistent with x12, with the same M.

While conducting the training of stage II, the loss function
of the mixed image is incorporated. The final loss Lfin is
expressed as:

Lfin = Ledge(x
1, y1)+Ledge(x

2, y2)+Ledge(x
12, y12). (7)

3. EXPERIMENTS

3.1. Dataset and Evaluation Metrics

We conduct validation of our method on three datasets, com-
prising of two retinal datasets and an X-ray coronary dataset.
(i) XCAD dataset [5]: This dataset comprises 126 images
with annotations. Each image has a resolution of 512 × 512.
The random training/validation/testing case split is 68/16/42.
(ii) DRIVE dataset [18]: It encompasses 40 fundus images
with size of 565 × 584 pixels. It has been pre-divided into
a training set and a test set, each containing 20 images. We
randomly select 2 images from the training set to form the
validation set. (iii) CHASEDB1 dataset [19]: This dataset
comprises images obtained from 28 eyes of 14 ten-year-old
children, with size of 999× 960. We allocate the first 18 im-
ages for training, the subsequent 4 images for validation, and
the remaining 6 images for testing.

Following the setting in [20], we uniformly resize images
to 512 × 512 pixels on two retinal datasets. And we employ
random rotating and flipping to augment the images. We eval-
uate the results with Dice Similarity Coefficient (DSC), Ac-
curacy (ACC) and Area Under ROC (AUC). During training,
we employed the adaptive moment estimation (Adam) algo-
rithm with an initial learning rate of 0.001. The batch size was
set to 4, and the maximum epoch was 6000. And the thresh-
old values of α1 and α2 were 0.995 and 0.05 respectively,
while hyperparameter α was 0.25. Our code is available at:
https://github.com/gzq17/Scribble-Vessel-Segmentation.

3.2. Comparison with Other Methods

To assess the efficacy of our proposed segmentation algo-
rithm, we replicated several weakly-supervised segmentation
approaches, including the Baseline, employing the Unet ar-
chitecture [3] with the scribble annotation’s cross-entropy
(CE) loss, as well as GatedCRF [8], Saliency [9], CycleMix
[13], and DBDM [14]. Furthermore, we report the results of
fully supervised model with the same network structure as
proposed method as the upper bound.

Table 1. Comparison with other methods on three datasets, with the best performance highlighted in bold.

Method
XCAD DRIVE CHASEDB1

DSC(%) ACC(%) AUC(%) DSC(%) ACC(%) AUC(%) DSC(%) ACC(%) AUC(%)
Full-sup 75.86 97.66 98.03 77.78 95.97 97.24 75.87 96.15 97.62

Baseline (2016) [3] 65.59 96.06 94.62 63.07 94.05 91.75 64.10 94.15 96.02
GatedCRF (2019) [8] 72.12 96.80 92.69 47.59 87.84 90.97 46.75 88.92 91.76
Saliency (2020) [9] 70.49 96.58 97.95 49.32 85.10 91.22 58.09 91.31 94.98

Cyclemix (2022) [13] 60.98 96.24 82.87 63.62 95.05 92.79 67.40 94.78 96.80
DBDM (2022) [14] 71.25 96.67 91.15 54.51 88.83 92.81 49.86 86.66 90.76

Ours 73.36 96.91 97.58 73.88 95.72 93.24 71.66 95.41 96.65



(a) Image (b) Label (c) Baseline (d) GatedCRF (e) Saliency (f) Cyclemix (g) DBDM (h) Ours

Fig. 4. Segmentation results on two testing images from XCAD and DRIVE dataset.

Table 2. The results of ablation study. We demonstrate the effectiveness of each component.

Method
XCAD DRIVE CHASEDB1

DSC(%) ACC(%) AUC(%) DSC(%) ACC(%) AUC(%) DSC(%) ACC(%) AUC(%)
S2 70.50 96.74 97.33 66.14 94.32 91.81 66.60 94.41 96.17

S2+ER 72.33 96.88 97.50 72.52 94.47 92.31 68.64 94.65 96.34
S2+ER+BF 72.35 96.77 97.44 72.79 95.56 92.45 70.55 95.36 95.07

S2+ER+BF+Mix 73.36 96.91 97.58 73.88 95.72 93.24 71.66 95.41 96.65

(a) Image (b) Label (c) Baseline (d) GatedCRF
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Fig. 5. Magnified view of one testing image from
CHASEDB1 dataset.

Fig. 4 illustrates the segmentation results on two test-
ing images from XCAD and DRIVE dataset. Our proposed
method yields better connectivity of small vessels when com-
pared to other algorithms. Another observation is that the
boundary localization of blood vessels in the results obtained
by the comparative methods exhibits significant deficiencies.
For instance, on DRIVE dataset, the Baseline, gatedGRF,
Saliency, and DBDM yield thicker blood vessels than an-
notation, whereas Cyclemix produces thinner vessels. In
contrast, our method leverages the ER module to precisely lo-
cate boundaries and employs the bilateral filtering module to
augment the network’s perception of these boundaries. Con-
sequently, the blood vessels segmented by our method closely
resemble the thickness of authentic vessels. To provide a
more comprehensive evaluation, Fig. 5 presents an enlarged
view of one testing image derived from the CHASEDB1
dataset, further highlighting the distinct advantages offered
by our proposed approach. These findings are consistent with
the results in Tab 1, which demonstrates the performance of
each method across all indicators.

3.3. Ablation study

We further investigate the effect of each module within our
proposed framework, and the results are presented in Tab 2,

where S2 denotes using the results of stage I for supervision
during the training of stage II. The ER module effectively
leverages the inherent structural characteristics of blood ves-
sels, leading to precise boundary localization and substantial
enhancement in the network’s output results (e.g. 66.14%
to 72.52% of DCS on DRIVE dataset). And BF module en-
hances the network’s focus on edge awareness, especially on
CHASEDB1 dataset, where the central region of the vessels
is more similar to the background and the result is more sensi-
tive towards edge detection compared the other two datasets.
The observed performance improvement resulting from the
Mixup strategy highlights the advantages of augmenting the
number of labeled pixels and enhancing dataset diversity.
Furthermore, certain compared methods (such as Cyclemix,
shown in Tab 1) underperforms S2, potentially due to their
primary use in segmenting large organs. The unique complex-
ity of vessel structures can lead these methods to misguide
network to learn incorrect information.

4. CONCLUSION

In this paper, we adopt the method involving annotating point
pairs and background lines for acquiring scribble annotations
of vessels. And we train the Unet using the weak labels
and determine suitable thresholds to obtain reliable fore-
ground and background areas. Recognizing the significance
of boundary information, particularly for blood vessels, we
propose an edge refinement module to accurately locate the
boundaries. Furthermore, a bilateral filtering module is intro-
duced to enhance the network’s ability to detect vessel edges
in stage II. We also incorporate an image mixup strategy to
further enhance the performance of network. The results on
three datasets demonstrate the effectiveness of our proposed
weakly supervised segmentation framework. In the future,
we will extend our method to 3D vessel datasets.
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