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Abstract— Vascular structure segmentation plays a cru-
cial role in medical analysis and clinical applications. The
practical adoption of fully supervised segmentation models
is impeded by the intricacy and time-consuming nature
of annotating vessels in the 3D space. This has spurred
the exploration of weakly-supervised approaches that re-
duce reliance on expensive segmentation annotations. De-
spite this, existing weakly supervised methods employed
in organ segmentation, which encompass points, bounding
boxes, or graffiti, have exhibited suboptimal performance
when handling sparse vascular structure. To alleviate this
issue, we employ maximum intensity projection (MIP) to
decrease the dimensionality of 3D volume to 2D image
for efficient annotation, and the 2D labels are utilized to
provide guidance and oversight for training 3D vessel seg-
mentation model. Initially, we generate pseudo-labels for
3D blood vessels using the annotations of 2D projections.
Subsequently, taking into account the acquisition method
of the 2D labels, we introduce a weakly-supervised net-
work that fuses 2D-3D deep features via MIP to further
improve segmentation performance. Furthermore, we in-
tegrate confidence learning and uncertainty estimation to
refine the generated pseudo-labels, followed by fine-tuning
the segmentation network. Our method is validated on five
datasets (including cerebral vessel, aorta and coronary
artery), demonstrating highly competitive performance in
segmenting vessels and the potential to significantly re-
duce the time and effort required for vessel annotation.
Our code is available at: https://github.com/gzq17/
Weakly-Supervised-by-MIP.

Index Terms— Vessel Segmentation, Weakly-Supervised,
Maximum Intensity Projection, Pseudo-Label Refinement

I. INTRODUCTION

Tree-like vascular structures are ubiquitously present within
the human body, often characterized by intricate complexities
observed at a microscale. Prominent instances of such intri-
cate networks encompass cerebral vessels, aorta, and coro-
nary arteries. Computed Tomography Angiography (CTA) and
Magnetic Resonance Angiography (MRA) have emerged as
invaluable imaging modalities, facilitating the acquisition of
extensive vascular image datasets that have advanced vascular
structures research. CTA imaging techniques usually require
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the injection of contrast agent to highlight blood flow, and
it is a contrast-based, minimally invasive, and cost-efficient
imaging modality [1]. And MRA techniques rely on blood flow
or inflow angiography, augmenting flowing blood’s radiance in
comparison to stationary tissue through the employment of a
short echo time and flow compensation [2].

The automatic and accurate segmentation of vessels from
CTA and MRA is an essential prerequisite in clinical diag-
nosis and intervention for vascular diseases. Convolutional
Neural Networks (CNNs)-based algorithms have demonstrated
impressive performance across diverse computer vision tasks,
including the segmentation of vascular structures [3]–[7].
However, the performance of CNNs is contingent upon large
annotated datasets, which are tedious and expensive to obtain,
especially for vascular images. Consequently, it is meaningful
to develop weakly-supervised methods that leverage weak
annotations instead of voxel-wise annotations.

Various weakly supervised annotations have been used for
different types of segmentation tasks, including image-level
category labels [8], bounding boxes [9], [10], scribbles [11],
[12], and key points [13], [14]. While these weak annotations
demonstrate favorable performance in natural images and
large organ segmentation, their utility for sparse blood vessel
segmentation remains limited. Image-level annotation is not
suitable for segmentation tasks where object classes in images
are usually fixed, such as blood vessels and background in
our task. The vascular structure typically occupies a small
portion of the overall image in the number of voxels, yet
exhibits extensive spatial extension, rendering bounding box
annotations insufficient in providing substantial informative
cues. Scribbles annotation is primarily feasible for 2D images,
but given the small size and large number of blood vessels
in 2D slices, it is difficult and time-consuming to label,
as illustrated in Fig. 1(b). Key points annotation, such as
hundreds of bifurcation points and endpoints of blood vessels,
is also laborious to locate and label. Consequently, these weak
labels have been scarcely employed in vessel segmentation
investigations. Another weakly supervised method for 3D
segmentation is to fully annotate a subset of slices within the
training volume [15], [16]. While this approach does alleviate
the segmentation burden, the process of annotating these spe-
cific slices remains time-intensive, particularly when dealing
with vessel slices (Fig. 1(b)). Furthermore, the annotation of
2D slices lacks the essential information pertaining to vascular
connectivity, which is crucial for segmentation of 3D vessels.

Reducing the dimensionality of 3D space to 2D image for
annotation and supervision is another intuitive approach in
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Fig. 1. (a) is an original 3D image. The characteristics of vessels on
2D sections are ambiguous and scattered, as shown in (b). (c) is the
MIP image of (a). Compared with (a), annotating vessels in MIP image
is obviously much easier.

weakly supervised learning. And this has been widely used in
3D point cloud human pose estimation tasks, where the pose
information from 2D image is used to aid in the supervision
of 3D point cloud pose estimation [17]–[19]. MRA and CTA
techniques harness the principle of blood flow or inflow
angiography to impart a brighter appearance to blood vessels
relative to surrounding tissue during imaging. Leveraging this
property, the maximum intensity projection (MIP) technique
projects the maximum voxel value along a specified direction
onto the resulting plane [20]. By compressing 3D data into 2D
projected image, MIP achieves data dimensionality reduction
and it is a widely-used scientific method for visualization
of vessel structures, vascular analysis, diagnosis, and surgical
planning [21]. In clinical practice, radiologists routinely con-
duct a swift examination of MIP images to rapidly identify the
location, shape, and blood flow characteristics of vessels [22].
MIP images offer abundant information about blood vessels
for 3D images, with annotating vessels in MIP images proving
significantly easier than directly annotating in 3D space, as
depicted in Fig. 1(c). Regrettably, limited efforts have been
made towards utilizing MIP images directly in the study of
3D vessel segmentation.

In this paper, to alleviate the reliance on 3D vascular
annotation and tackle the inapplicability of current weakly
supervised labels in 3D vascular segmentation, we introduce a
novel approach for weakly supervised learning incorporating
the concept of data dimensionality reduction supervision.
Leveraging the features unveiled by MIP images, we propose
to guide the segmentation of blood vessels in 3D space via 2D
MIP annotations. Specifically, we undertake annotation on the
MIP image obtained from 3D volume. To utilize effectively of
this weak annotation, we back-project the 2D label to generate
a sparse 3D foreground image. Subsequently, a region growing
algorithm is applied to obtain a more complete labeling of
the image. Furthermore, we propose a weakly-supervised seg-
mentation network based on 2D-3D feature fusion to enhance
the accuracy of vessel segmentation, taking into account the
acquisition method of the 2D labels. Moreover, we integrate
the confidence learning (CL) [23] and uncertainty estimation
(UE) via Monte Carlo dropout to further improve the reliability
of the generated pseudo-labels, followed by a fine-tuning pro-
cedure on the segmentation network to refine its performance.
Our contributions can be summarized as follows:

• Considering the sparsity of 3D blood vessels, we propose
a weakly supervised segmentation framework based on

MIP annotations. To the best of our knowledge, this is
the first work to utilize MIP image annotations as weakly
supervised labels for 3D vessel segmentation.

• A segmentation network that fuses 2D-3D features is
developed to make full use of designed weak label. And
we integrate confident learning and uncertainty estimation
to further improve the network’s performance.

• We validate the effectiveness and generalization of our
method on five datasets. Additionally, through carefully
designed experiments, we demonstrate that our method
achieves superior performance compared to fully super-
vised segmentation methods while requiring less anno-
tation time when utilizing larger quantities of weakly
annotated data.

II. RELATED WORK

A. Weakly-Supervised Segmentation

Benefits from the development of CNNs, remarkable
progress has been accomplished in the field of weakly super-
vised segmentation. Li et al. [8] implemented an Online Easy
Example Mining method for weakly-supervised segmentation
of glands using patch-level category labels. Dorent et al.
[10] combined the features of extreme points and bounding
boxes to supervise the segmentation of vestibular schwannoma
and achieved good result. Scribble is obtainable for most
segmentation tasks and Zhang et al. [12] adopted the mixup
strategy with a dedicated design of random occlusion to per-
form increments and decrements of scribbles. Meanwhile, as a
label for weakly supervised segmentation, key points are often
used for object segmentation with regular shape. Guo et al.
[14] proposed a weakly supervised learning method for nuclei
segmentation that required annotation of the nuclear centroid.
Nevertheless, due to the sparsity characteristic displayed by
3D vessels, these weak labels (image-level labels, bounding
boxes, graffiti and points) are unsuitable for our specific task,
as discussed in Sec. I.

In practice, most existing weakly supervised approaches of
vascular segmentation rely on traditional vessel enhancement
techniques to obtain initial segmentation results, which are
then iteratively refined manually [24], [25]. Fu et al. [26]
introduced to supervise the segmentation of LSCI images
by choosing best binary labels acquired through various
combinations of thresholds. However, the effectiveness and
annotation workload of these methods depend on the quality
of initial labels. Moreover, since it is time-consuming to
correct the labels in 3D images, these methods are mostly
used in 2D vessel segmentation. Aiming to 3D hepatic vessel
segmentation, Xu et al. [27] used both high-quality labeled
data and noisy labeled data to train their proposed Mean-
Teacher-Assisted network. Nevertheless, different from weakly
supervised training, this method still required high-quality
annotations, and the outcomes were reliant on the quality of
noisy labels. In this work, we utilize the annotation of 2D
MIP image to supervise the vessel segmentation in 3D space,
which greatly reduces the annotation time.
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B. Noisy Pseudo-Label Refinement

The primary step in weakly- and semi-supervised learning
is generating pseudo-labels of training data, leveraging weakly
labeled or pre-existing fully labeled data. To improve the
robustness of trained models, recent studies have focused on
refining the noisy pseudo-labels. Particularly, uncertainty esti-
mation has also emerged as a common approach for optimizing
noisy labels [29], [30]. For instance, Cao et al. [31] estimated
uncertainty to discern potential noise in the generated pseudo-
labels, consequently mitigating the detrimental impact on net-
work performance. Additionally, Northcutt et al. [23] proposed
a confident learning method capable of identifying poten-
tially incorrect samples in noisy labels through uncertainty
estimation, subsequently removing them during training. This
approach is gradually being adopted for optimizing generated
noisy pseudo-labels [14], [27]. However, these techniques
exclusively address already labeled data. And, the generated
pseudo-labels via MIP labels used in our work only cover a
part of the voxels. Consequently, we employ the confidence
learning method to refine the already-labeled voxels during the
pseudo-label refinement, while simultaneously integrating the
uncertainty estimation to assign labels to unlabeled voxels.

C. Dimensionality Reduction Supervision and MIP

The utilization of annotation information derived from low-
dimensional data to enhance analysis in high-dimensional
spaces has found widespread application across various do-
mains, especially in the field of 3D point cloud pose estimation
[17]–[19]. Zhang et al. [19] employed adversarial learning to
leverage weakly supervised data comprising solely annotations
of 2D human joints, enabling the recovery of human pose.
Similarly, Wu et al. [18] introduced a refined point set network
structure to transfer annotation information obtained from
2D human pose estimation within existing large-scale RGB
datasets to the 3D task.

For 3D CTA and MRA images, MIP is an intuitive method
for dimensionality reduction, projecting 3D voxels onto a pro-
jection plane based on their maximum intensity. MIP images
prove valuable in facilitating rapid observation of vascular
structures and blood flow characteristics by medical profes-
sionals. Salvi et al. [22] trained a vision transformer using
MIP images for the diagnosis of peripheral arterial disease.
And recent studies have emphasized the combination of MIP
image features to enhance algorithmic performance when ana-
lyzing 3D images. Chen et al. [32] leveraged prior knowledge
demonstrating the similarity in tree structures between 2D and
3D blood vessels, employing an adversarial learning method
to utilize existing 2D blood vessel annotations to supervise
the fidelity of the MIP image of the 3D segmentation result.
However, the use of projection information is considerably
constrained in these studies. For instance, in the study by
Dima et al. [33], the reliance on preprocessing steps and
the limitations imposed by the type of vascular tissue and
imaging method influenced the utilization of projection im-
ages. Furthermore, some researchers have utilized projection
information to enhance the learning of image features. For
instance, Zheng et al. [34] utilized MIP images with varying

plate thicknesses as input to augment the spatial information
of CT images and aid in discriminating between nodules and
blood vessels. Wang et al. [35] integrated MIP image em-
bedding into 3D MRA to extract vessel structures. However,
these studies primarily employed MIP to extract feature and
required complete 3D vascular annotations. In our work, we
employ MIP technique to achieve dimensionality reduction
of 3D volume to 2D image, which serves the purpose of
facilitating annotation and supervision. The proposed method
brings about a remarkable reduction in the required annotation
time, while simultaneously guaranteeing the quality of vessel
segmentation.

III. METHOD

The overall pipeline of the proposed weakly-supervised
vascular segmentation framework is illustrated in Fig. 2. Due
to the limited number of pixels in the 2D MIP labels, we
first generate 3D pseudo-labels based on them. Subsequently,
the proposed 2D-3D feature fusion network is trained with
2D weak annotations and the newly generated 3D pseudo-
labels. To enhance the credibility of the pseudo-labels, confi-
dence learning in combination with uncertainty estimation is
employed to optimize the labels, followed by fine-tuning of
the network. Each step of the proposed methodology will be
described in detail in this section.

A. MIP and 3D Pseudo-labels Generation
Let X ∈ RH×W×D denote a 3D image and Ω =

{(x, y, z)}H×W×D denote the set of all points in 3D space.
In the following description, for convenience, we project the
image in the transverse plane. We perform MIP of X to obtain
the 2D projection image XMIP and index map Xindex, math-
ematically expressed as XMIP(x, y) = max

z=1,2..,D
X(x, y, z)

and Xindex(x, y) = argmax
z=1,2..,D

X(x, y, z). YMIP is the vessel

annotation of projection image, a weak label of 3D image X .
However, YMIP is extremely sparse for 3D volume, so it is
necessary to generate credible 3D pseudo-label to train the
segmentation model. Using the index map, we back-project
the labeled 2D image to get a series of discrete points Sp

in 3D space, which are foreground voxels. The back-project
operation is expressed as:

Sp = {(x, y, z); YMIP(x, y) = 1, Xindex(x, y) = z}. (1)

To increase the amount of foreground voxels for supervi-
sion, we treat Sp as seed points and employ a region growing
algorithm to obtain the set S1. The algorithm starts from
the seed points Sp and gradually adds adjacent voxels to the
foreground until the predefined stopping criterion is reached.
The criterion we choose is that the difference between the
voxel value of the candidate point and the average voxel value
of seed points is lower than a preset threshold α.

A straightforward approach of generating the background
voxels set is to utilize all columns in the 3D image that
correspond to the background points in the 2D projection
label, denoting as Tb1 = {(x, y, z);YMIP(x, y) = 0, z =
1, 2, ..., D}. However, two facts are ignored: (i) Most voxels
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Fig. 2. The proposed weakly-supervised vessel segmentation framework. Initially, we employ MIP to reduce dimensionality of 3D volume for
annotating. Subsequently, we introduce a novel 2D-3D feature fusion network, which is trained with pseudo labels generated from 2D annotations.
To enhance the efficacy of the network, we integrate confidence learning and uncertainty estimation methods to refine the pseudo labels, followed
by fine-tuning of the network.

on the columns correspond to foreground pixels in the 2D
label are also background, but are not included in Tb1. These
voxels are denoted as Tb2 = {(x, y, z);X(x, y, z) < βth

and YMIP(x, y) = 1}; (ii) During projection, certain blood
vessels may be obstructed by brighter noise, resulting in being
displayed as background in 2D projection image. Tb3 =
{(x, y, z); γth < X(x, y, z) < ηth and YMIP(x, y) = 0}
represents these voxels. So the corrected background voxels
set S0 is computed as S0 = Tb1 ∪ Tb2/Tb3.

The parameters βth, γth and ηth are related to the average
gray value vave of the known foreground, computed as vave =
1

|Sp|
∑

p∈Sp
X(p). In our experiment, βth = 0.2vave, γth =

1.2vave, ηth = 1.6vave.

B. Weakly-Supervised Network
To effectively leverage the information provided by the

weak annotation, a 2D-3D deep feature fusion network is
designed based on U-Net [36] and 3D U-Net [16], denoted
as g2D and g3D respectively, as shown in Fig. 2. In fact, most
fully supervised methods can also serve as backbone for our
scheme. The 3D image X and the corresponding 2D projection
image XMIP are fed into two networks to obtain the prediction
probability maps, Ŷ3D = g3D(X), Ŷ2D = g2D(XMIP).

The use of MIP image effectively captures the spatial
information, geometric attribute, and interconnectivity of 3D
blood vessels. Moreover, the availability of ground truth
supervision for MIP image enhances the reliability of g2D
prediction, so it is important to flow the information from
g2D to g3D during training. Within our proposed network
framework, we establish a linkage between the feature map
of two networks based on the inherent relationship exhibited
by their respective inputs. This facilitates utilization of the
segmentation information generated by the 2D network within

the 3D network. Specifically, the features extracted from
two networks are connected using the index map Xindex

obtained during MIP. For the extracted 3D feature of the i-
th layer f3D

i ∈ RC× H

2i
×W

2i
× D

2i , the corresponding 2D feature
f3D 7→2D
i ∈ RC× H

2i
×W

2i is calculated by the feature retrieval
module Ri as follows:

f3D7→2D
i (c, x, y) = Ri(f

3D
i )

= f3D
i (c, x, y,Xi

index(x, y)),

i ∈ {0, 1, 2, 3},
(2)

where Xi
index ∈ R

H

2i
×W

2i is obtained by interpolating the index
map Xindex

2i . And the feature f3D7→2D
i is concatenated with the

corresponding feature layer of the 2D U-Net.

C. Confident Learning and Uncertainty Estimation

Two challenges arise in the pseudo-labels (S0, S1) generated
in Sec. III-A: (i) the pseudo-label generation process, which
relies on seed points and grayscale information, unavoidably
introduces noise into the labels; (ii) the pseudo-labels offer
coverage only for a subset of voxels, whereas many voxels
remain unlabeled (|S0 ∪ S1| < |Ω|). To tackle these issues,
we propose the incorporation of confidence learning (CL) and
uncertainty estimation (UE) to further refine the pseudo-labels.

1) Noisy Labeled Voxels Refinement with CL: To identify
and address the presence of noisy labels within the pre-labeled
voxels (ΩL = S0 ∪ S1), the true (latent) foreground and
background sets are estimated using the network output (Ŷ3D):

S∗
i = {p; p ∈ ΩL, i = argmax

j
ŷp3D(j), ŷ

p
3D(i) > ti}, (3)

where ti is average self-confidence of the labeled set Si,
that is ti = 1

|Si|
∑

q∈Si
ŷq3D(i). And ŷp3D(i) is the predicted
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probability (Ŷ3D) belonging to the i-th category at point p.
And then we calculate the normalized count matrix C̃S,S∗ as:

C̃S,S∗ [i][j] =
|Si ∩ S∗

j |∑
j∈{0,1}

|Si ∩ S∗
j |

· |Si|, (4)

where the reason for normalization is |S∗
0 ∪ S∗

1 | ≤ |ΩL|
affected by the threshold ti. Subsequently, we estimate the
joint distribution based on C̃S,S∗ :

Q̂S,S∗ [i][j] =
C̃S,S∗ [i][j]∑

i∈{0,1}

∑
j∈{0,1}

C̃S,S∗ [i][j]
. (5)

The mislabeled voxels set (the set to remove) is selected
by Q̂S,S∗ [i][j] with the Prune by Noise Rate (PBNR) strategy
[23], expressed as:

S
(re)
i ={p; yp3D(1− i)− yp3D(i) > ith, p ∈ Si ∩ S∗

1−i}
∪ (S0 ∩ S1),

(6)

where ith is the minimum value of the top |ΩL|·Q̂S,S∗ [i][1−i]
in the set {yq3D(1−i)−yq3D(i); q ∈ Si∩S∗

1−i}. And, the voxels
that exist simultaneously in S0 and S1 are also removed. We
select some of wrongly labeled background voxels to add to
the foreground set based on prior knowledge, and vice versa:

S
(add1)
i = {p; p ∈ S

(re)
1−i , and prior condition}, (7)

where the prior condition is X(p) < ε1vave when i = 0, while
D(p, S1) < dth1 when i = 1. And D(p, S1) is the minimum
distance from point p to set S1.

2) Unlabeled Voxels Refinement with UE: To address the
issue of unlabeled voxels (ΩU = Ω/ΩL), we adopt uncertainty
estimation method to assign labels to reliable voxels. This
process begins with the measurement of uncertainty for each
voxel, utilizing the Monte Carlo dropout method. For each
training data X , we execute multiple forward passes (K times,
K = 6 in our experiments) using g3D with dropout to obtain
prediction probabilities {Ŷk}Kk=1:

Ŷk = g3D(X +Nk(µ, σ
2)), (8)

where Nk(µ, σ
2) is a stochastic Gaussian distribution with

mean µ and variance σ2, with the dimensions matching those
of X (µ = 0, σ = 0.1 in our experiments). Meanwhile, we
compute prediction probability Ŷ = g3D(X) without dropout
and the probability result with dropout Ŷdp = 1

K

∑
k Ŷk.

Subsequently, the uncertainty of each voxel is computed as:

up = −
∑

i∈{0,1}

(
1

K

∑
k

ŷpk(i)) · log2(
1

K

∑
k

ŷpk(i)). (9)

Finally, based on the uncertainty, we determine the additional
set of foreground and background points:

ui
ave =

1∑
p∈ΩU

[yp = ypdp = i]
·
∑
p∈ΩU

[yp = ypdp = i] · up, (10)

S
(add2)
i = {p; p ∈ ΩU, y

p = ypdp = i, up < ui
ave,

and prior condition},
(11)

where yp = argmax
j

ŷp(j), ypdp = argmax
j

ŷpdp(j), [·] is

indicator function. And the prior condition is X(p) < ε2vave
when i = 0, while D(p, S1) < dth2 when i = 1.

The foreground and background sets after refinement are
calculated as:

S̃i = (Si ∪ S
(add1)
i /S

(re)
i ) ∪ S

(add2)
i . (12)

D. Loss Function

As shown in Fig. 2, the loss function consists of two
components, L2D and L3D. The output of 2D U-Net is under
supervision via MIP annotation, whereas the output of the 3D
network is under the guidance of 3D pseudo-labels. As the
3D pseudo-labels do not cover all the voxels, we employ a
weighted cross-entropy loss expressed as:

L3D = Lf(3D) + Lp(3D) + Lb(3D)

= − 1

|Sf |
∑
p∈Sf

log(ŷp3D(1))−
1

|Sp|
∑
p∈Sp

log(ŷp3D(1))

− 1

|Sb|
∑
p∈Sb

log(ŷp3D(0)),

(13)
where Sf = S1 and Sb = S0 in the initial training phase,
while Sf = S̃1 and Sb = S̃0 during fine-tuning the network.
As YMIP serves as the ground truth for XMIP, this component
is supervised by the Dice loss, a commonly used loss function
for segmentation task:

L2D = L3D-MIP(2D) + LMIP(2D)

= Dice(R0(Ŷ3D), YMIP) + Dice(Ŷ2D, YMIP),
(14)

where R0(·) is defined in the Eq. 2. The final loss Lall is
expressed as:

Lall = L3D + λL2D. (15)

IV. EXPERIMENTS

A. Datasets and Preprocess

We evaluate our method on five datasets, including three
cerebrovascular datasets, a coronary CTA dataset, and an aortic
CTA dataset.

1) TubeTK: The publicly available dataset TubeTK1 com-
prises 42 3D time-of-flight MRA volumes with labeled vessels
(centerline + radius). To facilitate further analysis, we convert
the annotation into voxel data using the MetaIO2.

2) Cerebral MRA: This dataset consists of 96 MRA cere-
brovascular volumes acquired from various imaging systems.
The images are retrospectively collected from Xuanwu Hos-
pital of Capital Medical University, China. Each sample has
3D vessel annotation. During annotating, we employ Frangi
filtering [37] to generate the initial segmentation result for the
vessels. Then, fine corrections are made by two radiologists
to obtain the final vascular label.

1https://public.kitware.com/Wiki/TubeTK/Data
2https://itk.org/Wiki/MetaIO
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3) Cerebral CTA: It comprises 47 3D CTA cerebrovascu-
lar volumes with blood vessel annotations. The source and
labeling process of this dataset are consistent with those of
the Cerebral MRA dataset. However, for CTA data, the skull
region is highlighted, affecting the segmentation of blood
vessels and causing obstruction during MIP. To mitigate this
issue, the CTA data has been performed skull-stripping to
remove the bright skull regions [38].

4) Coronary CTA: The coronary dataset contains 52 3D
CTA volumes, which are retrospectively collected from Wuhan
Union Hospital of China. And the annotation of coronary
arteries is completed by a radiologist. The grayscale value
of the ascending aorta, left atrium, and other some parts is
found to be higher than that of the coronary artery, resulting
in occlusion during MIP. To address this, we apply a region
growing method to remove the ascending aorta, and subse-
quently employ a combination of the threshold method and
region growing method for each slice to remove the remaining
high-intensity areas, as shown in Fig. 3. Notably, this step is
solely performed during the MIP process of training samples,
and the original image served as the input during training. So
no processing steps is needed during inference.

(a) (b) (c) (d) (e) (f)
(a)
(a) (b) (c) (d) (e) (f)

(b)
(a) (b) (c) (d) (e) (f)

(c)
(a) (b) (c) (d) (e) (f)

(d)
(a) (b) (c) (d) (e) (f)

(e)
(a) (b) (c) (d) (e) (f)

(f)

Fig. 3. Preprocessing of Coronary CTA and Aorta CTA datasets: (a) and
(d) depict a slice of the coronary and aorta volume, respectively. (b) and
(e) show the MIP images obtained through direct projection, revealing
that a significant portion of vessels is obscured by other anatomical
structures. The MIP images of processed volumes are displayed in (c)
and (f), with a clear display of the majority of the blood vessel.

5) Aorta CTA: This dataset comprises 50 aorta volumes
from Wuhan Union Hospital of China. Annotation of the aorta
is done by a radiologist. In contrast to other datasets mentioned
above, the unique structure of aorta limits the utility of MIP
image projected in transverse plane. Therefore, we perform
MIP in the sagittal plane on aorta dataset. Similar to Coronary
CTA dataset, the aorta is also affected by other brighter parts
during projection, primarily concentrated in the middle layers.
And we employ a traditional algorithm based on shape prior
[39] to process the middle part of layers and remove possible
occluded regions (in experiments, we process the middle 230-
380 layers, as shown in Fig. 3). This step is, again, exclusive
to the MIP process.

TABLE I
THE RESOLUTION (SPACING) AND SIZE (CROPPING) OF ADJUSTED

DATA. THE NUMBER OF TRAIN/VALIDATION/TEST SETS (NUMBER) AND

WHETHER SOME PARTS WERE REMOVED (REMOVING).

Dataset Spacing(mm3) Cropping Number Removing
TubeTK 0.5×0.5×0.8 384× 384×128 30/4/8 ✘

Cerebral MRA 0.5×0.5×0.75 320× 320×128 30/4/62 ✘

Cerebral CTA 0.5×0.5×0.75 320× 320×128 30/5/12 ✓

Coronary CTA 0.4×0.4×0.4 320× 320×256 30/4/18 ✓

Aorta CTA 1.0×1.0×1.0 128× 160×480 30/4/16 ✓

The resolution of the data in each dataset is standardized
and subsequently the volumes are cropped to ensure consistent
size, leaving the middle vessel area. In cases where the image
size is insufficient, zero padding is employed to achieve uni-
form data size. Additionally, a gray value normalization step
is applied, mapping the intensity range to 0-1. The images of
each dataset are randomly partitioned into training, validation,
and test sets. Table I provides an overview of the adjusted
data, encompassing information on resolution, data size, the
specific allocation of images, as well as any pre-processing
steps executed to eliminate potential occlusions within the data
that might impede blood vessel visibility during MIP.

B. Metrics and Implementation Details
1) Metrics: We utilize the following metrics to evaluate

our method: Dice Similarity Coefficient (DSC), ClDice [40],
which is tailored to evaluate tubular structures while ac-
counting for vascular connectivity, and Average Hausdorff
Distance (AHD) [41], which incorporates voxel localization
considerations [42]. Furthermore, to indicate the statistical
significance of improvements of the proposed method, we also
present the p-values for DSC using a paired t-test with each
comparison method.

2) Implementation Details: In our proposed weakly super-
vised network, we employ 3D U-net [16] and 2D U-net [36]
architectures as the backbone. The down-sampling path of two
models features convolution layers with filter numbers of [8,
16, 32, 64]. The implementation of the network is conducted
using the PyTorch framework. Training process is performed
on a NVIDIA GeForce GTX 3090 GPU with 24G memory.
During the training process, we utilize the adaptive moment
estimation (Adam) optimizer, initialized with a learning rate of
0.001. A decay factor of 0.9 is applied to the learning rate after
each iteration. The maximum number of training iterations
is set to 1000. We employ the preset parameter α = 0.1 in
pseudo-labels generation by region growing. And the prior
parameters dth1, dth2, ε1 and ε2 are respectively set to 1.5,
4.0, 0.7 and 0.2 in Eq. 7 and Eq. 11. Importantly, it should
be noted that when working with the public dataset (TubeTK
dataset), the priori information is not set during pseudo-labels
refinement. In other words, the parameters dth1, dth2, ε1 and
ε2 are considered ∞. This adjustment is made due to the noisy
labels in TubeTK dataset, where the annotated vessels are thin
and incorporate some venous structures [43]. Consequently,
during training with pseudo-labels, the TubeTK dataset has
a higher tolerance for noise in the labels. Additionally, the
balance parameter λ in the loss function is set to 1.0. We will
shortly make our code publicly available.

(a) Full label (b) Full label of 2D slicer (c) Noisy label (d) Scribble label (e) MIP label(a) 3D label(a) Full label (b) Full label of 2D slicer (c) Noisy label (d) Scribble label (e) MIP label(b) Label of 2D slice(a) Full label (b) Full label of 2D slicer (c) Noisy label (d) Scribble label (e) MIP label(c) Noisy label(a) Full label (b) Full label of 2D slicer (c) Noisy label (d) Scribble label (e) MIP label(d) MIP label

Fig. 4. Annotations of different categories.
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C. Compared Methods and Annotation Time
1) Compared Methods: As shown in Table I, our proposed

method utilize a training set size of N = 30 for all five
datasets, under supervision via the annotation of 2D MIP
image (as shown in Fig. 4(d)). To illustrate the effectiveness of
our proposed method, we implement the following algorithms
for comparison.

• Full-sup: We report the results of fully supervised model
training with N images as the upper bound. The model
structure of Full-sup is consistent with our proposed
method.

• Baseline3D [16]: We use m1 (m1 < N ) fully labeled
samples (Fig. 4(a)) to train a fully supervised model,
whose structure is consistent with 3D Unet used in our
proposed method.

• Baseline2D: For each sample, s1% layers are randomly
chosen and labeled vessel in 2D slice (Fig. 4(b)). The N
volumes with these annotations are then used to train the
3D Unet.

• MTCL [27]: This method represents a semi-supervised
approach for blood vessel segmentation that relies on a
small number of fully labeled data and a larger amount
of noisy labeled data. Specifically, we apply the Frangi

TABLE II
THE TYPE OF ANNOTATED DATA (ANNOTATION), THE NUMBER OF

ANNOTATIONS (NUMBER), THE AVERAGE ANNOTATION TIME (AVE), AND

THE TOTAL ANNOTATION TIME OF THE TRAINING SAMPLES (ALL).

Method Ave (min) All (min) Number Annotation
Full-sup 73.41 2202.30 N = 30 Fig. 4(a)

Baseline3D [16] 73.41 220.23 m1 = 3 Fig. 4(a)
Baseline2D 10.07 302.10 s1 = 10 Fig. 4(b)
MTCL [27] - 237.82 m2 = 3 Fig. 4(a) and (c)
SLD [32] 6.78 203.40 N = 30 Fig. 4(d)

SPDS [33] 6.78 203.40 N = 30 Fig. 4(d)
Ours 6.78 203.40 N = 30 Fig. 4(d)

vessel enhancement method [37] and get a noisy label
(Fig. 4(c)) by only manually removing obvious noise
due to the arduous task of adding blood vessels. And we
employ m2 fully labeled data and N −m2 noisy labeled
data for MTCL.

• SLD [32]: To ensure fair comparison, we employ the
supervision of the MIP annotation as an alternative to the
supervision of the adversarial learning component within
SLD. And the number of training images is consistent
with our approach (N ).

• SPDS [33]: Similar to SLD [32], to ensure methodologi-
cal consistency, we align the supervision labels employed
in SPDS with our approach, and the 3D Unet structure
is applied as the backbone in SPDS.

2) Annotation Time of Each Method: For a fair comparison,
we endeavor to maintain consistency between the annotation
time of the training data employed by the compared methods
and the annotation time of N MIP images used in our proposed
method. We present the average time of labeling data and
the total annotation time (taken by a radiologist to manually
annotate the images) of training samples for each method on
Cerebral MRA, as shown in Table II.

D. Comparative Results
1) Quantitative results: We present the quantitative results

of the five datasets in Table III and Table IV. Under approxi-
mately consistent annotation time, our proposed method lever-
ages the annotation of MIP image to provide the model with
enhanced information regarding blood vessel direction and
connectivity, thereby yielding superior outcomes. The weakly
supervised labels proposed in our method offer effective
information for blood vessel segmentation while significantly
reducing the annotation workload. And the proposed approach
effectively harnesses the information, resulting in compelling
results that closely approach the performance achieved through

(a) Baseline3D (c) MTCL (e) SLD (g) Label(b) Baseline2D (d) SPDS (f) Ours

Fig. 5. Segmentation results on three testing images from three datasets (TubeTK, Coronary CTA, Aorta CTA dataset in order). The red boxes
highlight close-ups of some vessels.
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TABLE III
COMPARISON WITH OTHER METHODS ON THREE CEREBROVASCULAR DATASETS, WITH THE BEST PERFORMANCE HIGHLIGHTED IN BOLD. THE p OF

DSC(p) REPRESENTS THE P-VALUE CALCULATED BY THE T-TEST, AND ∗ INDICATES THE STATISTICAL DIFFERENCE BETWEEN OURS AND OTHER

METHODS. (∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001)

Method
TubeTK Cerebral MRA Cerebral CTA

DSC(%) (p) ClDice(%) AHD(mm) DSC(%) ClDice(%) AHD(mm) DSC(%) ClDice(%) AHD(mm)
Full-sup 64.52 (∗ ∗ ∗) 77.60 0.917 85.07 (∗ ∗ ∗) 89.00 0.303 85.34 (∗ ∗ ∗) 88.92 0.288

Baseline3D (2016) [16] 55.39 (∗ ∗ ∗) 62.04 1.602 79.81 (∗ ∗ ∗) 71.96 1.011 78.18 (∗ ∗ ∗) 79.96 0.486
Baseline2D 59.09 (∗ ∗ ∗) 74.11 1.029 82.28 (∗ ∗ ∗) 85.40 0.436 81.19 (∗ ∗ ∗) 81.80 0.406

MTCL (2022) [27] 60.95 (0.127) 74.89 1.017 76.01 (∗ ∗ ∗) 73.04 1.502 72.34 (∗ ∗ ∗) 66.40 1.487
SLD (2023) [32] 58.40 (∗ ∗ ∗) 71.08 1.237 81.09 (∗ ∗ ∗) 83.06 0.453 79.77 (∗ ∗ ∗) 77.68 0.641

SPDS (2023) [33] 55.12 (∗ ∗ ∗) 69.14 1.794 79.93 (∗ ∗ ∗) 82.31 0.426 78.75 (∗ ∗ ∗) 77.35 0.476
Ours 61.10 (-) 75.93 0.843 84.35 (-) 87.40 0.336 83.84 (-) 83.10 0.255

TABLE IV
COMPARISON WITH OTHER METHODS ON CORONARY CTA AND AORTA CTA DATASETS, WITH THE BEST PERFORMANCE HIGHLIGHTED IN BOLD.

THE p OF DSC(p) IS CONSISTENT WITH TABLE III.

Method
Coronary CTA Aorta CTA

DSC(%) ClDice(%) AHD(mm) DSC(%) ClDice(%) AHD(mm)

Full-sup 77.40 (∗∗) 75.88 0.745 91.75 (0.052) 89.20 0.339
Baseline3D (2016) [16] 67.42 (∗ ∗ ∗) 67.23 1.706 87.85 (∗∗) 86.21 0.698

Baseline2D 73.59 (∗∗) 73.95 0.686 90.47 (∗) 86.69 0.367
MTCL (2022) [27] 67.77 (∗∗) 64.36 2.093 87.05 (∗∗) 82.18 1.185
SLD (2023) [32] 70.45 (∗ ∗ ∗) 68.17 1.792 86.81 (∗ ∗ ∗) 83.50 0.919

SPDS (2023) [33] 69.46 (∗ ∗ ∗) 68.93 1.053 83.38 (∗ ∗ ∗) 79.26 1.185
Ours 75.43 (-) 73.17 0.660 90.84 (-) 91.25 0.348

(a) Baseline3D (c) MTCL (g) Label(b) Baseline2D

78.16

88.22

67.69

79.90

90.25

72.47

75.90

88.69

69.62

76.79

80.46

66.50

76.05

87.46

67.22

81.38

93.25

75.86

(e) SLD(d) SPDS (f) Ours

Fig. 6. The MIPs of images and segmentation results. The first to third rows represent the MIP images corresponding to the segmentation results
of one testing sample from the Cerebral MRA, Coronary CTA, and Aorta CTA datasets, respectively. The red pixels, blue pixels and green pixels
denote true positives, false negatives and false positives respectively. The Dice score (%) of corresponding 3D segmentation result is shown in the
upper left corner of MIP image.

full supervision. MTCL [27] achieves performance comparable
to our proposed method on the TubeTK dataset, potentially
due to the resemblance between the noisy labels employed
in MTCL and the provided annotations, which contain noise
itself [43]. Notably, the methods SLD [32] and SPDS [33]
employ the same weak labels as our method to promote
fair comparison; however, their utilization of these labels is
severely restricted, leading to suboptimal performance. Uti-
lizing identical labels, our proposed framework integrates the
projection label acquisition method with the design of the 2D-
3D feature fusion network, while also optimizing the resultant

pseudo labels, resulting in superior performance.
2) Qualitative results: Fig. 5 exhibits the 3D results of

testing data from different datasets. Our proposed method
yields better connectivity and more accurate boundary de-
tection of small vessels when compared to other algorithms.
These findings are consistent with the results in Table III
and Table IV. Additionally, the outcome of Baseline2D on
Aorta CTA dataset is comparable to that of our proposed
approach on metrics of DSC and AHD. This can be attributed
to the relatively simple structure of the aorta in comparison
to coronary arteries and cerebral vessels, allowing 2D slices
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TABLE V
THE RESULTS OF ABATION STUDY. WE DEMONSTRATE THE EFFECTIVENESS OF EACH COMPONENT. THE p OF DSC(p) IS CONSISTENT WITH

TABLE III.

Method
TubeTK Cerebral MRA Cerebral CTA Coronary CTA Aorta CTA

DSC(%) AHD(mm) DSC(%) AHD(mm) DSC(%) AHD(mm) DSC(%) AHD(mm) DSC(%) AHD(mm)
L2D 55.39 (∗ ∗ ∗) 1.602 72.73 (∗ ∗ ∗) 1.680 44.35 (∗ ∗ ∗) 5.471 72.24 (∗ ∗ ∗) 1.044 88.71 (∗ ∗ ∗) 0.650
L3D 58.01 (∗ ∗ ∗) 0.870 81.66 (∗ ∗ ∗) 0.601 80.52 (∗ ∗ ∗) 0.349 73.63 (∗∗) 0.783 87.34 (∗ ∗ ∗) 0.615
Lall 60.08 (∗∗) 0.971 83.74 (∗ ∗ ∗) 0.375 83.53 (∗) 0.289 74.17 (∗) 0.699 89.90 (∗) 0.460

Lall+RF 61.10 (-) 0.843 84.35 (-) 0.336 83.84 (-) 0.255 75.43 (-) 0.660 90.84 (-) 0.348

to provide sufficient and effective information for segmen-
tation. However, the performance of Baseline2D in vascular
connectivity is even poorer (shown in the final row of Fig. 5(b)
and (e)) due to the difficulty of focusing on the 3D structural
features from slice annotation. Fig. 6 shows the MIP images of
testing volumes and their corresponding segmentation results
from three datasets. The efficacy of our method can also be
seen from the distribution of false negatives and false positives.

E. Ablation Study
1) The Effectiveness of Each Component: To verify the

efficacy of each component in the proposed framework, we
conduct experiments deploying solely 2D features or 3D
features, recorded as L2D and L3D, respectively. Additionally,
we present the outcomes without the pseudo-label refinement
module (Lall). The results (as shown in Table V) demonstrate
that relying solely on either 2D or 3D features leads to a
degradation in performance, especially when only 2D features
are utilized. Our proposed method, which effectively integrates
two types of features, achieves better performance. Further-
more, comparison with Lall, the framework with enhancing
the accuracy of pseudo-labels by confidence learning and
uncertainty estimation (Lall+RF) achieves superior outcomes
across all five datasets.

2) Confident Learning and Uncertainty Estimation: We
present an analysis of the performance achieved by incorpo-
rating confident learning for the refinement of existing noisy
labels (CL), as well as incorporating uncertainty estimation
to refine unlabeled voxels (UE), on two datasets. We conduct
an assessment of the quality of generated pseudo labels
and the segmentation performance using two optimization
strategies in comparison to absence of pseudo-label refine-
ment. A higher quantity (Num) and accuracy (Acc) of the
generated foreground and background labels relative to the
real labels is indicative of higher pseudo-label quality. The

results, presented in Table VI, indicate that both the CL
and UE methods effectively enhance label quality. The UE
method primarily concentrates on refining unlabeled voxels,
leading to a significant impact on the number of voxels in
pseudo-label (Num). Furthermore, comparison of the results
from the two datasets reveals that the addition of background
voxels mainly occurs in the TubeTK dataset, while foreground
voxels are primarily added in the Coronary CTA dataset. This
disparity may stem from the differences in annotation quality
between the two datasets, with the TubeTK dataset exhibiting
inherent noise (some venous) in its annotations, resulting in
lower prediction uncertainty for the background. Moreover,
we identify a positive correlation between the quality of
generated pseudo labels and the final segmentation results, in
line with our expectations. And comparative analysis against
pseudo-labels generated solely through traditional methods
(No) reveals an improvement in segmentation performance of
network upon both these two strategies. And the combined
utilization of confident learning and uncertainty estimation
yields best outcomes in the network’s performance.

3) The Parameter of Pseudo-Label Refinement: The control
over foreground generation primarily rests with parameters
dth1 and dth2, while background generation is primarily
regulated by ε1 and ε2 (Eq. 7 and Eq. 11). To explore the
impact of parameter variations on the generation of foreground
and background, we conduct experiments on the Coronary
CTA dataset, as depicted in Fig. 7. The Num metric indicates
the proportion of the number of generated voxels to the
actual number, while Acc represents the accuracy rate. Within
the confidence learning module, increasing the value of dth1
results in the inclusion of more foreground voxels from S

(re)
0 .

However, this increment is accompanied by a decline in Acc.
Similarly, within the uncertainty estimation module, increasing
dth2 leads to an increased allocation of foreground voxels
to unlabeled voxels and a decrease in accuracy. Regarding

TABLE VI
THE EFFECTIVENESS OF CONFIDENCE LEARNING AND UNCERTAINTY ESTIMATION. THE p OF DSC(p) IS CONSISTENT WITH TABLE III.

Dataset Method
Foreground Background Segmentation Result

Num(%) Acc(%) Num(%) Acc(%) DSC(%) ClDice(%) AHD(mm)

TubeTK

No 38.31 82.47 92.94 99.86 60.08 (∗∗) 75.25 0.971
CL 39.19 82.59 92.92 99.87 60.18 (∗ ∗ ∗) 74.99 0.866
UE 40.42 82.35 96.17 99.85 60.64 (∗ ∗ ∗) 75.30 0.858

CL+UE 41.30 82.49 96.15 99.86 61.10 (-) 75.93 0.843

Coronary CTA

No 37.14 96.05 80.16 99.97 74.17 (∗∗) 71.10 0.699
CL 37.52 96.39 80.14 99.98 75.30 (0.115) 72.00 0.666
UE 50.93 95.77 80.50 99.97 74.56 (∗ ∗ ∗) 71.62 0.663

CL+UE 51.04 96.03 80.48 99.98 75.43 (-) 73.17 0.660
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background voxels, the variation of ε1 has minimal observable
impact on Acc and Num of generated background due to
|S(re)

1 | ≪ |S0|. And similar to dth2, as ε2 increases, the
number of allocated background voxels increases while the ac-
curacy declines. The observed variations align with our initial
expectations. The numerical selection of dth1 and dth2 aims
to strike a balance between the quantity and accuracy of the
generated foreground set. And these adjustments additionally
impact the subsequent fine-tuning process of the segmentation
network. Similar considerations apply to ε1 and ε2. During
the experimental analysis, we maintain consistent parameter
settings across the four datasets, with the exception of TubeTK
dataset. This consistent performance demonstrates the robust
generalization capabilities of our proposed method.
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Fig. 7. (a) shows the impact of dth1 and dth2 on the generated
foreground, and (b) is the impact of ε1 and ε2 on the background.

F. Generalization of Method

TABLE VII
CROSS-VALIDATION ON TUBETK AND CEREBRAL CTA DATASETS. THE

p OF DSC(p) IS CONSISTENT WITH TABLE III.

Method
TubeTK Cerebral CTA

DSC(%) AHD(mm) DSC(%) AHD(mm)

Full-sup 63.90 (∗ ∗ ∗) 0.998 84.96 (∗ ∗ ∗) 0.387
Baseline3D 56.85 (∗ ∗ ∗) 1.387 78.72 (∗ ∗ ∗) 0.543
Baseline2D 59.40 (∗ ∗ ∗) 1.035 81.86 (∗ ∗ ∗) 0.488

MTCL 60.05 (∗) 1.008 74.75 (∗ ∗ ∗) 1.347
SLD 58.18 (∗ ∗ ∗) 1.307 81.49 (∗ ∗ ∗) 0.645

SPDS 52.53 (∗ ∗ ∗) 1.602 78.15 (∗ ∗ ∗) 0.459
Ours 60.38 (-) 0.936 84.96 (-) 0.297

1) Cross-Validation Experiments: To further demonstrate the
generalization of our method, we conduct cross-validation
experiments on two relatively small datasets, as presented in
Table VII. By comparing the results, we can draw similar
conclusions to those observed from Table III and Table IV: our
method effectively utilizes the carefully designed weak labels
and achieves superior performance compared to other methods
within similar annotation timeframes. Moreover, in the cross-
validation experiments, the entire dataset is used for testing,
resulting in more robust and stable outcomes. Consequently,
compared to the results in Table III, our method exhibits higher
statistical significance when evaluated against MTCL on the
TubeTK dataset. This observation further supports that our
approach can deliver superior results compared to MTCL on
datasets with noisy labels.

2) Robustness: In this subsection, we primarily focus on
the robustness of our proposed weakly-supervised segmen-
tation framework. Our scheme can leverage most fully su-
pervised methods as backbones, allowing us to analyze their
impact on the segmentation performance. Due to the superior
performance, nnUnet [44] is widely used in various medical
image segmentation tasks. Fig. 8 illustrates the results achieved
by various methods using 3D Unet and nnUnet as backbones,
respectively. Notably, we utilize initially generated pseudo
labels (S0, S1) to obtain the ‘data fingerprint’ and ‘pipeline
fingerprint’ (design parameters of nnUnet) of the backbone for
proposed framework when employing nnUnet. Based on the
findings presented in Fig. 8, it is evident that the methods
exhibit similar characteristics under both backbones. And
with the same backbone (3D Unet or nnUnet), our approach
effectively harnesses the labels of MIP images, yielding supe-
rior results compared to Baseline2D and Baseline3D, while
approaching the performance of fully supervised methods.
Furthermore, a horizontal comparison between the two back-
bones reveals that nnUnet outperforms 3D Unet, aligning with
expectations due to nnUnet’s ability to fully exploit the dataset
characteristics.
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Fig. 8. DSC metric results under different backbones on two datasets.

G. Trade-off Between Annotation Time and Performance
1) Further Optimization of Annotation Method: In our

method, the annotation of 2D projected blood vessels is an
essential aspect. Despite being simpler than annotating in 3D
space, it necessitates manual intervention by radiologists, with
an average annotation time per image of 6-7 minutes (shown in
Table II). To segment 2D vascular images, conventional meth-
ods or deep learning methods can be applied for automatic or
semi-automatic segmentation. Although these approaches may
impact annotation accuracy, it offers significant reduction of
annotation workload and potential for unsupervised and semi-
supervised segmentation. In this section, we investigate the
impact of reducing annotation time on results by employing
both a conventional method and a learning-based approach on
Cerebral MRA dataset (consistent with Table II). We combine
Frangi filtering [37] and homomorphic filtering techniques for
the segmentation of MIP images, followed by the manual
removing of obvious noise (RN) and labeling of thick vessels
(TV) to acquire MIP annotations of varying qualities. These
results are then integrated into our framework as 3D weak
labels to derive the final 3D segmentation result. Furthermore,
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varying numbers (10%, 30%) of MIP images from training
set are annotated, allowing us to train a 2D Unet [36] for
obtaining segmentation results of the remaining MIP images.
Subsequently, the manually annotated labels and the segmen-
tation results serve as weakly supervised labels for training
our proposed network. Fig. 9 presents the annotated images
obtained through different methods.

(a) MIP image (b) Manual annotation (c) RN

(d) RN+TV (e) Num(10%) (f) Num(30%)

Fig. 9. Different annotations of one MIP image, where (b) is the label
with completely manual annotation. And (e) and (f) are the predicted
results of 2D Unet trained with the annotated MIP images (Num(10%),
Num(30%)).

Table VIII presents the average labeling time required for
weakly supervised labels obtained through various methods,
in addition to the MIP labeling quality (Dice coefficient and
accuracy) and their implications on the final segmentation
results. Initially, as expected, it is observed that modifying all
or part of the manual annotations by incorporating algorithm-
generated pseudo labels leads to a reduction in annotation
time, resulting in a decrease in the quality of MIP annotation
and a negative impact on segmentation results. Furthermore,
the comparison of the results obtained through two different
methods reveals that, when utilizing 2D Unet, the quality of
MIP annotations and the performance of the final segmentation
results outperform those of traditional method under similar
annotation time. This can be attributed to the inclusion of man-
ually obtained correct labels in the 2D Unet method, enabling
the network to assimilate more valuable information during
the learning process. Additionally, the comparison between the
results of Num(30%) and all manual annotations (Manually)
indicates that employing 2D Unet can significantly reduce

annotation time with only a slight decrease in segmentation
performance. This highlights the potential of our framework
to integrate with other 2D segmentation methods for further
reduction of the annotation workload without significant per-
formance compromise, a topic to be further discussed in Sec.
IV-H.
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Fig. 10. (a) shows the number of training images and annotation time
of each method, where the numbers of full annotation and noisy label
are shown for MTCL. Notably, the lines of SLD and SPDS in (a) align
with our method, as identical training labels are utilized to ensure fair
comparison (mentioned in Sec. IV-C). (b)-(d) show the segmentation
performance vs. annotation time. Notably, the annotation time of fully
supervised method (Full-sup) trained with the fewest number of samples
(12.2h, 10 training samples) is longer than that of the proposed method
(Ours) trained with the greatest number of samples (9.0h, 80 training
samples), which is why there is no overlap between the two methods on
the axis of Annotation Time.

2) The Number of Weakly Annotations: The performance of
weakly-supervised method theoretically does not exceed that
of fully supervised learning under the same amount of training
data. However, it is meaningful to study whether weakly-
supervised method can outperform fully supervised method
in less annotation time by adding weakly labeled training
samples. This area of research has received limited attention
in prior studies on weakly supervised learning. In our study,
we randomly select 12 samples as testing set and 4 samples

TABLE VIII
THE IMPACT OF DIFFERENT ANNOTATION METHODS ON THE SEGMENTATION RESULTS. THE p OF DSC(p) IS CONSISTENT WITH TABLE III. WHEN

ASSESSING THE QUALITY OF MIP ANNOTATION IN 2D UNET METHOD, WE CONCURRENTLY EVALUATE THE MANUALLY ANNOTATED TRAINING DATA

(DICE=100%, ACC=100%) AND THE GENERATED SEGMENTATION RESULTS, AS THEY COLLECTIVELY SERVE AS WEAK LABELS FOR OUR METHOD,
FACILITATING EASIER COMPARISON WITH FRANGI+HOMOMORPHIC.

Mehod Scheme
MIP Annotation Segmentation Result

Ave(min) Dice(%) Acc(%) Example Dice(%) ClDice(%) AHD(mm)

Frangi+Homomorphic
RN 0.86 75.83 95.75 Fig. 9(c) 73.84 (∗ ∗ ∗) 64.48 1.282

RN+TV 2.39 86.13 97.41 Fig. 9(d) 79.79 (∗ ∗ ∗) 77.56 0.830

2D Unet
Num(10%) 0.68 81.35 96.36 Fig. 9(e) and (b) 78.85 (∗ ∗ ∗) 79.51 1.191
Num(30%) 2.26 87.73 97.66 Fig. 9(f) and (b) 82.42 (∗ ∗ ∗) 84.36 0.509

Mannually - 6.78 100 100 Fig. 9(b) 84.35 (-) 87.40 0.336
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as the validation set from the 96 volumes of Cerebral MRA
dataset. In Fig. 10, we present the results of monitoring the
performance trends of each method under varying labeling
times (different numbers of training samples) on Cerebral
MRA dataset, with the same testing volumes. Additionally,
we evaluate the performance of full supervision with 10, 20,
and 30 training samples which require labeling times of 12.2h,
24.5h, and 36.7h respectively.

Based on the results presented in Fig. 10, it is evident that
the performance of each method shows a gradual increase
with the expansion of training data, consistent with anticipated
outcomes. And our method outperforms other methods across
all indicators in the case where the annotation time of training
data is similar. Furthermore, when the number of weakly-
labeled samples is sufficient, our proposed method can out-
perform full supervision while still requiring far less labeling
time. For example, our approach achieves better results than
fully supervised segmentation (trained on 30 images) with only
about 7.9h of data annotation time, which is significantly less
than the 36.7h required for the latter. Similarly, in much less
annotation time (about 2.3h, 5.7h), our method outperforms
the performance under full supervision with the labeling time
of 12.2h and 24.5h.

H. Limitation and Future Works
One limitation of our study pertains to the impact of

blood vessel occlusion on the accurate labeling of the MIP
image. Our proposed methodology necessitates the blood
vessel annotation of the MIP image. But the presence of
diverse types of blood vessels introduces varying degrees of
occlusion challenges due to dissimilar surrounding tissues.
Consequently, some preprocessing procedures may be required
for certain datasets (e.g., the Aorta CTA dataset and the
Coronary CTA dataset) in the training phase. Furthermore,
occlusion is present in the images of the patients who undergo
surgery and implant metal materials, which is not considered
in our work. Hence, it is intriguing to investigate how to attain
superior performance in the presence of occlusion, even when
it is severe.

Additionally, our approach mandates the annotation of 2D
MIP blood vessel images, which is still time-consuming. In
Sec. IV-G.1, we attempt to replace manual full annotation
of MIP images with automatic methods (with minor manual
annotation); however, these methods yield unsatisfactory re-
sults, introducing noise that adversely affects the final seg-
mentation outcome. Exploring the utilization of existing 2D
blood vessel weakly-supervised and semi-supervised methods
to minimize the annotation workload while upholding accurate
blood vessel segmentation represents a promising avenue for
future research.

V. CONCLUSION

In this study, we present a framework for weakly supervised
segmentation of vessels in 3D volumes with dimensionality
reduction annotation, leveraging the sparse structural char-
acteristics of vascular structure. To this end, MIP image is
employed as a means of annotation and supervision. Initially,

we obtain pseudo-label of 3D vessels through MIP annotation.
Subsequently, we design a 2D-3D feature fusion network to
make best use of the weak label, taking into account the
acquisition method of the 2D labels. During the pseudo-label
generation, it is inevitable that some noise is introduced and
certain voxels may be overlooked. To mitigate these issues
and enhance network performance, we integrate confidence
learning and uncertainty estimation methods to refine the
pseudo-labels. We conduct comprehensive experiments across
five vascular datasets. And the results demonstrate that our
proposed method achieves high-quality vascular segmentation,
approaching the performance of fully-supervised segmentation
under the same number of training samples. Furthermore, we
design experiments to validate that our proposed weakly super-
vised segmentation framework achieves superior performance
to fully supervised segmentation with much less annotation
time by increasing training samples, showing the immense
potential of our method in the field of vessel segmentation.
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