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Abstract—The evidential value of palmprints in forensic applications is clear as about 30 percent of the latents recovered from crime

scenes are from palms. While biometric systems for palmprint-based personal authentication in access control type of applications

have been developed, they mostly deal with low-resolution (about 100 ppi) palmprints and only perform full-to-full palmprint matching.

We propose a latent-to-full palmprint matching system that is needed in forensic applications. Our system deals with palmprints

captured at 500 ppi (the current standard in forensic applications) or higher resolution and uses minutiae as features to be compatible

with the methodology used by latent experts. Latent palmprint matching is a challenging problem because latent prints lifted at crime

scenes are of poor image quality, cover only a small area of the palm, and have a complex background. Other difficulties include a

large number of minutiae in full prints (about 10 times as many as fingerprints), and the presence of many creases in latents and full

prints. A robust algorithm to reliably estimate the local ridge direction and frequency in palmprints is developed. This facilitates the

extraction of ridge and minutiae features even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to

capture distinctive information around each minutia and an alignment-based minutiae matching algorithm is used to match two

palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latent palmprints) are matched to a background

database of 10,200 full palmprints to test the proposed system. Despite the inherent difficulty of latent-to-full palmprint matching,

rank-1 recognition rates of 78.7 and 69 percent, respectively, were achieved in searching live-scan partial palmprints and latent

palmprints against the background database.

Index Terms—Palmprint, forensics, latents, minutiae, MinutiaCode, matching, region growing.
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1 INTRODUCTION

PALMPRINT is a combination of two unique features,
namely, the palmar friction ridges and the palmar

flexion creases (see Fig. 1). Palmar friction ridges are the
corrugated skin patterns with sweat glands but no hair or oil
glands [1]. Discontinuities in the epidermal ridge patterns
are called the palmar flexion creases. These are the firmer
attachment areas to the basal (dermis) skin structure. Flexion
creases appear before the formation of friction ridges during
the embryonic skin development stage, and both of these
features are claimed to be immutable, permanent, and
unique to an individual [1]. The three major types of flexion
creases that are most clearly visible are distal transverse,
proximal transverse, and radial transverse creases. Based on
these major creases, three palmprint regions are defined:
interdigital, thenar, and hypothenar (see Fig. 1). Various
features in palmprints can be observed at different image
resolutions. While major creases can be observed at less than
100 ppi, thin creases, ridges, and minutiae can be observed
only at �400 ppi and resolutions greater than 500 ppi are
needed to observe pores.

The use of palmprints for person identification traces

back to Chinese deeds of sale in the 16th century [2]. Later

in 1684, Grew introduced dermatoglyphics, a study of the

epidermal ridges and their arrangement on the hand. The

first systematic capture of hand, finger, and palm images

for identification purposes was done by Herschel in 1858
[3]. Galton [4] discussed the basis of contemporary
fingerprint science, and introduced palmar ridges and
creases. He suggested that the ridges on the finger tips,
palms, and soles are persistent and unique. Galton defined
the peculiarities in the ridges as minutiae and introduced
several different minutiae types. He also divided the palm
into three regions and analyzed the correlation between the
ridge flow and the major creases in each region. Cummins
and Midlo [2] stated that the width of a palmar ridge is
18 percent larger compared to a finger. They also
recognized the significance of the flexion creases, particu-
larly palmar flexion creases, and established the basis of the
present flexion crease based identification.

While the use of Automated Fingerprint Identification
Systems (AFIS) in the forensic community is pervasive, the
development of automated palmprint identification systems
has lagged due to the limitations of live-scan technologies for
palmprints, large number of creases present in palmprints,
and large storage and computing capabilities needed for
processing and matching palmprints. The first reported use
of palmprints in a criminal case occurred in a British court in
1931. The first automated palmprint identification system
became available in the early 1990s [5]. In recent years, with
advances in live-scan techniques and increase in computa-
tional power, more and more law enforcement agencies are
capturing palmprints of suspects and utilizing latent
palmprints for suspect and victim identification. Surveys
of law enforcement agencies indicate that at least 30 percent
of the prints lifted from crime scenes, called latents,—from
knife hilts, gun grips, steering wheels, and window
panes—are of palms, not fingers [6]. A major component
of the FBI’s Next Generation Identification (NGI) system is
the development of an integrated national palmprint
identification system [7].
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Palmprint recognition systems have been developed for
civilian (mainly access control) applications [8], [9]. But
these systems typically utilize low-resolution (about 100 ppi)
images and only support full-to-full palmprint matching. To
facilitate palmprint matching, these systems use pegs to fix
hand position and detect gaps between fingers for align-
ment. Matching is based on texture or crease information in
palmprint images. In forensic applications, on the other
hand, 500 ppi is the standard resolution and latent-to-full
matching must be supported. When latent examiners match
latent palmprints, they mainly use minutiae, whose accurate
extraction requires a resolution of at least 400 ppi. Therefore,
these low-resolution palmprint systems are not applicable
for forensic applications. Recent work in [9] reports on a
prototype image acquisition system to simultaneously
acquire multispectral fingerprints and palmprints of a hand
at 500 ppi. This will enable fusion of fingerprints and
palmprints, which is also an objective of the FBI’s NGI
system in order to improve the matching accuracy.

Latent palmprint recognition shares some common
problems with latent fingerprint recognition, which has
been extensively studied. Some of the common attributes
include complex background, poor ridge structures, and
small image area. Although minutiae extraction and
matching algorithms designed for fingerprints can be
applied to palmprints directly, in order to achieve higher
accuracy and faster matching, characteristics of palm-
prints should be taken into account. The first difference
between fingerprints and palmprints is the presence of
creases. Although creases are also frequently found in
fingerprints, these creases are generally very thin and
their number is small. Conventional direction field
estimation algorithms [11] can reliably estimate the ridge
direction in fingerprints, which is then used to remove
the creases and recover the ridges. However, palmprints
contain very wide creases (major creases) and a large
number of thin creases, especially in the thenar area (see
Fig. 3b). It is not a trivial problem to recover the ridge
structure in the presence of a large number of creases. As
shown in Fig. 3, VeriFinger 6.0 by Neurotechnology [12],
which ranked high according to accuracy in two different

fingerprint competitions (FVC2000-2006 [13] and FpVTE
2003 [14]), and was the second best template generator in
the MINEX test [15], produces many false ridges around the
major crease in a palmprint (Fig. 3a), and totally fails in the
palmprint area with dense thin creases (Fig. 3b). The second
difference between fingerprints and palmprints is the image
size. A typical full fingerprint image (500� 500 pixels)
contains about 100 minutiae, while a full palmprint image
(2;000� 2;000 pixels) contains about 800 minutiae. A latent
palmprint and its mated full palmprint are shown in Fig. 2.
Assuming that the time complexity of a minutiae matcher is
Oðn2Þ, where n denotes the number of minutiae in a
fingerprint or a palmprint, matching palmprints will be
about 64 times slower than matching fingerprints. There-
fore, the computational efficiency of minutiae matching
algorithm is critical for palmprint matching.

A partial-to-full palmprint matching system was pro-
posed in [16] that used both SIFT [17] and minutiae features
in matching. The system was evaluated using live-scan
partial and full palmprint images. However, this system has
the following limitations: 1) SIFT features cannot be con-
sistently detected in latents and full prints, 2) the minutiae
extractor and matcher (VeriFinger 4.2) used in [16] are not
suitable for latent palmprint matching, and 3) latent images
were not used to evaluate the algorithms.

We propose a minutiae-based latent-to-full palmprint
matching system. To deal with creases in palmprints, a
region growing algorithm is proposed to reliably estimate
the ridge direction and frequency. To reduce the computa-
tional complexity of minutiae matching algorithm, a fixed-
length minutia descriptor, MinutiaCode, is proposed, which
captures information about the ridges and other minutiae in
the neighborhood of a minutia. The proposed system has
been evaluated by matching partial1 palmprints (150 live-
scan partial palmprints and 100 latent palmprints) against a
background database of 10,200 full palmprints. Rank-1
recognition rates of 78.7 and 69 percent, respectively, were
achieved in searching live-scan partial images and latents
against the background database.
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Fig. 2. (a) Latent palmprint and (b) mated full palmprint.

Fig. 1. Regions (interdigital, thenar, and hypothenar), major creases

(distal transverse, proximal transverse, and radial transverse creases),

ridges, minutiae, and pores in a palmprint.

1. In our experiments, two types of partial palmprints, live-scan partial
and latent palmprints, were used. Live-scan partial palmprints were
captured using an optical palmprint scanner and latent palmprints were
lifted from crime scenes. When we do not distinguish between live-scan
partial and latent palmprints, they are referred to as partial palmprints.
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2 MINUTIAE EXTRACTION

The performance of a minutiae extraction algorithm relies
heavily on the quality of the input palmprint images. In
order to ensure that the minutiae extraction algorithm is
robust with respect to the quality of the input palmprint
images, an enhancement algorithm that improves the clarity
of the ridge structures is necessary. Contextual filtering like
2D Gabor filters [18] has been very effective for fingerprint
enhancement [19]. Two important parameters of 2D Gabor
filters are local ridge direction and frequency. When these
parameters are correct, Gabor filtering can connect broken
ridges and separate joined ridges. However, when the
parameters are incorrect, true ridges may be missed and
spurious ridges may be produced after filtering. Hence,
reliable ridge direction and frequency estimation is very
important for minutiae extraction.

2.1 Ridge Direction and Frequency Estimation

As ridge frequency is often estimated based on ridge
direction [19], reliable direction estimation is even more
important. Most direction field estimation algorithms [11],
[20], [21] consist of two steps: initial estimation using a
gradient-based method, followed by smoothing. The
smoothing may be done by a simple weighted averaging
filter or more complicated model-based methods [20], [21].
These smoothing algorithms generally make two assump-
tions either explicitly or implicitly: 1) The direction field is
smooth except for singular areas and 2) noise has a
Gaussian distribution. But, for palmprints which contain a
large number of creases, the initial direction field obtained
by gradient-based methods significantly deviates from the
true direction field and the noise cannot be modeled as
Gaussian. Hence, it is very difficult for these algorithms to
recover the true direction field in palmprints.

Funada et al. [22] proposed a palmprint enhancement
approach, which performs image enhancement and local
ridge direction and frequency estimation simultaneously.
Local image blocks (8� 8 pixels) are modeled by sine waves
and the six strongest waves (according to amplitude) are
found in each block. In the image formed by the first strongest
wave in each block, continuous blocks are clustered into
regions. Generally, a region contains only ridges (such region
is called ridge region) or only creases (such region is called
crease region). Based on certain properties, these regions are
classified as ridge or crease regions, and ridge regions are

used as a single seed. A region growing algorithm is then used
to grow the seed and obtain the enhanced image. The
palmprint enhancement algorithm proposed in [22] has two
main limitations: 1) Crease regions may be incorrectly
classified as ridge regions and are grown in the region
growing procedure. As a result, the objective of detecting only
ridges in palmprints cannot be achieved. 2) The enhanced
image is not smooth due to blocking effect and this produces
spurious minutiae or leads to inaccurate estimation of the
position and direction of minutiae.

We propose a palmprint enhancement approach by
modifying the algorithm in [22] in the following ways:
1) Regions selected in the seed selection stage are treated as
different seeds and are separately grown. Finally, one of the
regions is selected as ridge region and the other regions
which are compatible with the ridge region are merged with
it. By postponing region classification to later stage, our
algorithm can reliably remove creases and extract ridges.
2) To solve the blocking effect problem, we smooth the ridge
direction and frequency obtained by the region growing
algorithm and use Gabor filters to enhance the palmprint
image. These two modifications significantly enhance the
robustness of the minutiae extraction algorithm and lead to
better recognition accuracy.

We now describe our ridge direction and frequency
estimation algorithm, which is composed of four main
steps.

2.1.1 Sine Wave Representation

A palmprint image Iðx; yÞ is divided into nonoverlapping
blocks of 16� 16 pixels. Let H and W denote the height and
width of the image, and NH and NW denote the number of
blocks in the vertical and horizontal directions, respectively.
Since the ridge structure of a block can be approximated by a
2D sine wave, the task of estimating local ridge direction and
frequency is transformed to estimating the parameters of sine
wave in each block. Centered at each block, the local image in
the 64� 64 window is multiplied by a Gaussian function
(� ¼ 16). The larger window (64� 64 pixels) has the follow-
ing two advantages over the smaller window (16� 16 pixels):
1) it is more robust to noise and 2) the resolution in the
frequency domain is higher. The Discrete Fourier Transform
(DFT), F ðu; vÞ, of the resulting image is computed and the
amplitude of low-frequency components (points within
3 pixels from the center in the frequency domain) is set to 0.
Three pixels in the frequency domain correspond to a ridge

1034 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

Fig. 3. Creases in palmprints. (a) A palmprint region with a major crease and its ridge skeleton image produced by VeriFinger and (b) a palmprint

region with many thin creases and its ridge skeleton image produced by VeriFinger.
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period of 21.3 pixels in the palmprint image. In the frequency

domain, six points with the maximum amplitude are found.

Each of these points corresponds to a 2D sine wavewðx; yÞ ¼
a � sinð2�fðcosð�Þxþ sinð�Þyþ �Þ, where a, f , �, and �

represent the amplitude, frequency, direction, and phase,

respectively. These waves are sorted in the decreasing order

of amplitude and are referred to as the first wave, the second

wave, . . . , and the sixth wave. The above steps are shown in

Fig. 4. The parameters of the sine wave at position ðu; vÞ are

computed as

a ¼ jF ðu; vÞj; ð1Þ

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

64
; ð2Þ

� ¼ arctan
u

v

� �
; and ð3Þ

� ¼ arctan
ImðF ðu; vÞÞ
ReðF ðu; vÞÞ

� �
: ð4Þ

When a local image contains only ridges, the DFT has a

single strong peak which corresponds to the ridges. When

the local image contains both ridges and creases, the DFT

has multiple strong peaks. Fig. 5 shows the six strongest

waves of three types of local palmprint images: 1) no crease,
2) creases with one direction, and 3) creases with two
directions. As shown in Fig. 5, it is not easy to reliably
determine which wave corresponds to ridges based on the
local information alone, namely the amplitude. The basic
idea of the proposed algorithm is to utilize the fact that
waves corresponding to ridges form continuous and
sufficiently large clusters.

Two adjacent waves (namely, waves in adjacent blocks)
w1 and w2 are said to be continuous if the following three
conditions are satisfied:

Angleð�1; �2Þ � �=6; ð5Þ

1

f1
� 1

f2

����
���� � 3; and ð6Þ

1

16

X
ðx;yÞ2L

w1ðx; yÞ
a1

� w2ðx; yÞ
a2

����
���� � 0:8; ð7Þ

where Angleð�1; �2Þ computes the angle �� ð0 � �� �
�=2Þ between two directions �1 and �2, and L denotes the
16 pixels on the border of two adjacent blocks. The above
three conditions measure the continuity of direction,
frequency, and normalized gray-scale values between
two adjacent waves, respectively. These thresholds were
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Fig. 5. The six strongest sine waves corresponding to three types of local regions (64� 64 pixels) in a palmprint: (a) no crease, (b) creases with one

direction, and (c) creases with two directions. In these three local regions, the sine wave corresponding to ridges is the first, the third, and the third

one of the six waves, respectively.

Fig. 4. Sine wave representation. (a) Local gray image (64� 64 pixels), (b) local gray image multiplied by Gaussian function, (c) two points with the

highest amplitude in the frequency image, (d) the first sine wave, and (e) the second sine wave.
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set by analyzing the values of a set of positive samples
manually selected, namely two adjacent waves both of
which correspond to ridges. About 87 percent of positive
samples satisfy the chosen thresholds. Very small thresh-
old values will result in many small regions and therefore
make it difficult to distinguish ridges from creases. Very
large values of threshold will cause ridges and creases to
merge and therefore also make it difficult to separate
ridges and creases. A pair of continuous adjacent waves,
which satisfies the above three conditions, and three pairs
of discontinuous adjacent waves, which do not satisfy one
of the three conditions above, are shown in Fig. 6.

2.1.2 Seed Selection

The reliability of the first wave of a block is computed as
a1=ða1 þ a2Þ, where ai denotes the amplitude of the
ith wave. The first wave of a block is deemed as reliable
if its reliability is greater than a predefined threshold (0.67).
By observing a few images of low quality, a minimum
reliability that guarantees that at least one correct seed,
which is a ridge region, can be generated is selected as the
threshold. A smaller threshold value may increase the
number of seeds and thereby increase the computational
complexity. On the other hand, a larger threshold value
may miss some ridge regions. A reliable first wave is
represented by a node in a graph. The adjacent nodes
(waves) that are continuous are connected by edges. All
connected components with more than 20 nodes in the
graph are used as seeds and the seeds are sorted in the
decreasing order of size (the number of blocks). An
auxiliary image of NH �NW pixels, ISðm;nÞ, is created to
record the seed index of each block. ISðm;nÞ is 0 for the
blocks that do not belong to any seed. The seed selection
algorithm is illustrated in Fig. 7. Seeds selected in this step

may include both ridge and crease regions. For instance,
one of the three seeds in Fig. 7 is a crease region.

2.1.3 Region Growing

Each seed is grown in turn by a region growing algorithm (see
pseudocode RegionGrow). The three inputs to this algorithm
are sk, IS , and IW . sk denotes the index of the current seed. IS
is an image ofNH �NW pixels that is used to record the seed
index of all blocks. IW is an image of NH �NW pixels that is
used to represent the selected waves in the current region.
IW ðm;nÞ ¼ i; i ¼ 1; 2; . . . ; 6 indicates the ith wave is selected
in block ðm;nÞ. IW ðm;nÞ ¼ 0 indicates no wave is selected in
block ðm;nÞ. Initially, the current region consists of only the
current seed, namely, IW ðm;nÞ ¼ 1 for blocks belonging to
the current seed and 0 for the remaining blocks. The region
growing algorithm iteratively selects waves in new blocks
that are continuous with the current region, and adds them to
the current region, until no more waves can be added. An
example is given in Fig. 8 to show the region growing process
for a seed that is a ridge region and a seed that is a crease
region.

Function RegionGrow(sk, IS , IW )

Q ;;
for each pixel (m;n) in image IW do

if IW ðm;nÞ > 0 then

FindCandidateWaves(IW ;m; n);

end

while Q 6¼ ; do

Pop up a candidate wave wc ¼ ðm;n; iÞ from Q;

if IW ðm;nÞ > 0 then continue;

IW ðm;nÞ ¼ i;
FindCandidateWaves(IW ;m; n);

if i ¼ 1 & ISðm;nÞ > sk then
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Fig. 7. Seed selection. (a) A live-scan partial print (height: 765 pixels, width: 717 pixels) from the thenar region, (b) first wave image, (c) reliability

image (low gray value indicates high reliability), (d) reliable first waves, and (e) three seeds (two ridge regions and one crease region) extracted

from (d).

Fig. 6. Continuity of adjacent waves. (a) Two waves are continuous, (b) the direction of two waves is discontinuous, (c) the frequency of two waves is

discontinuous, and (d) the normalized gray-scale values of two waves are discontinuous.
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Merge seed ISðm;nÞ with the current region;

end

end

The region growing algorithm starts by finding candidate

waves (see pseudocode FindCandidateWaves). For each

block ðm;nÞ of the current region, candidate waves are found

in its 4-connected neighbors which do not belong to the

current region. In a neighboring block, ðm0; n0Þ, each of the six

waves is checked in the decreasing order of amplitude if it is

continuous with the wave of block ðm;nÞ. If the ith wave in

block ðm0; n0Þ is continuous with the wave of block ðm;nÞ, it is

referred to as a candidate wave. A record about this

candidate wave, wc ¼ ðm0; n0; iÞ, is added to a priority queue,

Q, where i is the priority value and the first wave has the

highest priority.
The algorithm iteratively pops up a candidate wave wc ¼

ðm;n; iÞ fromQ and processes it untilQ is empty. If the wave

of block ðm;nÞ has been selected, pop up and process the next

candidate wave in Q; otherwise, the ith wave is selected for

block ðm;nÞ and we find candidate waves in its 4-connected

neighbors. In addition, we check whether i ¼ 1 and

sl ¼ ISðm;nÞ > sk. If yes, this wave also belongs to another

seed sl and we merge seed sl with the current region by

performing the following steps: 1) all pixels of IW corre-

sponding to seed sl are set as 1, 2) seed sl is made invalid by

setting all pixels in IS corresponding to seed sl to 0, and

3) candidate waves are found based on the blocks of seed sl.

Function FindCandidateWaves(IW ;m; n)

for each 4-connected block ðm0; n0Þ of block ðm;nÞ
do

if IW ðm0; n0Þ > 0 then continue;

for i 1 to 6 do

if the ith wave is continuous with the wave in

block ðm;nÞ then

// Assume Q can be accessed

in this function

Add candidate wave wc ¼ ðm0; n0; iÞ to
priority queue Q;

break;

end

end

end

2.1.4 Region Merging

After region growing is performed for each seed, a set of
regions is obtained. These regions are merged into a final
region by first sorting in the decreasing order of the number
of reliable first waves. The first region is deemed as a ridge
region and copied to the final region. Then, the other
regions are checked in turn to see if they have different
waves in the overlapped blocks with the final region. If
waves are not different, this region is deemed compatible
with the final region and is copied to the final region;
otherwise next region is checked.

For the example shown in Fig. 8, the region grown from
the seed that is a ridge region is correctly selected as it
contains more reliable first waves than the region grown
from the seed that is a crease region. Fig. 9 compares the
ridges extracted by VeriFinger 6.0 [12], the algorithm in [22],
and the proposed algorithm for a live-scan partial print
from the thenar region and a latent print, respectively. This
comparison shows that two region growing based algo-
rithms (the algorithm in [22] and the proposed algorithm)
are more robust than VefiFinger 6.0 for ridge direction
estimation in the presence of creases. The algorithm in [22]
failed to remove some creases which the proposed algo-
rithm successfully removed (see Figs. 9c and 9d) and
produced more spurs than the proposed algorithm (see
Figs. 9g and 9h).

2.2 Minutiae Extraction

Given local ridge direction and frequency, a sequence of
image processing steps is performed to extract the minutiae:
enhancement, binarization, thinning, and ridge and minutia
extraction. The extracted minutiae include many spurious
minutiae due to image noise, which are removed in the
following way: The ridge validation procedure in [23] is
used to classify ridges as reliable or unreliable and the
minutiae associated with unreliable ridges are removed.
The remaining minutiae are further classified as reliable or
unreliable minutiae. A minutia is deemed as unreliable
if it forms an opposite pair with other minutia in the
neighborhood; otherwise, it is deemed as reliable. An
opposite pair is a pair of minutiae that are close to each
other but have opposite directions. Both reliable and
unreliable minutiae are used in the proposed matching
algorithm, but treated differently. The results of different
steps in minutiae extraction are shown in Fig. 10. It should
be noted that due to complex background and multiple
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Fig. 8. Region growing process of the image in Fig. 7. (a), (b), (c), and (d) are four intermediate steps in growing one seed that is a ridge region and

(e) is the region grown from another seed that is a crease region.
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overlapping latent prints in a single latent image, the region

of interest (ROI) is manually marked for latent palmprints.

This is a common practice in forensics. But, for other images

(full and live-scan partial palmprints), no manual interven-

tion is needed.

3 MINUTIAE MATCHING

Given the minutiae features of two palmprints, the

matching algorithm consists of 1) local minutiae match-

ing—the similarity between each minutia of a partial print

and each minutia of a full print is computed, 2) global

minutiae matching—using each of the five most similar

minutia pairs in step 1) as an initial set, a greedy matching

algorithm is used to find additional matching minutia pairs,

and 3) matching score computation—a matching score is

computed for each set of matching minutia pairs and the

maximum score is used as the matching score between
two palmprints.

3.1 Local Minutiae Matching

A minutia is generally tagged with the following features:
location, direction, type (ending or bifurcation), and quality
(reliable or unreliable) [23]. Since the relative transforma-
tion between the two palmprints to be matched is not
known a priori and considering the large size of palmprint
images, the minutiae correspondence problem is very
challenging. To reduce the ambiguity in matching, we
attach additional distinguishing information to a minutia in
the form of a minutia descriptor. In the fingerprint
recognition literature, four types of information have been
widely used as minutia descriptors, namely image intensity
[24], texture [25], ridge information [26], and neighboring
minutiae [27], [28]. Among these four types of descriptors,
texture and minutiae-based descriptors are known to
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Fig. 10. Minutiae extraction. (a) A live-scan partial print (height: 636 pixels, width: 578 pixels) from the thenar region, (b) direction field, (c) enhanced

image, and (d) extracted ridge and minutiae.

Fig. 9. Comparison of VeriFinger 6.0, the algorithm in [22], and the proposed algorithm for ridge detection. (a) A live-scan partial print (height:

973 pixels, width: 893 pixels) from the thenar region, (b) skeleton image of (a) by VeriFinger, (c) skeleton image of (a) by the algorithm in [22],

(d) skeleton image of (a) by the proposed algorithm, (e) a latent print (height: 523 pixels, width: 886 pixels), (f) skeleton image of (e) by VeriFinger,

(g) skeleton image of (e) by the algorithm in [22], and (h) skeleton image of (e) by the proposed algorithm.
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provide good performance and a combination of texture

and neighboring minutiae information can achieve higher

accuracy [29]. However, the length of the neighboring

minutiae-based descriptor in [29] is variable, depending on

the number of neighboring minutiae. Computing the

similarity between two variable-length minutiae descriptors

is not very efficient. Therefore, a fixed-length minutia

descriptor, called MinutiaCode, that captures neighboring

texture and minutiae information is proposed here.
The MinutiaCode of a minutia (referred to as central

minutia) is constructed as follows. The circular region

around a central minutia is divided into ðR� 1Þ �K sectors

by R ¼ 5 concentric circles and K ¼ 8 lines as illustrated in

Fig. 11. The radius of the rth circle, 1 � r � R, is 20 � r
pixels. The direction of the kth line, 1 � k � K, is

�þ ðk� 1Þ � �=K, where � denotes the direction of the

central minutia. For each sector, a set of features is

computed, including the quality (1: foreground, 0: back-

ground), mean ridge direction, mean ridge period, and the

numbers of four types of neighboring minutiae. These four

types of neighboring minutiae are defined as

1. reliable and with the same direction as the central
minutia (RS),

2. unreliable and with the same direction as the central
minutia (US),

3. reliable and with the opposite direction to the central
minutia (RO), and

4. unreliable and with the opposite direction to the
central minutia (UO).

Whether a neighboring minutia has the same or opposite

direction to the central minutia is determined by the angle

between the direction of the neighboring minutia and the

direction of the central minutia. If the angle is less than �=2,

the neighboring minutia has the same direction to the

central minutia; otherwise, it has opposite direction to the

central minutia. See Fig. 11 for the numbers of four types of

neighboring minutiae in two of the 32 sectors (excluding the
central part).

The similarity s between two MinutiaCodes is defined as
the weighted average value of the similarities of all valid
sectors. A pair of corresponding sectors is deemed valid if
both sectors are in the foreground. If the number of the
valid sectors is less than 16, s is set to 0; otherwise s is
computed by

s ¼ 1P32
i¼1 wi

X32

i¼1

wisi; ð8Þ

where si denotes the similarity of the ith sector andwi denotes
the weight of the ith pair of corresponding sectors. To assign a
larger weight to sectors containing more reliable minutiae,wi
is defined as ðmaxðn1; n2Þ þ w0Þ, where n1 and n2 are the
number of reliable minutiae in the two corresponding sectors
andw0 is a weight for sectors without reliable minutiae (set to
0.2 in our experiments).

The similarity si between two corresponding sectors is
computed as follows. If the difference between ridge
directions or the difference between ridge periods is greater
than the corresponding threshold (�=6 and 3 pixels), si is set to
0; otherwise, si is computed using the following formulas:

si ¼
nM
nS

; ð9Þ

nM ¼ nMS þ nMO; ð10Þ

nS ¼ nSS þ nSO; ð11Þ

nMS ¼ minðnRS1 þ nUS1; nRS2 þ nUS2Þ; ð12Þ

nMO ¼ minðnRO1 þ nUO1; nRO2 þ nUO2Þ; ð13Þ

nSS ¼ maxðnRS1; nRS2; nMSÞ; and ð14Þ

nSO ¼ maxðnRO1; nRO2; nMOÞ; ð15Þ

where the description of the symbols is given in Table 1.
The range of si is ½0; 1�. If nM is equal to nS , si is maximum
(1). If nM ¼ 0 and nS > 0, si is minimum (0). If nM ¼ 0 and
nS ¼ 0 (namely, there is no minutiae which should be
matched in the two sectors), si is set to 1. To evaluate the
robustness of MinutiaCode to noise, the matching results of
five correctly identified latents of low quality are examined.
The lowest quality image where MinutiaCode still succeeds
is when there are five correctly detected minutiae and seven
spurious minutiae in the neighborhood. This successful
matching should be attributed to the use of texture
information and the different ways we deal with reliable
and unreliable minutiae.

3.2 Global Minutiae Matching

Given the similarity of all minutia pairs, the one-to-one
correspondence between minutiae is established in this
stage. All minutia pairs are sorted in the decreasing
order of normalized similarity defined in [23] and each of
the top-five minutia pairs is used to align the two sets of
minutiae. Minutiae are examined in turn and minutiae that
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Fig. 11. The configuration of a MinutiaCode. The numbers of four types

of neighboring minutiae, RS, US, RO, and UO, in sectors 1 and 2 are

[1 0 1 0] and [0 2 0 0], respectively. Square indicates reliable minutiae

and circle indicates unreliable minutiae.
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are close in both location and direction, and have not been

matched to other minutiae are deemed as matching

minutiae. After all the minutia pairs have been examined,

a set of matching minutiae is obtained.

3.3 Matching Score Computation

The matching scoreS between two palmprints is computed as

S ¼Wm � Sm þ ð1�WmÞ � Sd; ð16Þ

where Sm and Sd denote the minutiae-based matching and

the direction field based matching scores, respectively; the

weight Wm is empirically set to 0.8.
The minutiae-based matching score Sm is the product of

a quantitive score Smn and a qualitative score Smq. The

quantitive score measures the quantity of evidence and the

qualitative score measures the consistency in the common

region between two palmprints. The quantitive score Smn is

computed as M=ðM þ 20Þ, where M denotes the number of

matched minutiae and the value 20 is an estimate of the

minimum number of matching minutiae for genuine

matches. The qualitative score is computed as

Smq ¼ SD �
M

M þNL
� M

M þNF
; ð17Þ

where SD is the average similarity of descriptors for all the

matching minutiae, and NL and NF , respectively, denote

the number of unmatched minutiae in latent and full prints

that are reliable and belong to the common region of the

two palmprints.
The direction field based matching score Sd is the product

of a quantitive score Sdn and a qualitative score Sdq. The

quantitive score Sdn is computed as Nb=ðNb þ 900Þ, where

Nb is the number of blocks where the difference of direction

between latent and full print is less than �=8, and the

number 900 (of 16� 16 blocks) is an estimate of the

minimum common (or overlapping) area for genuine

matches. The qualitative score Sdq is computed as

ð1� 2 �Dd=�Þ, where Dd is the mean of the difference of

direction values of all of the blocks.

4 EXPERIMENTS

4.1 Palmprint Database

There is no public domain latent and mated full palmprint
database available. Further, to our knowledge, while there
have been several large-scale performance evaluations
organized by NIST for fingerprint (FpVTE [14] and ELFT
[30]), face (FRVT [31]) and iris (ICE [32]), such performance
evaluation of latent/partial palmprint matching algorithms
has not yet been conducted. The announcement of the FBI’s
NGI program has created a substantial interest in palmprint
matching and it is likely that a similar evaluation for
palmprint recognition will be conducted in the near future.
In our experiments, we used two sets of latent palmprints
provided to us by Noblis [33] and the Forensic Science
Division of Michigan State Police (MSP). The Noblis latent
database consists of 46 latent palmprints which correspond
to eight different palms. The MSP latent database consists of
54 latent palmprints which correspond to 22 of the
36 different palms. The latents from Noblis and MSP have
been merged to form a database of 100 latents. Michigan
State Police also provided us with 10,040 full palmprints
that are used to form a background database for latent
matching. Due to the limited number of latent palmprints
available to us, we also collected live-scan partial palm-
prints and their mated full palmprints using a CrossMatch
L SCAN 1000P optical scanner in our laboratory. Live-scan
partial images were collected from 50 unique palms
(25 subjects who provided images of both left and right
palms) with three impressions per palm, one impression
each from the thenar, hypothenar, and interdigital regions.
Full prints of these 50 palms and other 66 palms were also
scanned. The live-scan partial images and the latent images
were not merged, since they are quite different, both in size
and quality. The 116 live-scan full palmprints, 44 (eight
from Noblis and 36 from MSP) mated full palmprints of
latents, and 10,040 full palmprints from the Michigan
Forensic Laboratory were merged to form a background
database of 10,200 full palmprints. In our databases, most
images (the 10,040 full prints from the Michigan Forensic
Laboratory) are at 500 ppi; remaining images were either
downsampled or upsampled to 500 ppi using bicubic
interpolation. Our partial and full palmprint databases are
summarized in Tables 2 and 3, respectively.
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TABLE 1
Symbols Used in the Computation of the Similarity between Two MinutiaCodes
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4.2 Matching Performance on Full Background
Database

Due to the differences in the nature and quality of live-scan
partial and latent palmprints, we separately searched them
against the full background database. Since a large number of
full prints are not oriented properly, no rotation constraint is
used in the minutiae matching algorithm. Hand type
information (left or right hand) is utilized if this information
can be reliably estimated from partial palmprints. 55 latents
among all 100 latents have hand type information and all
150 live-scan partial images have hand type information. The
hand type information for all the full prints was already
available with the images. The number of left and right hands
in the background database is roughly equal. The CMC
curves for searching 100 latents and 150 live-scan partial
images against 10,200 full prints are shown in Fig. 12. The
rank-1 recognition rates of 78.7 and 69 percent, respectively,
were achieved for live-scan partial and latent palmprints. As

expected, the performance for live-scan partial images is
much better than that for latents due to better image quality
and larger image size of the former. There are two things that
should be noted. In forensic applications, latent experts
generally manually correct minutiae extracted by algorithms.
With intervention of latent experts, the matching accuracy
can be significantly improved. In practice, latent experts
generally examine top 20 candidates provided by the
automated system, and in high profile cases such as murder,
latent experts may examine as many as 100 candidates. As
shown in Fig. 12, the rank-20 recognition rates of 81.3 and
76 percent, respectively, were achieved for live-scan partial
and latent palmprints.

4.3 Comparison to Other Algorithms

The proposed palmprint enhancement algorithm has two
main improvements over the original algortihm of Funada
et al. [22], namely, more robust direction field estimation
and elimination of blocking effect, which have been
qualitatively shown in Fig. 9. To evaluate the proposed
improvements quantitatively, we combined the two en-
hancement algorithms with the same minutiae extraction
and matching algorithms proposed in this paper. An
experiment was conducted by searching 100 latents and
150 live-scan partial palmprints against a background
database of 160 full prints which consists of the 44 mated
full prints of latents and 116 live-scan full prints. Hand type
information was not used in matching. The CMC curves of
the two enhancement algorithms for two types of partial
images are given in Fig. 13. This figure indicates that the
improved algorithm provides higher palmprint matching
accuracy than the original algorithm in [22].

Since, to our knowledge, there is no partial-to-full
palmprint matching algorithm available in the open
literature, we compared our matching algorithm to a
commercial fingerprint SDK, Neurotechnology VeriFinger.
However, VeriFinger cannot be directly used for palmprint
matching because it has a limit on the number of minutiae
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TABLE 3
Full Palmprint Databases

TABLE 2
Partial Palmprint Databases

The sum of the latents from the three regions (interdigital, thenar, and hypothenar) may be greater than the total number of the latents, as some
latents contain data from more than one region.

Fig. 12. CMC curves for latent and live-scan partial palmprint identifica-
tion with a background database of 10,200 full prints. The number of
latents is 100 and the number of live-scan partial palmprints is 150. The
curves are not smooth due to the small number of partial images.
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that can be dealt with in feature extraction and matching and
this limit is smaller than the number of minutiae observed in
full palmprints. In [16], full palmprints are split into five
sectors and minutiae are extracted separately for each sector
using VeriFinger. No minutiae are extracted from the central
part of the palms, as this part is less frequently found in
latents. Major creases are extracted and minutiae around the
major creases are removed. After these steps, VeriFinger
matcher can be used for partial-to-full palmprint matching.
A rank-1 recognition rate of 67.5 percent was reported in [16]
when matching 240 live-scan partial (which are from
20 palms of all of the 50 palms in the MSU live-scan partial
database) against 100 live-scan full prints (which is a subset
of the MSU live-scan full database). The rank-1 rate
(67.5 percent) of VeriFinger on a small background database
(100 full prints) is much lower than the rank-1 rate
(78.7 percent) of the proposed algorithm on a much larger
background database (10,200 full prints).

4.4 Utilization of Ancillary Information

Given a latent palmprint, proficient latent examiners can
often reliably estimate (depending on the quality of the
latent image) the hand (left or right) that made the latent,
the part of the palm that the latent was from, and the
orientation of the latent [34]. To determine the matching
performance gain in the presence of such information, an
experiment was conducted by searching 100 latents
against a small background database of 160 full prints
which consists of the 44 mated full prints of latents and
116 live-scan full prints. A small background database is
selected as it is not a trivial task to automatically extract
ancillary information for the full background database
where a large number of palmprints are of poor quality
and not in upright position. For the 160 full prints, region
map and palm orientation were manually marked by the
authors. The region map of a full palmprint is shown in
Fig. 14. The region map is a 3-bit-depth image of the
same size as the palmprint image, where one of the three
bits of each pixel is used to record which of the three
palmprint regions it belongs to. The different regions are
allowed to have some overlap in order to account for errors in

marking the region map for latents. For the 100 latents, hand
type, region map, and orientation are estimated by the
authors using the methods described in [34]. Due to the poor
quality of latents, hand type cannot be estimated for 45 latents
and palm orientation cannot be estimated for 27 latents.
Fig. 15 shows one example for each of the following three
situations: 1) The ancillary information can be reliably
estimated, 2) no ancillary information can be reliably
estimated, and 3) partial ancillary information can be reliably
estimated. The ancillary information is utilized in the
minutiae matcher in the following way: 1) the similarity
between palmprints of different hand types (left versus
right) is 0; 2) the similarity between two minutiae of
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Fig. 14. Region map. (a) A full palmprint and (b) its region map.Fig. 13. CMC curves of using two different palmprint enhancement

algorithms (Funada’s [22] and ours) in searching 100 latents and

150 live-scan partial palmprints against a background database of

160 full prints.

Fig. 15. Estimating latent palmprint ancillary information. (a) Ancillary
information can be reliably estimated (left hand, hypothenar region,
upright orientation), (b) none of the ancillary information can be reliably
estimated, and (c) partial ancillary information can be reliably estimated
(unknown hand, interdigital region, reverse orientation).
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different palm regions (e.g., interdigital region versus
thenar region) is 0; 3) the similarity between two minutiae
whose direction (with respect to palm orientation) differ-
ence is greater than a threshold (�=3) is 0. Fig. 16 shows the
CMC curves demonstrating the performance improvement
in the presence of ancillary information. The improvement
of rank-1 identification rate due to the use of ancillary
information indicates that such information is quite useful.
The matching speed with ancillary information is also about
2.5 times faster than without such information. The rank-20
identification rates with and without ancillary information
in Fig. 16 are the same due to the small size of the
background database.

4.5 Different Palm Regions

To examine the identification performance of different palm
regions, we computed three separate CMC curves (see
Fig. 17) for matching images from the three palm regions in
the 150 live-scan partial images against the background
database of 10,200 full prints. The thenar region was found
to be the most challenging palmprint region with a rank-1
recognition accuracy of only 52 percent, which is much
lower than the accuracy of the interdigital region
(98 percent) and the hypothenar region (86 percent). The
low accuracy for the thenar region is due to the presence of
a large number of creases in the thenar region and the
smaller size of the images from the thenar region. During
our collection of live-scan partial palmprints, we intended
to exclusively capture each of the three regions. However, it
is not easy to scan the thenar region alone without
interference of the other two regions due to the structure
of the thenar region. Therefore, only a part of the thenar
region, which is characterized by a large number of creases,
is scanned. As a result, the size of the images from the
thenar region is smaller than that of the images from the
other two regions. The superior performance of the
interdigital to the hypothenar is due to 1) the direction
field in the interdigital region is more distinctive than that
in the hypothenar region) and 2) some of the hypothenar
images in our database contain the edge of the palm where
the ridge pattern is not present. Since just using partial
palmprints from the interdigital region can achieve a rank-1

recognition rate of 98 percent, we can predict that the rank-1
recognition accuracy of full-to-full palmprint matching
(searching the full prints of the live-scan partial palmprints
against the full background database) using the proposed
algorithm should be greater than or equal to 98 percent.

4.6 Quality of Latents

We manually classified the 100 latent palmprints into three
different quality levels: good (45 latents), bad (34 latents),
and ugly (21 latents). This terminology for latent palmprint
quality is adapted from NIST SD27 [35] where latent
fingerprints were assigned the same labels. The average
number of reliable minutiae extracted in good, bad, and
ugly latents is 77, 56, and 45, respectively. An example
image with each quality level is shown in Fig. 18. Fig. 19
shows the CMC curves for matching latents with these three
quality levels against the background database of 10,200 full
prints. As expected, the matching performance of latents
with different quality levels is dramatically different. These
results indicate that, while the proposed system can deal
with latents of good quality satisfactorily, the intervention
of latent experts is still necessary in the case of latents with
bad and ugly quality.

The three latents (same as those in Fig. 18) and their
mated full prints, which were all correctly identified at
rank-1 by the proposed algorithm, are shown in Fig. 20. The
latents have been aligned with the mated full prints. Two
examples of unsuccessful match are shown in Fig. 21, where
the poor quality of both the latents and full print is the
reason for the matching failure. Unsuccessful matches can
be classified into two categories: alignment failure and
match failure. Alignment failures occur in the case of very
low-quality prints (e.g., Fig. 21a) and match failures occur in
the case of moderately low-quality prints (e.g., Fig. 21b). In
all the 31 unsuccessful matches, 67.7 percent of them belong
to alignment failure.

4.7 Fusion of Latent Palmprints

At crime scenes, multiple latent palmprints from the same
palm can be frequently found. Based on image and
nonimage information (such as the position of the latents),
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Fig. 17. CMC curves for matching live-scan partial images from three

different palm regions against the background database of 10,200 full

prints. The numbers of the partial images from the three palm regions

are the same (50).

Fig. 16. CMC curves for latent palmprint matching (100 latents) with

and without ancillary information against a background database of

160 full prints.
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latent experts can often reliably determine whether two
latents are from the same palm. To determine the
performance gain of fusing multiple latent palmprints, the
following experiment was conducted. The 100 latents in our
database were merged into 30 groups, each of which
consists of multiple latents from the same palm. If any
latent of a group leads to a successful match (identified at
rank-1), this group is deemed as a successful match. This
‘OR’ rule is consistent with the practice in forensics. Based
on this rule, the rank-1 recognition rate of searching
30 groups against the full background database is 90 per-
cent, which is much higher than the rank-1 rate (69 percent)
without fusion. All three (10 percent) latent groups that
failed to identify contain only one latent that is of poor
quality and cannot be improved by fusion.

4.8 Computational Requirements

The computational requirements of different modules of
the proposed system on a PC with Intel 3 GHz CPU and
Windows XP operating system are as follows. The average
feature extraction time is 7 seconds for partial palmprints
and 22 seconds for full palmprints. The DFT and Gabor
filtering are the most computationally demanding parts of
the feature extraction algorithm. The average matching time
between a partial and a full palmprint is 0.34 seconds.

Considering that a typical full palmprint has about
800 minutiae and a typical partial palmprint in our database
has about 150 minutiae and no prealignment stage has been
used prior to minutiae matching, this matching speed is
reasonable. We have also tested the combined descriptor in
[29] on a subset of palmprint images; its matching speed
was found to be more than 10 times slower than
MinutiaCode proposed here.

5 CONCLUSION AND FUTURE WORK

We have developed a prototype latent-to-full palmprint
matching system. A region growing algorithm was devel-
oped to robustly estimate the local ridge direction and
frequency even in the presence of overwhelming amount of
noise. Our minutiae matching algorithm is based on a new
fixed-length minutia descriptor which captures texture and
neighboring minutiae information. The proposed system
achieves rank-1 recognition rates of 78.7 and 69 percent,
respectively, in searching 150 live-scan partial and 100 latent
palmprints against a background database of 10,200 full
palmprints. Partial palmprints from the thenar region are
most difficult to match among the three palm regions.
Quality of latents has a significant effect on the matching
accuracy. Ancillary information in the form of hand type,
palm region, and palm orientation can significantly
improve both the matching accuracy and matching speed.
A simple ‘OR’ rank level fusion of multiple latents from the
same palm can improve the matching accuracy from 69 to
90 percent. Both the region growing algorithm and
MinutiaCode can be applied for fingerprint matching as
well. But, the current region growing algorithm may not be
the best choice for the high curvature region that is very
important region in fingerprints. MinutiaCode has been
proposed to increase the matching efficiency and it is not as
robust to distortion and disturbance of central minutiae as
the combined descriptor in [29].

Designing a robust latent palmprint segmentation algo-
rithm is our ongoing work. While the proposed region
growing algorithm can recover a flat direction field even
when the noise is overwhelming, it needs to be improved to
deal with noisy high curvature areas of palmprints. For
high-resolution (1,000 ppi) palmprints that are becoming
available, we are exploring how to reliably extract and
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Fig. 18. Latents with three different quality levels. (a) Good (height: 552 pixels, width: 726 pixels), (b) bad (height: 511 pixels, width: 905 pixels), and

(c) ugly (height: 473 pixels, width: 999 pixels).

Fig. 19. CMC curves for matching latents with three different quality

levels: good (45 latents), bad (34 latents), and ugly (21 latents) against

the background database of 10,200 full prints.
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utilize various types of extended features [36], especially
creases, as palmprints often contain a large number of stable
creases. Utilizing creases in latent palmprint matching is
more likely to improve the matching accuracy for latents
from the thenar region. For efficient search on a large
background database (of the order of millions), our
matching algorithm needs to be made more efficient. One
approach is to use an indexing technique based on minutia
triplets [37]. Another approach is to utilize the ancillary
information, i.e., hand type, palm region, and palm
orientation, since we have shown that such information

can improve both the matching accuracy and matching
speed. We plan to develop an algorithm to estimate the
ancillary information from latent palmprints. Besides the
interdigital, the thenar and the hypothenar regions,
the writer’s palm (the edge of palm opposite the thumb)
is also frequently found at crime scenes. As the joint part of
the palm and the back of the hand, the writer’s palm
generally contains very few minutiae. We plan to collect
images of writer’s palm and design a matcher which takes
into account the characteristics of the writer’s palm. It is
generally believed that fusion at feature level can lead to
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Fig. 20. Examples of successful latent match. (a) Latent of good quality, (b) corresponding region in the mated full print of (a), (c) the mated full print

of (a), (d) latent of bad quality, (e) corresponding region in the mated full print of (d), (f) the mated full print of (d), (g) latent of ugly quality,

(h) corresponding region in the mated full print of (g), and (i) the mated full print of (g). The matching minutiae are overlaid on the images. The

corresponding regions are marked on the full prints.

Authorized licensed use limited to: Michigan State University. Downloaded on April 21, 2009 at 20:55 from IEEE Xplore.  Restrictions apply.



better accuracy than fusion at score/rank level. We plan to
explore how to merge multiple fragmental latents from the
same palm into a single latent palmprint with larger image
size and better quality [38]. To automatically determine
whether two latents are from the same palm, we need to
develop a latent-to-latent palmprint matching algorithm.
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Fig. 21. Examples of unsuccessful latent match. In searching latents in (a) and (b) (from the thenar region of the same palm) against the background

database of 10,200 full prints, the mated full print in (c) ranks 2,108 and 102, respectively. Correct alignment cannot be found for the latent in (a) due

to unclear ridge structure. Although the correct alignment is found for the latent in (b), the matching score is low due to missing and

spurious minutiae.
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