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Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However,
the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable,
making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation rep-
resentation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To
address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors
between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is
proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile
phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combina-
tion of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw
angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric 𝑀𝐴𝐸Δ, is reduced
by 62%. User study further confirms the effectiveness of our proposed algorithm.
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1 INTRODUCTION
Capacitive touchscreens, widely available on smartphones, tablets, and smartwatches, are the primary input
devices of many consumer electronics. Yet, the expressiveness and functionality are constrained since only the
2D locations of touch events are reported by the touch controllers. Consequently, researchers have concentrated
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on enriching the input vocabulary of touchscreens. Manipulatory force, contact area, finger angles, etc. are
explored to extend the capability of touchscreens.

Finger angles offer three additional dimensions: yaw, pitch, and roll, as shown in Figure 1. It is one of the most
prominent methods to enlarge the input space for the touchscreens. A large body of work has presented various
algorithms for determining finger angles [15, 19, 32, 36, 37]. Several studies [1, 6] have attempted to reconstruct
hand poses from capacitive data. In addition to capacitive images, some studies [8, 14] have proposed algorithms
to predict finger pose via fingerprint images. Among these studies, capacitive touchscreen-based technologies
are particularly attractive because of the ease of implementation on a variety of existing consumer electronic
devices.

Despite recent advances, estimating finger angles based on capacitive touchscreens remains a challenging
task. We first dived into the rotation representation, which has been proved very important for learning-based
algorithms in computer vision, robotics, and graphics[9, 29, 40]. In the problem of finger pose estimation based
on capacitive images, existing researches[19, 32, 37] use vanilla yaw and pitch angles to represent finger pose,
whose values are taken from 3D Euler angles directly. We believe this representation will introduce systematic
errors inherently for finger pose estimation algorithms because it discards roll angle simply. What this means for
human-computer interactions is that the represented finger poses are far from the user-perceived finger poses
in some cases. This creates confusion for users, degrades user experience, and cannot be solved by finger angle
prediction algorithms. In this work, we proposed a 2D rotation representation to deal with the missing degree of
freedom by minimizing the errors between the representation space and original space. The proposed rotation
representation are superior in two aspects: 1) it is the closest 2D representation compared to the ground-truth
finger pose, which means that algorithms trained with this representation will achieve higher user-perceived
accuracy inherently. 2) it is non-singular, which makes it easier for neural networks to converge.

Digital pens (styluses) have similar application scenarios as finger pose. The angle error of digital pens is
smaller than 0.01 degrees [18]. Compared to that, the accuracy of finger angle estimation still has a lot of room
for improvement. The lowest mean average error for yaw angle of existing researches is 18◦, and 10◦ for pitch
angle [19], which is far more larger than the error of pens and cannot meet the needs of practical applications.
Another problem which hinders the practical use of finger angles is that prior studies lack attention to stability.
Without the time-series modeling, prior algorithms cannot take advantage of the fact that the finger angle varies
continuously along the time axis. Haran [11] defines several requirements for pens including jitter, accuracy,
linearity, tilt-error, and pen lag. Jitter hurts the user experience of interaction significantly [2, 3, 23].

Existing approaches do not generalize well to a new user, since different finger shapes, sizes, and pressing
habits can significantly impact performance. To mitigate this gap, we present a feasible and effective method
for collecting representative user data and fine-tuning the trained model with no ground truth poses needed.
Quantitative results and user studies demonstrate the significant improvement compared to the state-of-the-art
study.

To summarize, our contributions include:

• a 2D rotation representation, which is optimal in the sense of representation errors and is superior to be
used for training learning-based algorithms.

• a time-series deep neural networkwith self-attentionmechanism, which estimates sequential finger angles
accurately and steadily.

• a user adaptive fine-tuning method, which reduces the performance gap for new users. An application
installed on the mobile phone is the only requirement to finish the user-specific registration.

We believe that with the more accurate, stable, and non-singular finger pose estimation model proposed in
this study, interactive applications that use finger angle as extended dimensions will be more user-friendly.
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Fig. 1. Definition of finger angle: yaw (green), pitch (blue), and roll (red).

2 RELATED WORK
Touch controllers only extract the 2D location of the contacting finger nowadays, which is becoming increasingly
insufficient as mobile applications become more complex. Various innovative modalities have been introduced
to improve the touch input on touchscreen devices, including finger contact area [5, 24], manipulatory force
[4, 26, 36], part of the hand [13], shear forces [12], and finger angle [34, 37]. Mayer et al. [21], and Streli and Holz
[31] proposed algorithms and applications by reconstructing high-resolution contact area wth touchscreen. Le
et al. [16] identified different fingers from capacitive data. Vogelsang et al. [33] presented expert interviews to
describe the wide range of finger orientation input opportunities. Among these new touch inputs, finger angle
has gained a lot of attention because it can offer two or three additional, continuous degrees of freedom (yaw,
pitch, and roll) for interactive functions. Considering the limited information from touch sensors, researchers
have proposed the use of additional sensors to provide more information. Watanabe et al. [36] used a RGB
camera. Mayer et al. [20] constructed a prototype using a depth camera mounted on a tablet and reduced the
systematic error using ground truth data to improve the initial approach of Kratz et al. [15]. Dang and André
[7] used infrared images captured by a camera sensor inside a tabletop as input and processed the contour of
the contacting area to estimate the finger angle. However, requirements for additional sensors to obtain finger
posture information became the primary barrier for these algorithms to be applied in realistic applications.

Estimating finger angles on off-the-shelf smartphones without the use of auxiliary devices is an exciting area
of research. Capacitive images reflect the disturbances in the projected electric field caused by finger touch [10].
It can be obtained directly from any commercial smartphones and tablets equipped with touchscreens. Limited
by the low resolution of capacitive touchscreens (take for example LG Nexus 5 smartphone, 27×15 capacitors
for a 137.9×69.2 mm2 touchscreen), their typical usage is simply reporting the 2D location of touch events to
the operating system. Wang et al. [34] used the shape of a capacitive image to calculate the yaw angle of a
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finger. Rogers et al. [27] further expanded the pitch angle by presenting a finger-tracking system for touch-
based interaction. Roudaut et al. [28] proposed MicroRolls, which was characterized by zero tangential velocity
of the skin relative to the screen surface, to enrichmore gestures. Zaliva [39] demonstrated several useful features
including the contact area, average intensity, centroids, and the shape asymmetry.They used these characteristics
in conjunction with an artificial neural network to estimate the pitch and yaw orientations. Xiao et al. [37]
extended the feature set and trained a Gaussian Process Estimator (GPR) to regress the finger angles. Their work
demonstrated that combining machine learning algorithms with handcrafted features could improve estimation.
Mayer et al. [19] proposed a convolutional neural network (CNN), that was trained on a large scale dataset
with capacitive images and corresponding finger angles. The estimation accuracy improved further as a result of
deep neural networks’ powerful feature representation ability.ThumbPitch [32] used a CNNmodel to predict the
pitch angle of thumbs when holding the phone in one hand. Recently, several studies have shown the possibility
to estimate hand pose from capacitive images. Ahuja et al. [1] designed TouchPose, a multi-task network, to
predict depth image, finger angle, and hand pose. Choi et al. [6] proposed an algorithm to estimate hand pose by
comparing input capacitive imagewith a reference library. In additional to capacitive data, fingerprint images are
also explored for finger pose estimation. He et al. [14] presented amulti-task neural network to estimate 3Dfinger
pose given fingerprint images. Duan et al. [8] estimated finger angles bymatching keypoints between fingerprint
images and reconstructed 3D point cloud. Their methods were tested using fingerprint images captured by large
optical fingerprint sensors, and the adoption in smartphones is still not practical due to low frame rate and small
sensor area.

Previous studies, such as [30] and [25], have also utilized temporal dependencies in sequential capacitive data
to recognize gestures. However, our study differs in the following aspects: (1) Target task.The target in this study
is to estimate continuous finger angles, which is different from the gesture classification task in [30], and [25]. (2)
Model architecture. The proposed TrackPose uses self-attention mechanism to implement time-series modeling
instead of LSTM, which is used in [30], and [25]. (3) Design for stable estimation. We proposed a dedicated
tracking loss function for instructing the model to forecast smoother angles. No similar design appears in prior
researches. (4) User-adaptive fine-tuning. With the application developed in this study, pre-trained TrackPose
could adapt to unseen user with a better performance. To the best of our knowledge, this was not proposed in
prior studies.

While existing finger pose estimation methods have achieved significant reduction in quantitative errors, they
are still not widely used in real-world applications. This is partly due to the lack of consideration of stability in
algorithms’ output angles for a sequence of continuous capacitive images. In scenarios where users must con-
stantly press their fingers on the screen, such as manipulating a 3Dmodel, unexpected vibrations of the operated
objects can reduce users’ willingness to use finger pose. Therefore, both accuracy and stability should be consid-
ered when selecting pose estimation algorithms for practical applications. To assess stability quantitatively, we
propose a metric in addition to absolute yaw and pitch errors. We designed a specialized neural network with
multihead self-attention layers to predict the most recent finger angles. Moreover, the tracking loss is designed
to focus on the network’s output stability along the time axis.

3 DATA COLLECTION
To the best of our knowledge, no prior research has released large-scale time-series capacitive touchscreen
dataset. The most related one is the dataset used in [19]. However, it is not constructed in sequences. We try our
best to regroup separate frames into sequences based on the available timestamp log, but the finger angles and
capacitive images in many recovered sequences are very close to each other, which means participants barely
move their fingers in these sessions during the data capture process. The variation ranges on average are 6◦, and
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4◦ for regrouped sequences. Such sequences contain limited information about fingers’ motion profiles. There-
fore, the dataset in [19] is not suitable for training and evaluating time-series models for this study. Another
important reason for gathering a new dataset is that we contribute a user adaptive fine-tuning method which
needs participants’ representative data while operating on the smartphone. Therefore, instead of building upon
the dataset of [19], we collect a new time-series dataset to verify the contributions of time-series modeling and
user-specific fine-tuning. The dataset comprises 1630 sequences of capacitive images and corresponding finger
angles from 12 volunteers for 72 different fingers. The total number of images is 75,152.

Yaw distribution Pitch distribution

Fig. 2. Distributions of yaw and pitch angles in our dataset.

3.1 Apparatus
Our data acquisition system, shown in Figure 3, consists of a Realme C11 smartphone, an optical tracking system
(PST-Iris from PS-Tech1), and several reflective markers for finger pose tracking. The touch-sensitive area of the
screen is 160×75 mm2. The touchscreen controller is ICNT8962 from Chipone Technology2, which records 31×
16 lines capacitive images at 60 FPS. The input driver of the Android kernel in this phone was modified to send
raw capacitive values to the operating system, which are available to us with the support of Chipone.The optical
tracking system is utilized to record 3D finger angles as ground truth at 120 FPS, whose orientation tracking error
is lower than 0.5◦. A rigid body with four reflective optical markers is attached to the fingertips of participants.
Its 3D pose relative to the markers installed on the screen is calculated as the finger pose. A data acquisition
software is developed to synchronize sequential capacitive images and 3D finger angles.

3.2 Participants
Totally 12 volunteers were invited to participate in the data collection procedure (10 male, 2 females, aged from
19 to 28, 𝑀 = 24.22, 𝑆𝐷 = 3.74). Each volunteer was advised to use 6 frequently used fingers, thumb, index, and
middle for both the left and right hands. None of the participants had any movement impairment. Participants in
this study had diverse finger length, finger width, finger shapes and showed different characteristics in capacitive
images.

1https://www.ps-tech.com/products-pst-iris
2http://www.chiponeic.com/en/TT/229
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Fig. 3. The data-acquisition system. The left panel shows the tracked postures of the markers attached to the fingers and
markers on the smartphone. The upper right panel shows the PST-Iris. The bottom right panel shows the Realme C11
smartphonewithmarkers installed on the screen. Reflective rigid body is attached to the volunteer’s finger near the fingertip.

3.3 Procedure
The volunteers were encouraged to produce various finger angles freely while pressing on any location on the
touchscreen.The lifting and rotation speed was not limited. Both landscape and portrait phone layouts were used
during the procedure. Volunteers could touch the screen and remove the finger at any time.The joint distribution
of the yaw and pitch angles was monitored on the software interface, therefore the experimenter could instruct
the volunteers to cover all finger angles. But the experimenter would not interfere with the procedure to make
sure the volunteers performed the operations at their own pace. A capture session for a fingerwas completewhen
all angles between 0◦ and 90◦ for pitch and−90◦ and 90◦ degrees for yaw had been covered and aminimum count
of sequences (50) was met. Totally 6 sessions for thumb, index, middle finger of both left and right hands were
conducted for each volunteer.

3.4 Data Filtering
The capacitive images and finger angles were cached and synchronized in sequences. In total, around 2100 se-
quences and 97000 images were captured. Sequences with less than 3 frames were removed. Blob detection was
done following [19] by finding contours through marching cubes algorithm [17]. Contour area threshold was set
to 4 pixels to include small capacitive images. Empty capacitive images with no blobs (no touch) were discarded.
After filtering, 1630 sequences from 12 person for 72 fingers, which contained 75152 pairs of captured images
and finger angles, were left. The mean angle for yaw was 8.9◦ (𝑆𝐷 = 65◦), and the mean angle for pitch was 43◦
(𝑆𝐷 = 21◦). The distributions of the yaw and pitch angles are shown in Figure 2.

4 ROTATION REPRESENTATION
The Euler angles are three angles that describe the orientation of a rigid body with respect to a fixed coordinate
system. They are more intuitive than other rotation formulations. The angles consist of yaw, pitch, and roll,
where pitch is the angle between the finger and the horizontal touch surface, roll is the angle around the finger’s
longitudinal axis, and yaw is the angle between the finger and the vertical axis, as illustrated in Figure 1.

Due to the limitations of low-resolution capacitive images, it is difficult to accurately calculate the roll angle.
Previous studies [19, 34, 37, 39] estimated yaw and pitch angles only. MicroRolls [28] introduced several rolling
gestures through the recognition of sequential X-Y locations, but the output was limited to a few categories
and did not estimate the analog roll angle. In the case of missing roll angles, there is a question that has not
been addressed in previous studies: is it correct to use vanilla yaw and pitch angles to represent finger pose? We
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examine this question from two perspectives. Firstly, ignoring the roll angle introduces systematic errors in the
finger pose. For example, the product

𝑅 = 𝑅𝑧 (𝛼)𝑅𝑦 (𝛽)𝑅𝑥 (𝛾) (1)
represents a rotation whose yaw, pitch, and roll angles are 𝛼 , 𝛽 , 𝛾 , respectively. However, if we ignore the roll
angle simply (which is equivalent to setting the roll angle to 0◦), the rotation matrix becomes

𝑅 = 𝑅𝑧 (𝛼)𝑅𝑦 (𝛽), (2)

which is different from 𝑅. The difference between 𝑅 and 𝑅 becomes larger as the roll angle increases. This means
that even if a perfect pose estimation model exists that can output exact vanilla yaw and pitch angles as the
ground truth, the reconstructed finger pose by it may be far from the actual 3D finger pose due to the systematic
errors. Secondly, Saxena et al. [29] proposed that the 3D Euler angles cause learning problems due to disconti-
nuities. In our problem, this shortcoming is magnified by the absence of roll angle. Zhou et al. [40] suggested
the use of representations in 5D and 6D spaces with good continuity. However, their conclusions do not solve
our problem because, as mentioned before, any formulation containing more than two degrees of freedom is not
appropriate in this context limited by the information-poor input modality.

From the perspective ofmaintaining the closest finger pose, we propose the optimal 2D rotation representation.
Given the full 3D finger pose below:

𝑅 =


𝑐 (𝛼)𝑐 (𝛽) 𝑐 (𝛼)𝑠 (𝛽)𝑠 (𝛾) − 𝑠 (𝛼)𝑐 (𝛾) 𝑐 (𝛼)𝑠 (𝛽)𝑐 (𝛾) + 𝑠 (𝛼)𝑠 (𝛾)
𝑠 (𝛼)𝑐 (𝛽) 𝑠 (𝛼)𝑠 (𝛽)𝑠 (𝛾) + 𝑐 (𝛼)𝑐 (𝛾) 𝑠 (𝛼)𝑠 (𝛽)𝑐 (𝛾) − 𝑐 (𝛼)𝑠 (𝛾)
−𝑠 (𝛽) 𝑐 (𝛽)𝑠 (𝛾) 𝑐 (𝛽)𝑐 (𝛾)

 ,
where ‘c’ is shorthand for the cos function, and ‘s’ is shorthand for sin function. Keeping the pitch angle constant,
the optimal yaw angle can be solved by

min
𝛼∈ (−90,90)

∥(𝑅𝑧 (𝛼)𝑅𝑦 (𝛽)) − 𝑅∥, (3)

where ∥...|∥ represents the squared Frobenius norm of a matrix. For simplicity, we use 𝑓 (𝛼) to represent the
objective function ∥(𝑅𝑧 (𝛼)𝑅𝑦 (𝛽)) − 𝑅∥. By analyzing the first and second derivatives 𝑓 (𝛼), we get the solution
as below:

𝛼∗ =

{
arctan( 𝑠 (𝛼 )𝑐 (𝛽 )

2+𝑠 (𝛼 )𝑐 (𝛾 )𝑠 (𝛽 )2−𝑐 (𝛼 )𝑠 (𝛾 )𝑠 (𝛽 )
𝑐 (𝛼 )𝑐 (𝛽 )2+𝑐 (𝛼 )𝑐 (𝛾 )𝑠 (𝛽 )2+𝑠 (𝛼 )𝑠 (𝛽 )𝑠 (𝛾 ) ), if 𝜕2 𝑓

𝜕𝛼2 > 0.

90 × sign(𝛼), otherwise.
(4)

The proposed representation has two advantages compared with the vanilla yaw and pitch angles: 1) it consid-
ers roll angle andmakes the representation optimal in the sense of minimizing errors between the representation
space and the original space. What this means for finger-pose based interaction is the rotation representation
itself has less systematic errors inherently and is closer to user-perceived finger pose. 2) the solution has no
singularities. This means that the representation is smooth and continuous even when users lifts the finger up
to operate. While in this case, the vanilla yaw suffers very significantly due to the Gimbal Lock. Considering
the good properties of the proposed representation, we use it as the ground truth for learning-based algorithms.
It is worth emphasizing that both our model and baseline models were trained and evaluated with it for a fair
comparison.

5 TRACKPOSE MODEL
In this section, we present a deep neural network with self-attention layers that assembles time-series features
extracted from continuous capacitive images. Then, we show how a loss function can be used to help the model
track finger angles smoothly.
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5.1 Input Processing
To assemble time-series features of continuous capacitive images, N frames were fed into the network as a
whole for angle predictions. The hyperparameter N was set to 5 in the final experiment considering the trade-
off between memory footprint and model accuracy. When the available frames were less than 5, we padded the
sequence to 5 frames with ”static frames” at the beginning by repeating the first frame.This only happened when
the finger started touching the screen (the initial 0.08 seconds at 60 FPS). Each frame in a sequence was padded
into 32×32. Min-max intensity normalization was applied. For the training stage, we further performed random
translation as a method of data augmentation. Translation was not performed at inference.

5.2 Self-attention Model Architecture
Mayer et al. [19] and Ullerich et al. [32] used a convolutional neural network (CNN) to estimate finger angles
based on a single capacitive image. The information included was limited. Motivated by the observation that
humans can guess the finger pose by looking at the changes of sequential capacitive images, we develop a time-
series model, called TrackPose, that utilizes a CNN as the backbone network to extract features from adjacent
images and self-attention layers to fuse features along the time axis.

An overview of the TrackPose architecture is shown in Figure 4. The overall network was divided into two
parts: CNN backbone and attention module. In Figure 4, [𝐼1, 𝐼2, ..., 𝐼𝑁 ] is an example input sequence, For each
frame (i.e., 𝐼1, 32 × 32 × 1 in size) in this sequence, the CNN backbone extracts feature 𝑋1 from it. It begins with
a convolutional layer which has 64 kernels sized 3 × 3, and 2 × 2 average-pooling layer. Subsequently, three
residual convolutional layers are applied. The output channels are 64, 128, and 128, respectively. The kernel size
is 3× 3 for all layers. A fully connected (FC) layer is followed to extract a 64-dimensional feature for each frame.
{𝑋1, 𝑋2, ..., 𝑋𝑁 } are fed into the self-attention module. They are first normalized using layer normalization, and
then regrouped by three multi-head self-attention layers. To encode the temporal sequential relationship, we
mask the attention matrix to be a lower triangular matrix (See Figure 5). An older frame should not get any
information from newer frames. Finally, a single concatenated feature describing the whole sequence is passed
through a FC layer to predict the yaw and pitch for the latest frame 𝐼𝑁 (denoted as 𝛼𝑁 and 𝛽𝑁 ).

5.3 Model Training
Existing studies [1, 19, 32, 34, 37, 39] focused on improving the accuracy of finger angle estimation. We argue
that stability of continuous estimation is also important for practical applications. However, simple smoothing of
the predictions results in hysteresis, particularly when the finger pose changes rapidly, making the operations
feeling unresponsive for users. Similar to the velocity loss applied in [38], we used a temporal tracking loss
function for guiding the TrackPose model to put more attention to the stability of adjacent estimations.

Given the outputs of a sequence 𝛼1, 𝛼2, . . . , 𝛼𝑁 and 𝛽1, 𝛽2, . . . , 𝛽𝑁 , we first compare themwith the ground truth
𝛼1, 𝛼2, . . . , 𝛼𝑁 and 𝛽1, 𝛽2, . . . , 𝛽𝑁 , and the Mean Squared Error (MSE) loss function is calculated as follows:

𝐿pose =
1
𝑁
(
𝑁∑
𝑘=1

𝐿MSE (𝛼𝑘 , 𝛼𝑘 ) +
𝑁∑
𝑘=1

𝐿MSE (𝛽𝑘 , 𝛽𝑘 )), (5)

Then, a tracking loss is applied to instruct the neural network to forecast smoother angles for subsequent
frames:

𝐿tracking =
1

𝑁 − 1
(
𝑁∑
𝑘=2

𝐿MSE (𝜌𝑘 , 𝜌𝑘 ) +
𝑁∑
𝑘=2

𝐿MSE (𝜎𝑘 , 𝜎𝑘 )), (6)

where 𝜌𝑘 = 𝛼𝑘 − 𝛼𝑘−1, 𝜌𝑘 = 𝛼𝑘 − 𝛼𝑘−1, 𝜎𝑘 = 𝛽𝑘 − 𝛽𝑘−1, 𝜎𝑘 = 𝛽𝑘 − 𝛽𝑘−1, which can be considered constraints on
the increments. Figure 6 shows the motivation for designing this loss function. The tracking loss function above
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Fig. 4. Illustration of the architecture of the proposed TrackPose model for sequential finger angle estimation. Features
extracted by CNN backbone are mixed by the self-attention module. Sequential predictions are supervised by both MSE
loss and the proposed tracking loss.
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Fig. 5. Illustration of how we masked out the scaled dot-product attention matrix to represent the temporal relationship
along the time axis. The gray elements in the upper-right corner indicate that an older frame should not obtain any infor-
mation from newer frames. Generally, frame 𝑘 only accepts features from 1 to 𝑘 .

drives the neural network to prefer to the right curve in Figure 6, which is more stable along the time axis. The
overall loss function is represented as

𝐿 = 𝐿pose + 𝛿𝐿tracking, (7)
where 𝛿 is a hyperparameter, which is set to 5 in our experiment.
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Fig. 6. The left panel shows a typical curve of the predicted yaw angles by a single-frame model, and the right is a curve of
the predicted yaw angles by our approach. Even though the average estimation error is close in this example, the estimation
curve on the right is preferable for interaction applications because it is smoother and the overall trend is more consistent
with the ground truth.

6 USER ADAPTIVE FINE-TUNING
Deep learning models often exhibit a performance gap at inference. The generalization problem exacerbates this
issue in the context of finger angle estimation because fingers come in different shapes and sizes, and individuals
have different habits when pressing their fingers. This causes existing approaches to perform worse on new
fingers.

A possible solution is to collect capacitive images along with finger angles for new users. However, this can
be impractical if an auxiliary device such as a 3D pose tracking system is needed. Therefore, a registration ap-
plication was developed that collected representative data of an unseen finger, including the capacitive image
sequences and the corresponding finger angles. During the registration procedure, no extra devices were re-
quired except for the phone with the registration application installed. The process of registering a new finger
cost less than 3 minutes on average, and improved accuracy by 17% for yaw angle compared to the general
TrackPose model (see MAE metric in Table 1).

6.1 Apparatus
We used the same smartphone as 3.1, but the 3D pose tracking system was no longer needed. Its role was taken
by the application we developed.

6.2 Participants
The same volunteers in Section 3.2 completed the registration. To clarify, data collected in this section would
only be used in the fine-tuning stage (part of the training stage). No ground-truth finger angles could be obtained
by this measure, therefore we did not use them for any quantitative evaluation. More details about how to use
the dataset collected by the application will be introduced in Section 7.2.

6.3 Procedure
The User Interface is shown in Figure 7. Once a user clicked the ”START” button, an arrow with a specific
direction 𝐷 would be displayed on the screen. Users were then guided to lift their finger evenly from the fat
posture to the steep posture (see Figure 8). They were also required to keep the yaw angle unaltered by following
the arrow’s direction (see Figure 7), which was easy with the visual guidance of the arrow. The arrow went from
0◦ to 180◦ at intervals of 22.5◦. Totally 9 sequences and about 200 frames were registered for a finger.
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6.4 Data Processing
Note that our application was landscape-oriented. To be consistent with the data acquired in Section 3, the
arrow’s direction (see Figure 7) was converted to angles as follows:

𝛼𝑘 =

{
−𝐷, if 𝐷 ≤ 90

180 − 𝐷, otherwise
𝑘 ∈ 0, ...,𝑇 − 1 (8)

With the calculated angles and collected capacitive image sequences, the general TrackPose model trained by
Section 5.3 was fine-tuned to a user-specific customized TrackPosemodel.The technical details will be illustrated
in Section 7.2.

0° 180°

90°45°
135°

22.5°

67.5° 112.5°

157.5°

Fig. 7. Our registration Android application. Users were guided to lift their fingers along the arrow’s direction in each
session. Totally 9 sequences will be captured in order.

Fig. 8. Side view of the registration procedure. Users were guided to lift their fingers evenly from fat posture to steep posture.

7 EXPERIMENTS
In this section, we first introduce the experiment settings including dataset split, and evaluation metrics. Two
proposed models are evaluated, which are the general TrackPose model without user adaptive fine-tuning and
the customized TrackPose model with fine-tuning through user-specific registration. A single-frame CNNmodel
inspired by [19] and a Gaussian Process Regression model inspired by [37] were implemented and tested on the
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collected dataset to serve as baselines. Additionally, performance analysis is conducted to illustrate the contri-
butions of time-series modeling and user-specific fine-tuning.

7.1 Dataset Splitting
As said in Section 3, we collected dataset from 12 person. We used a 12-fold ‘leave-two-person-out’ cross-
validation to evaluate both TrackPose and baseline methods. Through this evaluation protocal, we assured that
every person would be treated as a totally new user as least in one fold. In each fold, sequences from 8 person
were used for training, 2 person were used for validation, and the remaining 2 person were used for testing.
Results in Table 1 were reported as the average on all folds.

7.2 Train General and Customized TrackPose
The proposed model was implemented with Pytorch. The general TrackPose model was optimized using the loss
function illustrated in 5.3 by AdamW optimizer, whose 𝑏𝑒𝑡𝑎 = (0.9, 0.999),𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 0.001. The batch size
was set to 256. Early stopping was used to avoid overfitting. Maximum epochs was 200. The learning rate was
0.001 initially and was scheduled by the ReduceLROnPlateau scheduler. The experiments were performed on a
computer with an Intel Xeon E5 CPU and two NVIDIA GTX 3090 GPUs. It took approximately 4.5 hours to train
the model.

For customized TrackPose model, let us take a specific fold as an example. For instance, person 𝑃1, 𝑃2, . . . , 𝑃8
were the training dataset for the current fold, 𝑃9, 𝑃10 were the validation dataset, and 𝑃11, 𝑃12 were the testing
dataset. We first loaded the weights of the general model trained on 𝑃1, 𝑃2, . . . , 𝑃8. And then we used the applica-
tion in Section 6 to collect user-specific data for person 𝑃11 and 𝑃12 respectively. Finally we got the customized
TrackPose model for person 𝑃11 and 𝑃12 respectively by fine-tuning the general model for one epoch with a
moderate learning rate 0.0005. In this process, no ground-truth finger angles acquired by 3D pose tracking sys-
tem of 𝑃11 and 𝑃12 were used to train the model. Only the values we recorded by the arrows in Section 6 were
fed into the neural network. Therefore, there was no data leakage issue in this process. The overall process was
conceptually similar to on-device fine-tuning techniques in the area of face recognition.

7.3 Evaluation Metrics
Besides the Mean Absolute Error (MAE) metric, the Root Mean Squared Errors (RMSE), and the Standard Devi-
ation (SD) used in existing studies, we propose a new metric, the MAE of increments (or speeds) for both yaw
and pitch, to reveal the stability of sequential finger angle estimation. Given yaw angles of adjacent frames 𝛼𝑘
and 𝛼𝑘−1, the increment, which is denoted as Δ𝛼 , reveals the rotation speed (including the changing direction
and magnitude), so as for the pitch angle:

Δ𝛼𝑘 = 𝛼𝑘 − 𝛼𝑘−1, (9)
Δ𝛽𝑘 = 𝛽𝑘 − 𝛽𝑘−1 . (10)

For a sequence whose ground truth yaw angles are 𝛼1, 𝛼2, ..., 𝛼𝑁 and pitch angles are 𝛽1, 𝛽2, ..., 𝛽𝑁 , the ground
truth for incremental yaw angles and incremental pitch angles can be computed based on Equation 9 and 10.The
predictions of the increments can be calculated in the same way given the sequential estimated finger angles
estimated. Then, the mean average errors of the yaw and pitch increments can be evaluated as

𝑀𝐴𝐸Δ =
1

𝑁 − 1
(
𝑁∑
𝑘=2

|Δ𝛼𝑘 − Δ𝛼𝑘 | +
𝑁∑
𝑘=2

|Δ𝛽𝑘 − Δ𝛽𝑘 |) . (11)

As shown in Figure 6, the MAEs of the yaw angle for the two curves are similar, but the MAEs of the incremental
yaw angle are 5.9◦ for the left and 1.2◦ for the right. The new metric can reveal the preference for more stable
estimations in the context of continuous prediction.
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7.4 Baselines Implementation
We re-implemented a CNN inspired by the best model in [19]. Model architecture, weights initialization, opti-
mizer choice, and data pre-processing were kept the same as that in [19]. The same L2 regularization and batch
normalization were used for best performance. For each fold, hyperparameters were initially set to the values
in [19] and were tuned based on the performance on the validation dataset. Gaussian Process Regression (GPR)
was re-implemented referring to the model in [37] using sklearn toolkits3. Due to the limit of memory footprint
and training time, a smaller subset of the original training set (8.3%, 6200 images) was used to train GPR. The
same dataset splitting was used for baseline models for a fair comparison.

7.5 Results
Results are reported as the average of all ‘leave-two-person-out’ sessions.The standard deviation of MAE among
different folds is 2.6◦. Besides the baselinemethods inspired by [19] and [37], the performance of the cross-person
experiment (protocol 2) reported in [1] is also listed in Table 1. Our best model is able to reduce the overall MAE
by 33% compared with CNN baseline inspired by [19], 47% for the yaw angle especially. Additionally, considering
the instability of sequential estimations which can be revealed by the metric 𝑀𝐴𝐸Δ, we reduce the error of it
by 62%. MAE is also smaller than that reported in [1], though the experiments are conducted on two totally
different dataset. As for the SD of errors, TouchPose [1] is much smaller than all algorithms in this study and
in [19]. We ponder that the dataset distributions make the difference. As shown in Figure 2, distributions are
more balanced in our collected dataset and images at high pitches account for a larger proportion, which are the
difficult samples for pose estimation algorithms. ThumbPitch [32] achieves a mean error of 11.9◦ and is targeted
at pitch angle estimation for thumbs only. Our best model can be applied to thumbs, index, and middle fingers
with a smaller pitch MAE (reduced by 24%). He et al. [14] focuses on the finger pose estimation given fingerprint
images. They report a MAE of 6.6◦ for yaw, and 7.1◦ for pitch. However, the input modality is quite different
from that of this study. They use fingerprint images with a resolution of 500 ppi, which is much higher than that
of capacitive images (typically <10 ppi). Considering the big difference in input resolution, the performance gap
between this study and [14] is understandable.

7.6 Ablation Study
To verify the contributions of each measure in our study, we conducted ablation studies.

• rotation representation. As said in Section 4, the proposed rotatation representation is optimal in the
sense of keeping the overall finger pose closest. The MAE of yaw and pitch could not reveal the charac-
teristics of the representation itself. Therefore, the squared Frobenius norm of the rotation matrix error
∥(𝑅𝑧 (𝛼)𝑅𝑦 (𝛽))−𝑅∥ was used as the evaluationmetric. To demonstrate this, we trained two kinds ofmodels:
TrackPose model supervised by vanilla angles, and TrackPose model supervised by the proposed rectified
angles.The rotationmatrix errors were 0.10 for proposed representation and 0.17 for vanilla representation.
It was also observed that models trained with the proposed representation converged significantly faster.
Figure 9 illustrates the typical training processes of the CNN model inspired by [19] when using vanilla
angles as ground-truth and using our proposed rectified angles as ground-truth. Here we used the CNN
model to prove that the representation benefitted other learning-based models as well. This convergency
experiment further verified that the representation was superior for learning-based algorithms.

• time-series modeling. The error distributions of the yaw and pitch are shown in Figure 10. Among
these, the rightmost figure is noteworthy. In terms of the yaw angle, all three models performed worse
with the the increase of the pitch angle.The phenomenon was illustrated by Xiao et al. [37].This is because
the circular appearance of capacitive images at high pitches (larger than 50◦) contains little information

3https://scikit-learn.org
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Table 1. Best results for all methods. Errors are reported as angular errors. The general TrackPose is the sequential model
trained without user-specific fine-tuning (see Section 5.2). The customized TrackPose is the fine-tuned model based on the
general one with representative user data collected by our developed registration application (see Section 6).

Yaw Pitch Overall

Method RMSE MAE SD MAEΔ RMSE MAE SD MAEΔ MAE MAEΔ

GPR inspired by [37]* 35.7 29.8 19.7 6.7 14.7 12.3 8.1 2.5 21.5 4.6
CNN inspired by [19]** 23.8 17.3 16.3 6.1 12.3 9.7 7.5 2.3 13.5 4.2
General TrackPose 16.1 10.9 11.8 2.2 11.5 8.9 7.3 1.4 9.9 1.8
Customized TrackPose 14.7 9.1 11.5 2.0 11.7 9.1 7.2 1.2 9.1 1.6
TouchPose [1]*** - 11.4 3.2 - - 9.9 2.5 - 10.6 -
* re-implemented on a small subset of the training set (8.3%).
** re-implemented on our collected dataset using Pytorch
*** results reported in their original paper. ’-’ means that metric is not reported.

for inferring the yaw. The difficulty of accurate estimation about the yaw angle at high pitches can be
understood through an intuitive example. As shown in Figure 11, yaw angle estimation given a single
frame is unreliable at high pitches. However, with the motional clue provided by sequential frames and
the feature aggregation by the self-attention module, the error for yaw angle estimation can be reduced
significantly. A simple smoothing strategy was also evaluated by averaging the adjacent five predicted
angles of the CNN model inspired by [19]. The MAE of pitch angle was 9.4◦ (reduced by 0.2◦ compared to
the CNN model), but the MAE of yaw angle was degraded to 17.8◦ (increased by 0.5◦). We analyzed the
sequential output and found that the smoothed angles lagged behind the ground-truth when the finger
rotated quickly. The angles predicted by the CNN model were more accurate without smoothing in this
case. Simple smoothing does not improve accuracy for challenging scenarios either (shown in Figure 11)
when the CNN model struggled since the predicted angle for each frame was inaccurate.

• tracking loss. We removed the tracking loss function in Equation 6 and only used the angular MSE loss
to train the TrackPose model. The performance was shown in Table 2. Angular errors were lower when
using the tracking loss. The model trained with tracking loss was more stable, which was revealed by the
MAE of increments (speeds). We also noticed an important fact that the 𝑀𝐴𝐸𝛿 of the TrackPose model
without tracking loss was much smaller than that of the CNN model. This proved that the self-attention
time-series modeling in the TrackPose architecture helped a lot for stable estimations.

• user adaptive fine-tuning. The effectiveness of per-user fine-tuning could be revealed by the compar-
isons of general TrackPose model and customized TrackPose model in Table 1. We found that the improve-
ment of per-user adaption was significant for thumbs in terms of yaw angle. The MAE of the customized
TrackPose model for thumbs was 9.6◦, reduced by 33% compared with that of the general TrackPose model
(𝑀𝐴𝐸 = 14.3). We pondered that this was because the difference of participates’ thumbs was more distinct
than that of other fingers. Among the volunteers, there was a tall man who has much larger fingers. The
MAE of the general TrackPose model for him was 19◦. And it was reduced to 13◦ after registration. We no-
ticed that the customized model performed slightly worse for pitch angle. This may be because the model
focused more on optimizing the performance of yaw angle during the fine-tuning process. However, the
overall MAE of the customized model was significantly lower.

8 USER STUDY
Finger angle has many potential applications [19], including new gestures, 3D manipulation and new user in-
terfaces. With the support of more accurate and stable TrackPose model, using finger poses for interactions
becomes easier and more reliable (see Figure 12). For instance, we can now manipulate 3D models by perform-
ing yaw and pitch, which is more intuitive than the traditional swiping and dragging gestures. It is also possible
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Fig. 9. Convergency speeds comparison. The model trained with the proposed rotatation representation converged much
faster than that trained with vanilla representation.

CNN inspired by [19]
TrackPose(general)
TrackPose(customized)

CNN inspired by [19]
TrackPose(general)
TrackPose(customized)

CNN inspired by [19]
TrackPose(general)
TrackPose(customized)

Fig. 10. Error distributions of yaw and pitch angles in our dataset. Observe the rightmost figure. Yaw estimation at high
pitch (> 60◦) is very difficult for single-framemodels since the capacitive blobs are very small in this case. Errors are reduced
a lot by using time-series modeling.

Table 2. Performances with and without tracking loss.

Yaw Pitch Overall

Method RMSE MAE SD MAEΔ RMSE MAE SD MAEΔ MAE MAEΔ

General TrackPose w/ tracking loss 16.1 10.9 11.8 2.2 11.5 8.9 7.3 1.4 9.9 1.8
General TrackPose w/o tracking loss 18.4 11.3 14.5 3.7 12.0 9.3 7.6 1.8 10.3 2.7

to directly use a smartphone to control a toy car with a robot arm because we now have two additional reliable
degrees of freedom. Our algorithm exhibits strong universality to diverse populations, finger conditions, and
holding gestures. For more details, we recommend the audience to watch the supplemental demo video.
To evaluate the performance of different finger angle estimation algorithms in realistic interactive scenarios, we
designed an interaction task following [22], which is a standard experiment to evaluate 3D object manipulation
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(-41°, 62°) (-40°, 65°) (-39°, 71°) (-38°, 75°) (-39°, 78°)

(-40°, 81°) (-40°, 83°) (-41°, 86°)(-42°, 85°) (-42°, 87°)
(a)

Ground truth
TrackPose
CNN inspired by [19]

(b)

Fig. 11. (a) images and ground-truth finger poses, (b) trajectories of the finger movement (The finger is represented by a
line segment for visualization). A single capacitive image at high pitch contains limited information. It is not a ”comet”
shape any more (mentioned in [37]). While the changes of the blob shape contain useful context for finger pose estimation.
Ground-truth angles are labeled under images and plotted in blue trajectories. Predicted trajectories of the single-frame
model are marked in red, and the trajectories of TrackPose are marked in green. The TrackPose trajectory is more accurate
and smoother.

techniques. The general TrackPose model, customized TrackPose model, and the CNN model inspired by [19]
were tested.
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8.1 Participants
We recruited 12 participants (10 male and 2 female, aged from 18 to 32) who are college students and workers.
All participants are right-handed except for one. The fingerbreadths range from 1.2 cm to 2.5 cm.

8.2 Apparatus
The experiment was conducted in various places, including classrooms, meeting rooms, outdoors, etc.The smart-
phone used was a Realme C11. Since the finger angle estimation algorithms ran on Pytorch, we connected the
phone to a computer (Figure 13A). Participants hold the smartphone in different gestures to complete the task
without restraint.

8.3 Procedure
For each participant, the experiment was conducted through the following steps:

(1) We taught each participant how to use his/her finger to manipulate an airplane object on the screen (see
Figure 13). Participants spent 2 minutes on average to get familiar with the operations thanks to the the
intuitiveness of the angular mapping.

(2) We showed the participant that the target of the task was to rotate the moving airplane (red in Figure 13)
until it matched the target pose of the reference airplane (white in Figure 13).

(3) A tested model was selected randomly to estimate the finger angles for operations from the following:
customized TrackPose, general TrackPose and the CNN inspired by [19]. The participant did not know
which model was used currently.

(4) Ten different poses were initialized for the moving airplane. The completion times were recorded.
(5) Repeat step (3) and step (4) until all models were tested.
(6) The participant was invited to fill out a questionnaire about the preference of different models and the

feeling of using finger angles for 3D manipulation.

8.4 Results: Quantitative Comparisons
As shown in Figure 14, the average completion time in seconds for our best model was 16 (𝑆𝐷 = 5), which
outperformed the CNN model inspired by [19] (𝑀 = 24, 𝑆𝐷 = 8) by 33%. This result is consistent with the
performance in Table 1. And it suggests that the design factors in our study, including time-series modeling
and per-user fine-tuning, contribute to the improved user experience by providing more accurate and smoother
angle estimation.

8.5 Results: Subjective Evaluation
We conducted a subjective study of the preferences of the three tested models by filling out a demographic
questionnaire. The vast majority of users said that the customized TrackPose model ”feels smoother and stable”
so that they prefer that model. While the single-frame model ”has some waggles” that makes them ”confused
about how to fix it for twisting the airplane”. We also observed that participants intended to avoid yawing at
high pitches when using the single-frame model. One participant said ”I can hardly perform rotation (yaw) at
high pitches because it waggles randomly and makes the airplane far from the target place”. This phenomenon
was consistent to the performance analysis mentioned in Section 7.6 (see Figure 10 and 11). Across participants,
the customized TrackPose model was ranked as the most preferred model, followed by the general TrackPose
model (see Table 3).
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Fig. 12. Use TrackPose to manipulate 3D models and control a toy car with a robot arm.

Table 3. Subjective preferences (number of users assigning the rank). The lower the ranking, the stronger the preference.

Rank 1 (best) Rank 2 (middle) Rank 3 (worst) Mean Rank
Customized TrackPose 8 2 1 1.4
General TrackPose 3 7 1 1.8
CNN inspired by [19] 0 2 9 2.8

9 LIMITATION AND FUTURE WORK
This study has several limitations. As for the model architecture, using 5 adjacent frames of images as input
causes a minor delay (0.08 seconds at 60 FPS). This effect needs to be further explored. Additionally, the bottle-
neck of runtime speed is the self-attention matrix computation (see Section 5.2). This may increase the power
comsuption. It could be improved by utilizing a linear self-attention mechanism in [35]. The memory footprint is
still a bit large when running on mobile devices. This could be improved by model pruning and distillation. Sec-
ondly, we find that all models including baselines and TrackPose performed poorly for wet fingers. We guess this
is because the distributions of capacitive values is different in this case, and similar data is lacked in the training
dataset. This issue could be mitigated by collecting capacitive images and finger poses for wet fingers specificly.
In addition, finger tips are generally less conductive for older people. Further work needs to be done to verify
the performance for TrackPose on their fingers. Evaluations across devices were not done since modification
of Android kernel was difficult for recent mobile phones without the official permission. As for the registration
application, an effective method for recording accurate pitch values should be investigated in the future. To use
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A B

Y

X

Z

Fig. 13. A) Experiment apparatus. B) Illustration of the task. The user must rotate the airplane from the pose above to the
target pose below by rotating the fingers. The finger rotation angles were estimated by baselines or TrackPose. Right pane
shows that 3D object rotation is implemented by separability of manipulation.

CNN inspired by [19] General TrackPose Customized TrackPose

Fig. 14. Task completion time in seconds. Error bars: 95% CI.

customized TrackPose, now we rely on the speculation of usage scenarios to load the specific model for a finger.
For example, when the user holds the smartphone sideways, the customized TrackPose model for his/her thumb
will be used to boost the experience. In the future, we will integrate finger recognition technology to automati-
cally determine which customized model to use for a certain finger. Additionally, user privacy problem should
be considered in this stage.
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10 CONCLUSION
Measuring the finger angle from the touchscreen is a very promising interaction technology. Due to the low
accuracy and instability of existing researches, this technology has not been widely used in practice. In this
study, we focused on improving the accuracy and stability of finger pose estimation using capacitive images.
We achieved this through three measures. Firstly, we proposed an accurate and non-singular 2D rotation repre-
sentation by minimizing errors between the representation space and the original space. This set a reasonable
and easy-to-learn objective for learning-based algorithms. Secondly, we contributed a sequential model, Track-
Pose, which used continuous capacitive images as input and embedded the relationship of sequential images
using self-attention modules. Thirdly, we advanced a new strategy to fine-tune TrackPose model for specific
user using the representative data collected by a registration application. We demonstrated the effectiveness of
our method through quantitative and subjective experiments. The angle estimation error was reduced by 33%
compared with baselines, 47% for the yaw angle especially. The 𝑀𝐴𝐸Δ which revealed instability was reduced
by 62%. We also performed a 3D object manipulating experiment to prove that design factors contributed to
the improved experience. The time cost of our best model was 33% less than that of the baseline method. The
subjective preferences of the participants verified the effectiveness of the proposed method.
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