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Abstract—Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with

each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points

according to the underlying subspace, referred to as subspace clustering. Extensive studies have been made on this subject, and

nearly all of them use unconstrained subspace models, meaning the points can be drawn from everywhere of a subspace, to represent

the data. In this paper, we attempt to do subspace clustering based on a constrained subspace assumption that the data is further

restricted in the corresponding subspaces, e.g., belonging to a submanifold or satisfying the spatial regularity constraint. This

assumption usually describes the real data better, such as differently moving objects in a video scene and face images of different

subjects under varying illumination. A unified integer linear programming optimization framework is used to approach subspace

clustering, which can be efficiently solved by a branch-and-bound (BB) method. We also show that various kinds of supervised

information, such as subspace number, outlier ratio, pairwise constraints, size prior and etc., can be conveniently incorporated into the

proposed framework. Experiments on real data show that the proposed method outperforms the state-of-the-art algorithms significantly

in clustering accuracy. The effectiveness of the proposed method in exploiting supervised information is also demonstrated.

Index Terms—Subspace clustering, motion segmentation, face clustering, linear programming, branch and bound, constrained clustering

Ç

1 INTRODUCTION

ONE inherent nature of vision problems reveals that the
observed data is often of high-dimension, but it usu-

ally contains low-dimensional structure which enables intel-
ligent modeling and processing. Linear subspace perhaps
heads the popularity list of such structures by vision scien-
tists, due to its generality, efficiency and effectiveness.
Many types of visual data, e.g., point trajectories of a mov-
ing object captured by an affine camera [1], images of an
object under varying illumination [2], [3], face shape/
appearances of a subject under different poses [4], optical
images of a same character written by different persons [5],
local patches [6] or texture features [7] of pixels/superpixels
belonging to the same image segment, and etc, have been
empirically shown to be well-approximated by a low-
dimensional linear subspace. The ubiquitous of such data in
vision applications has driven the development of several
techniques to find a low-dimensional representation of the
original high-dimensional data, such as the well known
principal component analysis (PCA), singular value decom-
position (SVD) and their variants.

In some applications, however, the observed data
would come from multiple categories thus lying on a
union of subspaces. To learn from this kind of data, first
of all, we may need to separate it according to the under-
lying subspaces, also known as subspace clustering. For

example, to learn the 3D shapes and activity patterns of
multiple targets in a video scene, one should first segment
the scene into differently moving objects according to the
underlying motion subspaces. Due to the numerous
applications in computer vision and image processing,
during the past two decades, subspace clustering has
been extensively studied and many approaches have
been proposed [8]. When the subspaces are independent
and noise/outlier free, many existing algorithms are able
to perfectly address the problem [9]. However, in the
cases where partially dependent subspaces1 exist, the
existing algorithms often fail at least for points around
the intersection of the dependent subspaces. Fig. 1 shows
two toy examples where one of the state-of-the-art algo-
rithms, low rank representation (LRR) [11], fails in sepa-
rating the data points especially for the ones near the
intersection. This is probably because LRR, and so do
most of the other existing algorithms, uses unconstrained
subspace models, meaning the points can be drawn from
everywhere of a subspace, to describe the data, which
leads to the ambiguity of categorizing points at the inter-
section area.

In this paper, we advocate a constrained subspace model
assuming that the data is usually further restricted. We con-
sider two types of restriction: manifold constraint and spa-
tial regularity constraint.

The manifold constraint says that the data is shaped not
only by the subspace constraints, but may also be further
restricted on a submanifold. This constraint is very common
in subspace clustering applications. For instance, the prob-
lem of motion segmentation given a monocular video
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1. There exists a subspace intersecting with the union of other sub-
spaces. A formal definition of partially dependent subspaces can be found
in [10].
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sequence can be formulated as a subspace clustering prob-
lem in the case of an affine camera model [12], since the
image coordinates of an object could be factorized by the
camera matrix and the 3D shape, leading to a linear sub-
space with dimension no more than 4. Apart from the linear
subspace constraint, the point trajectories are further
restricted to an affine subspace with dimension no more
than 3. Moreover, if the camera is orthogonal, the camera
matrix will be on a Stiefel manifold after registering the
image coordinates to their centroid [1]. In the problem of
face clustering [13], ignoring shadows, the face images of a
subject with varying illumination can be approximated by
the multiplication of 3 factors: the dense normal to the sur-
face of the object, the albedo, and the lighting directions [2].
In this problem, apart from the subspace constraint, the face
images should further satisfy the surface normal constraint,
namely surface normals are on a specified manifold.

The spatial regularity constraint assumes that the spa-
tially close data points usually belong to a same cluster.
This is also a very common assumption made in many com-
puter vision researches [14]. Also take motion segmentation
as an example. The points from different moving objects are
usually far away in their spatial locations (point trajecto-
ries), which could act as a strong prior for separating differ-
ently moving objects.

Revisit Fig. 1. In Fig. 1a, the data points from a cluster are
restricted to a submanifold kXk2 ¼ r (radius r unknown) on
a linear subspace. The principle angle distance [15] between
two subspaces is so close to each other that they can hardly
be separated by unconstrained subspace model. But if circle-
manifold model is used, the two subspaces can be correctly
segmented. In Fig. 1b, the data points from different subspa-
ces appear in disconnected areas. By incorporating spatial
regularity constraint, the points in the intersection area of
the two subspaces can be correctly categorized.

Most existing methods are hard to be adapted to exploit
the above constraints. In this paper, we encode them by a
unified integer programming problem which can be conve-
niently solved by the branch-and-bound (BB) method. By
encoding the manifold and spatial regularity constraints,

we achieve the state-of-the-art performance in motion seg-
mentation, face clustering and handwritten digit clustering
applications. The main contributions of this work involve:

� We propose the concept of constrained subspace model
instead of the commonly used unconstrained subspace
model for subspace clustering. The concept is instan-
tiated by two kinds of constraints (manifold con-
straint and spatial regularity constraint) and
formulated by a unified integer programming prob-
lem. By exploiting such constraints, we beat the
state-of-the-art algorithms on several popular bench-
mark data, e.g., Hopkins155 data sets [16] for motion
segmentation problem, Extended Yale Face B data
set [17], [18] for face clustering and USPS data set
[19] for handwritten digit clustering.

� Supervised information often plays a key role in
bridging the gap between low-level features and
high-level concepts in clustering tasks [20], [21]. To
the best of our knowledge, we are the first to system-
atically study the problem of constrained subspace
clustering and we successfully encode several com-
mon types of supervised constraints, including sub-
space number, outlier ratio, pairwise constraints and
size prior.

Our code are publicly available at https://sites.google.
com/site/hanhushomepage/projects-researches.

2 RELATED WORKS

In this section, we review the existing subspace clustering
methods. They can be roughly grouped into three catego-
ries: algebraic, spectral clustering based and model estima-
tion/selection based.

Algebraic methods. There are two kinds of well known
algebraic methods worth mentioned: factorization based
method and generalized principal component analysis
(GPCA). Factorization based method and its variants [12],
[22] are almost the only choice for subspace clustering in the
early researches. They are based on the observation that for
two points from two independent subspaces, the corre-
sponding entry in the shape interaction matrix [12] is zero
when the data is noise free. However, although some
enhancing techniques have been proposed [23], [24], gener-
ally the performance of these algorithms drops quickly in
the presence of noise, degeneracy, or partially dependent
subspaces. The GPCA method [25] is another direction
which fits a polynomial model to the data points. It gains
much concern for its elegant formulation and the ability to
handle degenerated and partially dependent subspaces.
However, the complexity and trajectories required for this
method increase dramatically when the number and dimen-
sion of subspaces increase, which significantly limits the
application of this method.

Spectral clustering based methods. Inspired by the success of
spectral clustering method [26] for the general clustering
problem, a lot of spectral clustering based methods have
been proposed to address the more specific subject, sub-
space clustering [7], [10], [13], [27], [28], [29], [29], [30], [31].
The main differences among these methods lie in the way
they build the similarity matrix. There are mainly three
fashions. The first one is to compute similarity matrix

Fig. 1. Effect of using manifold constraint and spatial regularity constraint
in subspace clustering. Left: the clustering results using LRR method
[11]. Right: the clustering results using our method.
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directly from algebraic methods [10], [27]. Some other meth-
ods form similarity matrix by defining a point-to-subspace
or subspace-to-subspace distance metric [28], [29], [32].
More recently, more works exploit the self-reconstruction
properties to compute similarities [7], [9], [13], [30], [31],
[33], [34], [73]. To the present, the spectral clustering based
methods achieve the state-of-the-art performance on several
benchmark data sets, e.g., Hopkins155 [35] and Extended
Yale Face B [36]. The success is partly due to the powerful-
ness and adaptiveness of the spectral clustering method but
also partly because some tricks used for data sets and
parameters tuning [37], [38].

Model estimation/selection based methods. There are also
some methods which address subspace clustering problem
by explicitly estimating subspace models and assigning
data points to them. The two popular methods for general
mixture model estimation, i.e., random sample consensus
(RANSAC) [39] and expectation maximization (EM), have
also been used for mixture subspace estimation, e.g., multi-
stage learning (MSL) [40]. Recent progress mainly focuses
on developing more robust model estimation methods, e.g.,
Median K-flats [41], ordered residual kernel (ORK) [42],
generalized projection based M-estimation (GpbM) [43],
and etc, and more robust model selection methods, e.g.,
agglomerative lossy compression (ALC) [44], uncapacitated
facility location [45], [46], [47]. Our framework is of this
type and our main contribution is introducing various
unsupervised and supervised constraints into the model
selection framework, which is demonstrated to beat the
state-of-the-art methods on three popular applications of
subspace clustering: motion segmentation, face clustering
and handwritten digit clustering.

3 INTEGER PROGRAMMING FOR SUBSPACE

CLUSTERING

3.1 Subspace Clustering Problem

Given a set of D-dimensional data samples X 2 RD�N

drawn from a union ofK subspaces fSjgKj¼1 with the dimen-

sion of Sj be rj, the goal of subspace clustering is to recover

the K subspaces fSjgKj¼1 and to find the relationship

betweenX and fSjgKj¼1.

3.2 Mixture of Subspaces

A linear subspace S with dimension r can be represented by

a column orthogonal matrix U 2 RD�r. Denote the distance
from a data sample x to a subspace model S by dðx; SÞ,
where one popular choice is the L2-Hausdorff distance [15]

dHðx; SÞ ¼ min
s2S

kx� sk2 ¼ kU?xk2; (1)

with U? ¼ I � UUT representing the orthogonal comple-

ment space of S in RD space. Then a data point x belonging
to a subspace S satisfies: dðx; SÞ ¼ 0.

For a set of noise free data points X drawn from a union

of K subspaces fSjgKj¼1, given the relationship between X

and fSjgKj¼1, L 2 f0; 1gN�K with Lij ¼ 1 indicating the ith

point belongs to the jth subspace, and Lij ¼ 0 otherwise, we
have

XK
j¼1

Lijdðxi; SjÞ ¼ 0;

s:t:
XK
j¼1

Lij ¼ 1; Lij 2 f0; 1g:
(2)

3.3 Integer Programming Formulation

In reality, the data points cannot strictly lie on the corre-
sponding subspaces, and we thus formulate the assignment
problem as

min
S;L;K

XK
j¼1

Lijdðxi; SjÞ;

s:t:
XK
j¼1

Lij ¼ 1; Lij 2 f0; 1g:
(3)

Considering only the data fitting errors as in eq. (3)
would lead to overfitting, since higher dimensional subspa-
ces or more subspaces always have lower cost in eq. (3).
Hence, an additional model complexity term Pj is usually
preferred, resulting in a model selection framework as

min
L;y;S;K

XN
i¼1

XM
j¼1

Lijdðxi; SjÞ þ a
XM
j¼1

Pjyj

s:t:
XM
j¼1

Lij ¼ 1; 8i; yj ¼ max1�i�NfLijg; 8j;

L 2 f0; 1gN�M:

(4)

Supposing that somehow we have already obtained a list
of candidate subspace models fS1; . . . ; SMg, and the K true
subspaces are contained in the list, we can eliminate the
optimization variables S and K in eq. (4) and the cost func-
tion becomes linear to L; y. Furthermore, the nonlinear con-
straints yj ¼ max1�i�NfLijg; j ¼ 1; . . . ;M can also be

converted into several linear ones:

Lij � yj; 8i; j: (5)

As a result, we get a binary-integer linear programming
problem as

min
L;y

XN
i¼1

XM
j¼1

Lijdðxi; SjÞ þ a
XM
j¼1

Pjyj

s:t:
XM
j¼1

Lij ¼ 1; 8i;Lij � yj; 8i; j;

L 2 f0; 1gN�M; y 2 f0; 1gM�1:

(6)

One can find that eq. (6) is actually the classical uncapa-
cited facility location problem [48], which has been long
studied in the past 50 years. In this paper, we use the popu-
lar branch-and-bound method [49], [50], [51] for solving (7),
which can in fact achieve the global minimum of the objec-
tive function. In the following, we first present the branch-
and-bound method used for the basic problem (6). Then we
show that this method can be conveniently extended to the
problems with additional costs and constraints.
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3.4 Branch-and-Bound Optimization

The components of the branch-and-bound method for solv-
ing eq. (6) are:

� Solution tree and branching. Observing that given y
fixed, the optimal values of variables L can be easily
found, in this paper, we use a solution tree related to
only variables y (see Fig. 2 for an example). Each
node T represents a solution set, with each character
indicating the state of a candidate. State “0” means
the corresponding candidate abandoned; “1” repre-
sents the candidate adopted; and “X” stands for the
candidate undetermined. For each node, one of the
remaining undetermined candidate subspaces will
be selected as the branching factor.

� Upper bound. Denote yub as the solution where all
“X” characters equal 0. We set the upper bound at

node T as the optimal cost when y ¼ yub. The opti-
mal subspace candidate for point xi is

arg min
fj:yub

j
¼1g

dðxi;SjÞ; (7)

and the optimal cost is

J UðT Þ ¼
XN
i¼1

min�
j:yub

j
¼1
� dðxi;SjÞ þ a

XM
j¼1

Pjy
ub
j : (8)

When we branch right, the upper bound will remain
the same and we do not need to recompute it.

� Lower bound. A popular way to compute the lower
bound is to relax the integer constraints and solve the
relaxed LPproblem [52].However, the computational
cost would be high. We use a more efficient way to
compute the lower bound: separate the cost function
into the data fitting part and the model penalty part,
and set the lower bound as the summation of minimal
values of the two parts which are independently opti-
mized. Theminimum of the first part is reachedwhen
all undetermined candidate models are adopted (we
denote the corresponding indicator vector by ylb). The
minimum of the second part is obtained when all
undetermined candidate models are abandoned

(y ¼ yub). Hencewe get a lower bound as

J LðT Þ ¼
XN
i¼1

min
fj:ylb

j
¼1g

dðxi; SjÞ þ a
XM
j¼1

Pjy
ub
j : (9)

When we branch left, the first part of the lower
bound will remain the same and we only need to
add a cost aPj to the parent one.

The branch-and-bound method for subspace clustering is
summarized in Algorithm 1. It is trivial to check that: 1)
J LðT Þ � J �ðT Þ � J UðT Þ, where J �ðT Þ is the optimal solu-
tion at node T ; and 2) when T is a leaf node,
J UðT Þ ¼ J �ðT Þ. According to [53], it is guaranteed that
Algorithm 1 achieves global optimization.

Algorithm 1. Branch-and-Bound (BB) Method for Sub-
space Clustering

Require: Data pointsX 2 RD�N , a penalty parameter a
1: Generate a set of M candidate subspace models

fS1; . . . ; SMg by a certain scheme, e.g., RANSAC and
over-segmentation (see Section 6.2.3 for details),

2: compute the normalized distance d̂ðxi; SjÞ between each
point xi and each subspace model Sj,

3: initialize C as a priority queue with only one element

ðT 0;J UðT 0Þ;J LðT 0ÞÞ (JU is used as the “priority” mea-

sure), where T 0 is the root node with all candidate models

undetermined (state “X”); J UðT 0Þ ¼ 1 and J LðT 0Þ are

the upper bound and lower bound on T 0, respectively. Set
the initial optimal value as J � ¼ 1.

4: repeat
5: retrieve the top element ðTp;J UðTpÞ;J LðTpÞÞ from C by

checking the lowest J U ,
6: if there exist undetermined candidates, branch the node

Tp to obtain two child nodes Tcl and Tcr according to the
fetched undetermined candidate,

7: for two child nodes Tcs do
8: compute the upper and lower bounds J UðTcÞ

(with solution Lub) and J LðTcÞ,
9: if J UðTcÞ < J �, set J � ¼ J UðTcÞ, y� ¼ yub, L� ¼ Lub,
10: if J LðTcÞ < J �, push ðTc;J UðTcÞ;J LðTcÞÞ intoC,
11: end for
12: pop the element ðTp;J UðTpÞ;J LðTpÞÞ fromC,
13: until no elements inC

14: return y�, L�

3.5 Adaption to Additional Constraints and Costs

Additional priors (such as cluster number, outlier ratio, pair-
wise constraint and cluster size) could be encoded as either
constraints or costs into the integer linear programming
framework. In Section 3.4, we have presented an efficient
branch-and-bound method to solve the framework. In this
section, we will show that when the additional constraints
are linear inL and the additional cost is a summation of a lin-
ear function w.r.t L and a linear function w.r.t y, we can
always solve the problem by the branch-and-boundmethod.

Denote the additional costs by CðLÞ and CðyÞ, and the two
sets of additional constraints by VðL; yÞ and QðyÞ. We
can adapt the branch-and-bound method presented in
Section 3.4 to the new constrained problems as follows.

� Branching and bounding strategies. If QðyÞ 6¼ ;, we may
need to modify the branching and bounding strate-
gies. The solution tree remains the same.When a node
is reached, we verify whether it is a feasible solution
(all “X” characters are replaced by 0), and the upper
bounds are computed only for feasible nodes. Since
only a verifying step is needed only for each node, the
constraintsQðyÞ can be in arbitrary form.

Fig. 2. A solution tree with three candidate subspaces.
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� Upper bound. The upper bound at a node is set as the
optimal cost when y ¼ yub. Thus we get an optimiza-
tion problem related to only L as

min
L

XN
i¼1

XM
j¼1

Lijdðxi; SjÞ þ a
XM
j¼1

Pjy
ub
j þ CðLÞ þ CðyubÞ

s:t:
XM
j¼1

Lij ¼ 1; 8i;VðL; yubÞ;L 2 f0; 1gN�M:

(10)

Eq. (10) is an integer linear programming problem.
We will show later that for some specific Cs and Vs,
there exist efficient algorithms to solve it. An alterna-
tive but more general way is to relax the binary-
integer constraints of L as

0 � bLij � 1; 8i; j: (11)

After relaxation, eq. (10) becomes a linear program-
ming problem. It can be solved in polynomial time.
However, the relaxed solution may contain non-
binary values, and a rounding step may be needed
to convert bL into f0; 1g. Several schemes can be cho-
sen for this purpose [52]. One choice is: let Lij ¼ 1 if

j ¼ argmaxk¼1;...;Mf bLikg; and Lij ¼ 0 otherwise.
� Lower bound. The objective function can be separated

into two parts OðLÞ and OðyÞ. The lower bound is
set as the summation of lower bounds of the two
parts. Let VðLÞ be the maximal subset of VðL; yÞ
relating to only L. Then the minimum of eq. (12) is a
lower bound of the minimum of the first part:

min
L

OðLÞ

s:t:
XM
j¼1

Lij ¼ 1; 8i;VðLÞ;L 2 f0; 1gN�M:
(12)

Since OðyÞ is linear, the minimum of the second part
is obtained when all undetermined candidate mod-
els with negative cost coefficients are adopted while
others abandoned.

4 EXPLOITING UNSUPERVISED CONSTRAINTS FOR

SUBSPACE CLUSTERING

In Section 3, we use an unconstrained subspace model for sub-
space clustering. As stated in Section 1, for many real sub-
space clustering applications, a constrained subspace model
which assumes that the points are further restricted, is usu-
ally more reasonable. Such restrictions usually come from
the nature of an application and hence are unsupervised.

In this section, we consider two types of unsupervised
constraints: manifold constraints and spatial regularity
constraints.

4.1 Manifold Constraints

The manifold constraints are encoded by defining manifold
distance metrics replacing eq. (1) used in Section 3.2. Here,
we take two popular applications as examples: motion seg-
mentation and face clustering.

4.1.1 Motion Segmentation

Using different camera models, the manifold constraints are
different. We consider two linear camera models: affine
camera and orthogonal camera.

Let fxfi ¼ ðufi; vfiÞT 2 R2gi¼1;...;N
f¼1;...;F be the 2D projections in

F frames of N 3D homogeneous points fZi 2 R4gNi¼1 from a
rigid structure. Under the affine camera model, the trajecto-
ries and their 3D points satisfy the following equalities [54],

xfi ¼ AfZi; and (13)

X ¼
x11 . . . x1N

..

. . .
. ..

.

xF1 . . . xFN

2664
3775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2F�N

¼
A1

..

.

AF

2664
3775

zfflfflffl}|fflfflffl{2F�4

ZT
1

..

.

ZT
N

2664
3775
T

zfflfflfflfflffl}|fflfflfflfflffl{4�N

¼ MmSm;
(14)

where

Af ¼ Kf
1 0 0 0
0 1 0 0

� �
Rf tf
0T 1

� �
2 R2�4

is an affine

matrix at frame f , which depends on the camera intrinsic
parameters Kf and the object pose relative to the camera
ðRf; tfÞ.

� Subspace model. Eq. (14) indicates that

rankðXÞ � 4: (15)

Eq. (15) assumes that trajectories from the same rigid
motion lie in a linear subspace of R2F with dimen-
sion no more than 4. Given a set of trajectories X, a
subspace model S can be represented by

U 2 R2F�r; r � 4 from truncated SVD of X:

X ¼ USV T . The distance between a trajectory x and
the subspace model is computed as eq. (1).

� Affine model. Averaging the columns of X and S in
eq. (14), we get

X ¼ MmSm: (16)
Then we have

X �X ¼ MmðSm � SmÞ: (17)

Since the last row of Sm � Sm is all-zero, the dimen-

sion of X �X will be no more than 3. Given a set of
trajectories X, an affine model S can be represented

by fU; r � 3; Xg, where U 2 R2F�r is from the trun-

cated SVD of X �X: X �X ¼ USV T . The distance
between a trajectory x and the subspace model is
defined as

dðx; SÞ ¼ kU?ðx�XÞk2: (18)

� Metric model. Under an orthogonal camera model,bAf , the first three columns of Af , should further sat-
isfy the metric constraintsbAf

bAT
f ¼ sfI; (19)
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where I is the identity matrix of size 2� 2, and sf is a
scale factor. Thus a motion model can be represented

by fdMm 2 R2F�3; Xg, where dMm ¼ ð bA1; . . . ; bAF ÞT .
Given a set of trajectories X, there have been several
methods to recover the motion and shape, e.g., [55],
[56]. Then the distance between a trajectory x and
the subspace model is defined as

dðx; SÞ ¼ kðx�XÞ � dMmðdMmTdMmÞ�1dMmT ðx�XÞk2:
(20)

4.1.2 Face Clustering

The image brightness given varying illumination could be
approximated in a bilinear form [17], [57]. Assuming the
absence of all shadows, given a set of images of a Lamber-
tian object with varying illumination, the brightness at pixel
i for the jth image can be modeled as,

Xij¼lTj rið1; zTi ÞT ; (21)

where l 2 R4 is the lighting directions; r is the albedo; and

z 2 R3 is the dense normal to the surface of the object. Writ-
ten in matrix form, we get

X ¼
r1 1 zT1
� �

..

.

rD 1 zTD
� �

264
375 l1 � � � lN½ � ¼ SfMf: (22)

� Rank-4 subspace model. Eq. (22) indicates thatX lies on
a linear subspace with dimension no more than 4.

� Metric model. z further satisfies constraints

z � zT ¼ 1; (23)

and several methods have been proposed to recover
the shape cSf from X, e.g., [56]. We could define the
distance between an image instance x and the mani-
fold model as

dðx; SÞ ¼ kx�cSfðcSfTcSfÞ�1cSfTxk2: (24)

� Rank-9 subspace model. In the presence of both
attached and cast shadows, the above models will be
inaccurate. Lee et al. [18] have argued that the shad-
ows can be approximately counted by a rank-9 sub-
space model. We will try this kind of model as well.

Optimization. The manifold constraint affects only the compu-

tations of eqs. (1) and (39). Other steps in Section 3.4 remain

the same.

4.2 Spatial Regularity Constraints

The spatial regularity constraints penalize the changes of
cluster labels between spatially close points. We encode this
constraint by adding a penalty term J sp to the cost function
of eq. (6) as

J sp ¼
XN
i¼1

XN
j2NðiÞ

b
XM
k¼1

jLik � Ljkj; (25)

where NðiÞ indicates the neighboring set of point i (by
Euclidean distance of feature vectors); b is the cost of two
points belonging to different clusters.

There are absolute operators in J sp. To avoid them, we

replace each
PM

k¼1 jLik � Ljkj as follows,

XM
k¼1

jLik � Ljkj ¼ 1�
XM
k¼1

Lik;jk;

XM
k¼1

Lik;jm ¼ Ljm;m ¼ 1; . . . ;M;

XM
m¼1

Lik;jm ¼ Lik; k ¼ 1; . . . ;M; Lik;jm 2 f0; 1g;

(26)

where Lik;jm is an auxiliary binary variable indicating
whether simultaneously point i belongs to candidate model
k and point j belongs to candidate modelm.

Optimization. There are NspM
2 additional auxiliary vari-

ables and 2NspM additional equality constraints, where

Nsp is the number of neighboring pairs. In addition, the

coefficient matrix in the constraints is very sparse, resulting
in affordable time and space complexity when using the
general method presented in Section 3.5. When there are no
other constraints, e.g. the ones described in Sections 5.2
and 5.4, the problems of eqs. (10) and (12) are actually Mar-
kov random field (MRF) problems. As a result, we can uti-
lize more efficient algorithms, e.g., the Primal-Dual solver
introduced in [58].

5 EXPLOITING SUPERVISED CONSTRAINTS FOR

SUBSPACE CLUSTERING

Subspace clustering is hard to be perfectly solved due to
noises, outliers, partially dependent subspaces, and seman-
tic gap between low-level observations and high-level con-
cepts. In the more general unsupervised learning domain, it
has been shown that high-level supervised information is a
key road to correct the errors [20]. In this section, we will
encode several common types of supervised constraints.

5.1 Subspace Number Priors

Although the previous framework is capable of automati-
cally determining the number of subspacesclusters, it bene-
fits from the prior knowledge of subspace number.

Our framework can conveniently incorporate various
priors about subspace number by adding the following con-
straint to the proposed framework:

XM
j¼1

yj < ð�;¼;	; or >ÞK; (27)

whereK is a given prior on the subspace number.
Optimization. Only the branching and bounding strategies

component in Section 3.5 needs to be modified when sub-
space number priors are added. Apart from the strategies in
Section 3.5, some other strategies are incorporated to further
reduce the computational cost:

� the case of “<” (or “�”). The descendants of the
node where the number of adopted candidate
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models is K � 1 (or K) are removed from the
original solution tree;

� the case of “¼”. The descendants of the node where
the number of adopted candidate models is K or the
number of abandoned candidate models is M �K
are removed from the original solution tree. The
model penalty part of the lower bound is set as sum-
mation of the minimal K model penalties including
the adopted ones;

� the case of “>” (or “	”). The descendants of the node
where the number of abandoned candidate models
is M �K � 1 (or M �K) are removed from the orig-
inal solution tree. The model penalty part of the
lower bound is set as summation of the minimal K
model penalties including the adopted ones.

5.2 Outlier Ratio Priors

In reality, the obtained data is usually contaminated with
noises and errors. We will show in this section that the pro-
posed framework could be easily adapted to outlying data.

We add a virtual subspace model So into the candidate
list, which is supposed to cover the outliers. All the points
has equal costs to this virtual model: dðxi; SoÞ 
 Co. One can
decrease or increase Co to find more or less outliers.

The outliers finding process can be more accurate when
the outlier ratio is known as a priori. We encode the outlier
ratio priors by adding a new constraint to the proposed
framework:

XN
i¼1

oi � gN; (28)

where oi is an indicator specifying whether point i is an out-
lier, and g indicates the maximal outlier ratio. Then we get
an optimization problem as

min
L;y;o

XN
i¼1

	XM
j¼1

Lijdðxi; SjÞ þ oidðxi; SoÞ þ a
XM
j¼1

Pjyj

s:t:
XM
j¼1

Lij þ oi ¼ 1; 8i;Lij � yj; 8i; j;
XN
i¼1

oi � gN;

L 2 f0; 1gN�M; o 2 f0; 1gN�1; y 2 f0; 1gM�1:

(29)

With prior in eq. (28), we can set dðxi; SoÞ as a small value

near infenitesimal, i.e., �104.
Optimization. The number of additional variables and

constraints are N and 1, respectively. By replacing L with
an augmented matrix ½Lo�, the method in Section 3.5 can be
used to solve the new problem. When optimizing eqs. (10)
and (12), there exists a more efficient algorithm: all points
are first categorized to the subspace with minimum fitting
cost, and then gN points with maximal minimum fitting
costs are re-categorized as outliers.

5.3 Pairwise Constraints

Pairwise constraint is one of the most popular supervised
information used for constrained clustering [20], [21]. It
specifies whether two points belong to a same cluster or
not, referred to as must-link constraint and cannot-link con-
straint respectively. We can encode the must-link and

cannot-link constraints between point i and j by introducing
linear equalities eqs. (30) and (31), respectively.

Lik � Ljk ¼ 0; k ¼ 1; . . . ;M: (30)

XM
k¼1

jLik � Ljkj ¼ 1: (31)

The equality constraints are equivalent to adding the fol-
lowing additional costs,

J pc ¼
X

i;j:ði;jÞ2PL
gði;jÞ

XM
k¼1

jLik � Ljkj; (32)

where PL is the set of point pairs with pairwise priors; gði;jÞ
specifies the degree of penalty on constraint ði; jÞ and we set

gði;jÞ ¼ 104 when ði; jÞ is a must-link constraint and

gði;jÞ ¼ �104 when ði; jÞ is a cannot-link one.

In practice, it has been pointed out that enforcing only
sparse pairwise constraints usually results in unsmooth sol-
utions [20]. Hence, we advocate an additional regularity
term to enforce the smoothness of the solution, e.g., the spa-
tial regularity constraints presented in Section 4.2 or the reg-
ularity defined by other similarity matrices [13], [30].

Optimization. There are NpcM
2 additional auxiliary vari-

ables and 2NpcM equality constraints, where Npc is the

number of pairwise constraints. One can find that eq. (32)
has the same form as the spatial regularity cost in eq. (25),
and hence eqs. (10) and (12) are also MRF problems. When
there exist cannot-link constraints, the corresponding pair-
wise terms become non-submodular [59], and some solvers
are available to optimize the problems, e.g., Quadratic
Pseudo-Boolean Optimization with Probing (QPBOP) [59].

5.4 Size Priors

Another significant supervised constraint is the size prior
[60]. Possible size priors include: (1) the sizes of all clusters
are no greater (or no smaller) than Z; (2) the size of cluster
containing point i is no greater (or no smaller) than Z; (3)
the size of cluster containing point i is no greater (or no
smaller) than the size of cluster containing point j at a multi-
ple of Z.

We encode the first type of priors by a set of inequality con-
straints linear inL. For “no greater” case, the constraints are

yk
XN
i¼1

Lik � Z; k ¼ 1; . . . ;M: (33)

For “no smaller” case, the constraints are

XN
i¼1

Lik 	 Zyk; k ¼ 1; . . . ;M: (34)

The size of a cluster related to point i could be calculated
as,

XN
j¼1

ð1�
XM
k¼1

jLjk � LikjÞ: (35)

Therefore, the second and third type of priors could be
encoded by
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XN
j¼1

1�
XM
k¼1

jLjk � Likj
 !

� ð	ÞZ; (36)

and

XN
p¼1

1�
XM
k¼1

jLpk � Likj
 !

� ð	ÞZ
XN
q¼1

1�
XM
m¼1

jLqm � Ljmj
 !

;

(37)

respectively, which can be further converted into linear con-
straints by the method presented in Section 5.3.

Optimization. Since all the introduced constraints are lin-
ear in L and the auxiliary variables, the method in Sec-
tion 3.5 can be used to solve the new optimization problem.
For the three types of priors, the numbers of additional aux-

iliary variables are 0, NM2 and 2NM2, respectively. The
number of additional constraints are M, 2MN þ 1, and
4MN þ 1, respectively. Eqs. (10) and (12) are optimized by
the standard linear programming solver, e.g., MOSEK [61].

6 EXPERIMENTS

In this section, we evaluate the proposed method (referred
to as BB) on three real-world applications of subspace clus-
tering: motion segmentation, face clustering and handwrit-
ten digit clustering. Apart from comparing with the state-
of-the-art methods on accuracy and efficiency, we also
show the effectiveness of applying the proposed BB method
to several supervised constraints.

6.1 Experimental Data and Evaluation Metrics

6.1.1 Experimental Data

We use three data sets for experiments: Hopkins155 [16],
Extended Yale Face B [17], [18] and USPS [19], which are the
most popular benchmark data sets used in literatures for
evaluating subspace clustering algorithms [8].

Hopkins155 [16] is a motion segmentation data set, com-
posed by 155 video sequences with extracted feature points
and their tracks across frames. Each video has two or three
motions and the motions may be degenerate or partially
dependent with each other, which act as big challenges for
segmentation algorithms. Some sample videos with trajecto-
ries on them are shown in Fig. 3a.

Extended Yale Face B [17], [18] is a face clustering data
set, which consists of 192� 168 pixel cropped face images
under varying poses and illuminations from 38 human sub-
jects. We use all the 64 frontal face images per subject for
experiment, and resize the images to 48� 42 for efficiency.
Note that We use the cropped images instead of original
ones to ease the effect of backgrounds, to avoid overestimat-
ing the performance of clustering algorithms [8]. Fig. 3b
shows some sample images of the data set.

USPS [19] is a handwritten digit data set of 9; 298 images,
with each image having 16� 16 pixels. We use the first 100
images of each digit for experiments. Fig. 3c shows some
sample digit images.

6.1.2 Evaluation Metrics

We evaluate the proposed algorithms using clustering accu-
racy and efficiency. The same as in most literatures, we use

clustering error (CE) to measure the accuracy [8], [16]:

CE ¼ 1� 1

N

XN
i¼1

dðpi;mapðqiÞÞ; (38)

where qi, pi represent the output label and the ground truth
one of the ith point; dðx; yÞ ¼ 1 if x ¼ y, and dðx; yÞ ¼ 0 oth-
erwise; mapðqiÞ is the best mapping function that permutes
clustering labels to match the ground truth labels and can
be computed by the Kuhn-Munkres algorithm [62].

6.2 Details of Our Method

In the following, we describe the details of applying the pro-
posed method to motion segmentation, face clustering and
handwritten digit clustering problems, including distance
measure, exploited unsupervised constraints, model gener-
ation and penalty terms.

6.2.1 Distance Measure

To make the point-to-model distances of candidate models
with different ranks and point lengths defined in a same scale,
we do not directly use the popular L2-Haussdorf distance as
in eq. (1), but use the normalized distance by introducing the
rank-depended noise level of candidatemodels, sðrjÞ,

dNðxi; SjÞ ¼ � ln
1

sðrjÞ
exp � d2Hðxi; SjÞ

2s2
ðrjÞ

 !
¼ d2Hðxi; SjÞ

2s2
ðrjÞ

þ ln sðrjÞ;

(39)

where sðrjÞ is estimated in the following way: first the stan-
dard deviation of each candidate model is estimated accord-
ing to the supported points, and then for each subspace
rank, the median of the K minimal deviations is selected as
the estimated noise level.

The Gaussian normalization not only makes the point-to-
model distances of candidate models with different ranks
defined in the same scale, which benefits the subspace clus-
tering, but it also normalizes the distances of different sub-
space clustering instances into a similar scale, such that the
parameter settings across different instances can be shared.

Fig. 3. Samples from the three benchmark data sets, Hopkins155 (top),
Extended Yale Face B (middle) and USPS (bottom).
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6.2.2 Exploited Unsupervised Constraints

For motion segmentation problem, both manifold constraints
and spatial regularity constraints are incorporated. For face
clustering problem, there are no improvements by introduc-
ing spatial regularity constraints and hence we exploit only
the manifold constraints. For handwritten digit clustering
problem,we consider only spatial regularity constraints.

6.2.3 Model Generation

We consider two types of methods to generate initial candi-
date models: over-segmentation and randomized local mod-
els (RLM). We first use the existing subspace clustering
algorithms, e.g., angle similarity based clustering (ASC) and
LRR [13], to achieve over-segmentation.2 Then the points in
each over-segment are used as support points to compute
candidate models. Randomized local models are computed
by initially samplingM � N random points, and then form-
ing the models around each of these points and their
(P � 1)-nearest neighbors in the ambient Euclidean distance.

We try subspace, affine and metric models for motion
segmentation problem, and try rank-4 subspace, rank-9 sub-
space and metric models for face clustering problem. For
handwritten digit clustering problem, we use subspace
models with rank varying from 5 to 15. Since degenerations
are common in motion segmentation, we also generate
degenerated models, i.e. rank-2 affine models or rank-3 sub-
space models. For face clustering and handwritten digit
clustering, we compute fixed-rank models. All the subspace
and affine models are computed by singular value decom-
position. The metric models for motion segmentation and
face clustering are both computed by the methods in [56].

6.2.4 Penalty Terms

We consider two types of penalties for candidate models:
model complexity and model uncertainty. We use geomet-
ric Akainke information criterion (G-AIC) [63], [64] to count
model complexity and use the ratio of standard variation
computed by the estimated inliers, e.g. TSSE-estimator [65],es, to the one by the support points, s, to count model uncer-
tainty. The total penalty is:

Pj ¼ rj þ 2esj

sj


 �
� ðN þD� rjÞ: (40)

6.3 Baseline Algorithms

To the present, spectral clustering based algorithms perform
as the state-of-the-art. We compare our BB algorithm with
these algorithms, including ASC, LSA [28], SCC [29], SBLF
[32], SSC [30], [66], LRR [13], LRR-PP [11], LatLRR [67],
SSQP [33], LSR [9], NLS [68] and DiSC [34]. The results of
GPCA [25] is also listed.

We also compare our BB algorithm with the mixture-
model based methods, including RANSAC [39], MSL [40],
ALC [44], ORK [42] and GpbM [43]. Since ORK [42] and
GpbM [43] cannot utilize cluster number constraints, we
report clustering errors without number constraints when

comparing with these two methods. For comparison with
other methods, we report clustering errors with number
constraints.

Furthermore, our BB algorithm can be regarded as
exploiting additional nonlinear structures contained in the
original subspace. Hence we also do comparison with sev-
eral manifold clustering methods, e.g. LLMC [69] and
SMCE [70].

For all algorithms except ASC, we report results from the
corresponding literatures or by running the codes provided
by the authors (the parameters are chosen by grid search-
ing). For SSC, we use the ADMM version3 if the correspond-
ing number is not reported in the paper. For ASC, we use
our own implementation.

6.4 Motion Segmentation Results

6.4.1 Parameter Settings

We use affine models to indicate motions, and generate can-
didate models by two kinds of strategies: randomized local
models and over-segmentation (using LRR and ASC,
referred to as os-LRR and os-ASC respectively). For RLM,
we generate 24 candidate models and the reported numbers
are averaged over 10 trials. For os-ASC and os-LRR, we gen-
erate K þ 2 rank-2 candidates and K þ 2 rank-3 candidates
by over-segmentation. For all the variants4 and all the
sequences in Hopkins155 data set, we set a ¼ 0:1 and
use the same spatial regularities: NðiÞ corresponds to the
four-nearest neighbors of point i and b ¼ 500.5

For all baseline algorithms except ASC and SMCE, we
report the results listed in the corresponding literatures.
For SMCE, we use the code provided by the authors and
choose the parameters by grid searching, i.e., k 2 2 : 2 : 50

and � 2 2�10:10. The best parameters for SMCE are

k ¼ 10; � ¼ 2�7.

6.4.2 Segmentation Accuracy

We compare the BB method in this paper to the mixture
model based and the other types of methods using CE as
listed in Tables 1 and 2, respectively, assuming that the
motion number is known as a priori. It can be seen that our
methods with both model generation strategies outperform
all the mixture model based ones significantly in clustering
accuracy. Compared to the algebraic methods and spectral
clustering based methods, our method with os-LRR still
performs the best and the RLM variant is comparable to
them. Note that even when the generated models are poor,
e.g., using os-ASC, our method still produces good results.
We also compare BB to ORK [42] and GpbM [43] which can-
not utilize cluster number constraints (see Table 3). Without
motion number prior, BB performs the best too.

We also compare BB to the state-of-the-art manifold clus-
tering methods, e.g. LLMC [69] and SMCE [70] in Table 4.

2. ASC and LRR are both spectral clustering based methods. The
over-segmentation is obtained by setting cluster number larger than
the ground truth one in the spectral clustering step.

3. http://www.cis.jhu.edu/~ ehsan/Codes/SSC_ADMM_v1.1.zip
4. An exception is the experiments of Tables 3 and 6 where the

motion number is unknown. In these experiments, the parameters are:
a ¼ 0:4, b ¼ 500 and 4-nn.

5. When the cluster number is known as a priori, large bmay lead to
cluster number reduction in the final clustering. To avoid such case, we
reduce b by a factor of 0:5 until the cluster number constraint is
satisfied.
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Similar as our spatial regularity constraints, LLMC and
SMCE also consider the spatial information but encode it in
a different way that spatially distant points are assigned
very small or even zero affinities. BB performs much better
than these methods probably because: 1) BB encodes both
the manifold constraints and the global subspace structure,
while LLMC and SMCE model the data purely as nonlinear
manifolds; 2) LLMC and SMCE cut the connections between
distant points which may break the graph connectivity of a
same subspace. The BB method encodes spatial information
by penalizing the discontinuity of labels, making it immune
to such problem.

6.4.3 The Influence of Parameter a

The parameter a is used to balance the data fitting term and
the model penalty term. When the motion number is known
as a priori, this balancing influences only the selection of
good candidate models; with motion number unknown, the
balancing also influences the choice of motion number. In
this part, we investigate only the case of known motion
number. Generally speaking, the choice of parameter a

depends on the powerfulness of data fitting and prior

knowledge in telling good and bad candidate models apart
(see Fig. 4b): when the data fitting part is more powerful,
smaller a is preferred, e.g., Sequence 155; when the prior
knowledge part is more powerful, larger a is better, e.g.,
Sequence 66; when both are good, we could choose a arbi-
trarily, e.g., Sequence 131.

Fig. 4a shows the segmentation results over all 155
sequences in Hopkins155 data sets: while a ranges from
0.001 to 0.15, the segmentation errors, CE remain almost
unchanged, slightly varying from 0.63to 1.03 percent; when
a increases from 0.15 to 0.4, the CE rise up rapidly to 1.75
percent. These results advocate a balanced combination of
the data fitting and model penalty terms.

6.4.4 The Effect of Unsupervised Constraints

We investigate the effects of two kinds of unsupervised
constraints: manifold constraint and spatial regularity
constraint.

The manifold constraints take affects at the model gener-
ation stage. We compare the segmentation results using dif-
ferent manifold constraints, as listed in Table 5. It can be
seen that the affine models work better than the original
subspace models, maybe due to its more accurate represen-
tation. But the metric models perform worst. This phenome-
non is probably due to the following two reasons. First,
degenerated data, very common in Hopkins155 data sets,
usually leads to poor metric model fitting results. Second,
the depth ranges for some sequences in Hopkins155 data
sets are very big, making the orthogonal assumption
invalid.

TABLE 1
Clustering Errors (CE) of Mixture Model Based Methods on
Hopkins155 Data Sets with Known Motion Number, Where
“Ave.” Stands for “Average”, and “Med.” Stands for “Median”

method RANSAC MSL ALC BB (RLM) BB (os-LRR)

ave. (%) 9.76 5.06 3.37 2.45 0.63
med. (%) 3.21 0 0.49 0 0

The parameters used by BB are: a ¼ 0:1; b ¼ 500; 4-nn. These settings are also
used in Tables 2 and 4.

TABLE 2
Comparison to theAlgebraic Methods and Spectral
Clustering Based Methods on Hopkins155 Data Sets

with Known Motion Number

method ASC GPCA LSA SLBF

ave. (%) 26.14 10.34 4.94 1.35
med. (%) 27.24 2.54 0.90 0
method SC SCC SSC LRR
ave. (%) 1.20 2.70 1.25 4.31
med. (%) 0 0 0 0

method LRR-PP LatLRR SSQP NLS

ave. (%) 1.59 0.85 1.49 0.76
med. (%) 0 0 0 0

method LSR DiSC BB (os-ASC) BB (os-LRR)

ave. (%) 3.32 1.25 5.96 0.63
med. (%) 0 0 0 0

TABLE 3
Clustering Errors (CE) on Hopkins155 Data Sets with Unknown

Motion Number

method ORK GpbM BB (os-LRR)

ave. (%) 8.91 7.44 6.09
med. (%) - - 0

The parameters used by BB are: a ¼ 0:4; b ¼ 500; 4-nn.

TABLE 4
Comparison of the BB Method to the Manifold Clustering

Methods on Hopkins155 Data Sets Using CE

method LLMC SMCE BB (os-LRR)

ave. (%) 4.87 13.34 0.63
med. (%) 0 9.97 0

Fig. 4. The influence of parameter a on performance of motion segmen-
tation with known motion number and constant spatial regularity as:
NðiÞ corresponds to the four-nearest neighbors of point i and b ¼ 500.
(a) plots the average CE for all sequences in Hopkins155 data sets; (b)
shows the CE on three sequences: 66, 131 and 155.

TABLE 5
Average Clustering Errors (CE) on Hopkins155

Data Sets Using Different Models

All candidate models are generated using os-LRR strategy.
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To evaluate the effect of spatial regularity constraints, we
draw the CE curves with varying b and NðiÞ as shown in
Fig. 5. We observe an improvement of CE from 2.66 to
0.63 percent (b ¼ 0 indicates that no spatial regularity is
included). However, too much spatial smooth may harm
the segmentation.

6.4.5 Comparison with Other Uncapacitated Facility

Location Methods

We compare the branch and bound method with the linear
programming relaxation [71] and the message passing
method [46]6 in order to solve the problem in (6). Table 7
shows the clustering errors and the computational time of
different algorithms. It can be seen that BB produces the
lowest clustering error thanks to its global optimality. The
BB is more efficient than LP relaxation but less efficient than
message passing method.

6.4.6 Motion Number Estimation

Our BB method can automatically determine the motion
number by searching through all the solution space. Table 6
shows the results of BB on motion number estimation com-
pared with existing methods, i.e. rank detection (RD) [64],
ordered residual kernel [42] and Kernel optimization (KO)
[72]. We correctly predict the true motion numbers on 124
sequences, by using os-LRR to generate the candidate mod-
els (the candidate number is set constant as 10) and choos-
ing parameters: a ¼ 0:4; NðiÞ corresponds to the four-

nearest neighbors of point i; b ¼ 500. It can be seen that the
BB method performs the best among these methods.

6.4.7 Computational Efficiency

We ran all the experiments on a PC with a 2:53 GHz CPU.
The average computational time7 as well as the number and
proportion8 of exploited nodes for each sequence as a func-
tion of the number of candidate models are shown in Fig. 6.
It can be seen that the proportion of exploited nodes is very
small, and it dramatically drops when the number of candi-
date models increases.

For the experiments in Table 2, “BB (os-LRR)” takes only
0.23 seconds for each sequence on average, mainly due to
the reduction of searching space thanks to the known clus-
ter number. When no spatial regularity constraints are
incorporated, the average computational time is further
reduced to 0.06 seconds.

Nevertheless, it is worth noting that in our experi-
ments, the number of candidate model is small, in which
case our method has a reasonable computational time.
However, as Fig. 6 shows the computational complexity
of our method is approximately exponential in the num-
ber of candidates models. In fact, our method becomes
inefficient when the number of candidate models is more
than about 50. In order to utilize our method for such
cases, one possible way is to first discard bad candidates
by some simpler strategies and then input the remaining
candidates into our method for global model selection.
Another direction is to develop approximate but more
efficient method for the optimization. These will be our
future directions.

6.5 Face Clustering Results

To evaluate the performance of different methods, we form
8 tasks with varying subject numbers, f2; 4; 6; 8; 10;
12; 14; 16g. Each task is repeated 10 times, containing images
from randomly picked subjects. For the BB method, we gen-
erate 1:5K candidate models by over-segmentation of LRR
[13] and try the rank-4 subspace, rank-9 subspace and

Fig. 5. The influence of spatial regularity parameters (b and NðiÞ) on
performance of motion segmentation with known motion number.

TABLE 6
Accuracy of Motion Number Estimation

on Hopkins155 Data Sets

method RD ORK KO BB (os-LRR)

correct (%) 62.58 65.80 74.84 80.00

The parameters of BB are: a ¼ 0:4, b ¼ 500, 4-nn.

TABLE 7
Comparison of Uncapacitated Facility Location Methods

on Hopkins155 Data Sets When No Constraints
(Except Motion Number Prior) Are Exploited

method LP Relaxation [71] Message Passing [46] BB

CE (%) 2.75 2.85 2.66
time (s) 6.81 0.035 0.060

Fig. 6. The average computational time and #/proportion of exploited
nodes versus # candidate models on Hopkins155 data sets.

6. The heuristic method in [45] is used to enforce the motion number
constraints.

7. In this test, we use RLM to generate candidate models. The cluster
number is unknown and the spatial regularity constraint is involved.
Also note that the time of candidate model generation is excluded,
because it relies on the adopted strategies.

8. The proportion is computed by #exploited nodes
2M

, where M is the
number of candidate models.
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metric model. The CE curves of different methods are
shown in Fig. 7. BB with rank-9 model outperforms all the
other methods, and its variants using metric and rank-4
models achieves comparable results with the state-of-the-
arts. Also note that all variants of our BB methods use LRR
as an initial step to get the model candidates and they all
perform much better than the pure LRR method, which
demonstrates the advantages of incorporating additional
unsupervised constraints by our methods, e.g., the explicit
physical models and the model penalties.

We also investigate the effect of parameter a on the per-
formance of face clustering as shown in Fig. 8. It can be
seen: when subject number is small, the data fitting term
alone is good enough to select good candidates; when sub-
ject number grows bigger, the prior knowledge on models
will be indispensable to achieve good clustering.

The computation is also very efficient that the branch and
bound optimization takes only 1.9 seconds excluding the
candidate model generation step.

6.6 Handwritten Digit Clustering Results

We generate 1:5K ¼ 15 candidate models by over-segmen-
tation of LRR [13]. Different from rigid motions and faces
under varying illuminations where the knowledge about
model rank is clear from the physical view, the handwritten
digits do not have such clear physical knowledge on the
model rank. Hence we try subspace models with rank from
5-15.

Table 8 lists the CE of the BB method compared with the
state-of-the-art ones. It can be seen that the BB method out-
performs the other ones significantly. The CE curves with

varying model ranks and the spatial regularity parameter b
are shown in Fig. 10. We can see: 1) models with rank from
10 to 15 all work well on the USPS data set; 2) the clustering
performance is significantly improved by incorporating
spatial regularities.

The branch and bound optimization takes 33.0 s to get
the results.

6.7 Incorporating Supervised Information

In Section 5, we have successfully encoded four types of
supervised constraints: subspace number prior, outlier ratio
prior, pairwise constraints and size prior.

In the experiments described in Sections 6.4, 6.5 and
6.6, subspace number prior has already been used. In this
section, we will test the effectiveness of our algorithm in
encoding three other types of supervised constraints. We
use the same parameter settings as in the unsupervised
cases: for motion segmentation, a ¼ 0:1, b ¼ 500, 4-nn; for
face clustering, a ¼ 0:04, b ¼ 0; for digit clustering,
a ¼ 0:001, b ¼ 32, 4-nn.

6.7.1 Clustering with Outliers

We apply the BB algorithm to four motion sequences
with real outlying trajectories [44], books, carbus3, car-
sTurning and nrbooks3. The trajectories were obtained
with an automatic tracker, and the ground-truth segmen-
tation was manually determined. A trajectory was labeled
as an inlier if it is correctly tracked in all frames, and an
outlier if it is incorrectly tracked.

We use receiver operating characteristic (ROC) curve to
evaluate the performance of outlier detection, where
“positive” and “negative” correspond to outliers and
inliers, respectively. The segmentation accuracies are also
computed. We compare our method (referred to as BB-o)
to two baselines: a) ALC-o [44]. A sample is an outlier if it
belongs to a cluster with less than five samples after run-
ning ALC; b) LRR-o [11]. The sample is predicted as an
outlier if the two-norm of its corresponding column in the
error matrix E of LRR is larger than a preset threshold. For
our BB-o method, the RLM strategy is used to generate ini-
tial candidate models, and the ROC curves are obtained by
varying Co.

Fig. 9 shows the ROC curves for different algorithms.
Table 9 lists the segmentation accuracies of different algo-
rithms.9 It can be seen that BB-o performs better than ALC-o

Fig. 7. The average clustering error (CE) with error bars of different
methods on Extended Yale Face B data set. For all variants of BB,
a ¼ 0:04 and no spatial regularity is involved. For other methods, the
parameters are chosen by grid searching.

Fig. 8. The effect of parameter a on the performance of face clustering
using rank-9 subspace model.

TABLE 8
Clustering Errors (CE) and the Corresponding

Parameters on USPS Data Set

method ALC SSC LRR LSR BB (rank-10)

CE (%) 71.50 32.10 22.60 26.10 12.60
para. - � ¼ 2�6 � ¼ 2�14 � ¼ 27 -

In our method, the parameters are a ¼ 0:001, b ¼ 32 andNðiÞ corresponding
to 4-nn of point i.

9. Trajectories labeled and predicted as inliers both are included
when we compute the CE. For LRR-o, the reported numbers are under
parameters when the predicted outlier ratio equals the real one. For our
method, we use the real outlier ratio as a priori and achieve segmenta-
tion by solving eq. (29).
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and LRR-o in terms of both outlier detection and segmenta-
tion. The big gap of BB-o and the other ones in segmentation
accuracy may be due to the following reason: for ALC-o and
LRR-o, the segmentation relies so heavily on the relationship
between samples that the wrongly retained outliers will seri-
ously affect the final results; for BB-o, the relationship
between samples and models is the dominant factor in the
segmentation stage, resulting in its robustness to outliers.

6.7.2 Pairwise Constraints

Pairwise constraints can be obtained by either human label-
ing or prior knowledge, e.g., the trajectories near the corners
of a video usually belong to background. We choose the
sequences where the BB method (unsupervised) makes
errors, e.g., the 1R2RCT_B with CE ¼ 3.55% and 2T3RCRT
with CE ¼ 9.58% as shown in Fig. 11, to do the experiments.
By manually selecting one or several pairs of points, our
method successfully corrects the errors.

6.7.3 Size Priors

We demonstrate the effectiveness of our method in encod-
ing the size priors by three experiments. First, we test the
encoding of the first size prior type: all the cluster sizes
equal a number, e.g. 64 for the Extended Yale Face B data
set and 100 for the USPS data set. By adding this knowledge,

the face clustering accuracies are improved as shown in
Fig. 12. For the USPS data set, we also observe an improve-
ment of CE from 11.80 to 8.80 percent.

Then we verify the other two types of size priors: the size
of cluster containing point i is no smaller than Z; the size of
cluster containing point i is no smaller than the size of clus-
ter containing point j at a multiple of Z. The values of Z are
assigned from the ground truths. We correct the errors for
1RT2RTCRT_B sequence after encoding the size priors as
shown in Fig. 13.

Fig. 9. ROC curves for outlier detection on four real motion sequences. Note that for ALC-o, there are no tuning parameters available to get a whole
ROC curve.

TABLE 9
CE (%) on four Motion Sequences with Real Outliers

seq. ALC-o LRR-o BB-o

books 27.14 20.79 0
carbus3 0 4.32 0
carsTurning 10.35 41.15 2.32
nrbooks3 23.58 1.32 0

Fig. 10. The clustering error (CE) on USPS data set with varying
parameters. (a) a ¼ 0:001;b ¼ 32, 4-nn, model rank varies;
(b) a ¼ 0:001, 10-rank models, 4-nn, b varies.

Fig. 11. Segmentation using pairwise constraints on 1R2RCT_B (top)
and 2T3RCRT (bottom) sequences in Hopkins155 data set. Different
colors of trajectories indicate different segments. (a) The sample
frames and the segmentation results without pairwise constraints.
(b) The segmentation results using pairwise constraints. The yellow
dotted lines on the ends represent cannot-link constraints between
the two points marked by circles and the magenta solid ones repre-
sent must-link constraints.

Fig. 12. The improvements of face clustering by adding equal size priors
(rank-9 subspace model).
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6.7.4 Computational and Memory Costs

Table 10 lists the computational times and the peak mem-
ory10 for different variants of the BB algorithm using the
2T3RCRT sequence in Hopkins155 data sets. The 2T3RCRT
sequence consists of 543 29-frame trajectories and has three
motions. In the experiments, we set the parameters the
same as in Section 6.4.1. For the experiments encoding
pairwise constraints, we use one must-link and one can-
not-link constraints. For MRF optimization, the primal-
dual solver [58] is used when the energy function is sub-
modular and the QPBOP solver [59] is used when the
energy function is non-submodular. For Linear program-
ming, we use the mosek solver [61]. Observing that usually
1 � 100 seconds are needed for over-segmentation meth-
ods, e.g. LRR, to generate initial candidate models, the
computational times by our branch-and-bound optimiza-
tion are very reasonable.

7 CONCLUSIONS

In subspace clustering, nearly all existing algorithms use
unconstrained subspace models, meaning the points can be
drawn from everywhere of a subspace, to describe the data,
which usually produce poor results when severe noises,
outliers or partially dependent subspaces exist. In this
paper, we have proposed the alternative constrained subspace
model for subspace clustering and instantiated it by several
unsupervised and supervised constraints. We used a uni-
fied integer linear programming optimization framework
for all the constraints. Applying the proposed method with
manifold and spatial regularity constraints to two popular
applications of subspace clustering, motion segmentation
and face clustering, we achieve much better performance
than the state-of-the-art. We have also shown the effective-
ness of the proposed framework in exploiting various
supervised constraints.

The main limitation of our method is the high computa-
tional complexity when the number of candidate models is
large. Although it can be alleviated by pre-discarding bad
candidates using some simpler strategies, a better way is to
develop more efficient algorithms, which will be our main
future direction.
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