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Abstract—Identifying suspects based on impressions of fingers
lifted from crime scenes (latent prints) is a routine procedure that
is extremely important to forensics and law enforcement agencies.
Latents are partial fingerprints that are usually smudgy, with small
area and containing large distortion. Due to these characteristics,
latents have a significantly smaller number ofminutiae points com-
pared to full (rolled or plain) fingerprints. The small number of
minutiae and the noise characteristic of latents make it extremely
difficult to automatically match latents to their mated full prints
that are stored in law enforcement databases. Although a number
of algorithms for matching full-to-full fingerprints have been pub-
lished in the literature, they do not perform well on the latent-to-
full matching problem. Further, they often rely on features that
are not easy to extract from poor quality latents. In this paper, we
propose a new fingerprint matching algorithm which is especially
designed for matching latents. The proposed algorithm uses a ro-
bust alignment algorithm (descriptor-based Hough transform) to
align fingerprints and measures similarity between fingerprints by
considering both minutiae and orientation field information. To be
consistent with the common practice in latent matching (i.e., only
minutiae are marked by latent examiners), the orientation field is
reconstructed from minutiae. Since the proposed algorithm relies
only on manually marked minutiae, it can be easily used in law
enforcement applications. Experimental results on two different
latent databases (NIST SD27 and WVU latent databases) show
that the proposed algorithm outperforms two well optimized com-
mercial fingerprint matchers. Further, a fusion of the proposed al-
gorithm and commercial fingerprint matchers leads to improved
matching accuracy.

Index Terms—Fingerprints, Hough transform, latents, local de-
scriptors, matching, Minutia cylinder code.
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I. INTRODUCTION

L AW enforcement agencies have started using fingerprint
recognition technology to identify suspects since the early

20th century [2]. Nowadays, automated fingerprint identifica-
tion system (AFIS) has become an indispensable tool for law
enforcement agencies.
There are essentially three types of fingerprints in law en-

forcement applications (see Fig. 1): (i) rolled, which is obtained
by rolling the finger “nail-to-nail” either on a paper (in this
case ink is first applied to the finger surface) or the platen of
a scanner; (ii) plain, which is obtained by placing the finger
flat on a paper or the platen of a scanner without rolling; and
(iii) latents, which are lifted from surfaces of objects that are
inadvertently touched or handled by a person typically at crime
scenes. Lifting of latents may involve a complicated process,
and it can range from simply photographing the print to more
complex dusting or chemical processing [2].
Rolled prints contain the largest amount of information about

the ridge structure on a fingerprint since they capture the largest
finger surface area; latents usually contain the least amount of
information for matching or identification because of their size
and inherent noise. Compared to rolled or plain fingerprints, la-
tents are smudgy and blurred, capture only a small finger area,
and have large nonlinear distortion due to pressure variations.
Due to their poor quality and small area, latents have a signifi-
cantly smaller number of minutiae compared to rolled or plain
prints (the average number of minutiae in NIST Special Data-
base 27 (NIST SD27) [3] images is 21 for latents versus 106 for
their mated rolled prints). These characteristics make the latent
fingerprint matching problem very challenging.
Fingerprint examiners who perform manual latent fingerprint

identification follow a procedure referred to as ACE-V (anal-
ysis, comparison, evaluation and verification) [4]. Because the
ACE-V procedure is quite tedious and time consuming for latent
examiners, latents are usually matched against full prints of a
small number of suspects identified by other means, such as eye
witness description orM.O. (mode of operation).With the avail-
ability of AFIS, fingerprint examiners are able to match latents
against a large fingerprint database using a semiautomatic pro-
cedure that consists of following stages: (i) manually mark the
features (minutiae and singular points) in the latent, (ii) launch
an AFIS search, and (iii) visually verify the top- ( is typi-
cally 50) candidate fingerprints returned by AFIS. The accuracy
and speed of this latent matching procedure is still not satisfac-
tory. It certainly does not meet the “lights-out mode” of oper-
ation desired by the FBI and included in the Next Generation
Identification [5].
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Fig. 1. Three types of fingerprint impressions. Rolled and plain fingerprints are
also called full fingerprints. (a) Rolled; (b) plain; (c) latent.

For fingerprint matching, there are twomajor problemswhich
need to be solved. The first is to align the two fingerprints to be
compared and the second is to compute a match score between
the two fingerprints. Alignment between a latent and a rolled
print is a challenging problem because latents often contain a
small number of minutiae and undergo large skin distortion. To
deal with these two problems, we propose the descriptor-based
Hough transform (DBHT), which is a combination of the gener-
alized Hough transform and a local minutiae descriptor, called
Minutia Cylinder Code (MCC) [6]. The MCC descriptor im-
proves the distinctiveness of minutiae while the Hough trans-
form method can accumulate evidence as well as improve the
robustness against distortion.Match score computation between
a latent and a rolled print is also challenging because the number
of mated minutiae is usually small. To address this issue, we fur-
ther consider orientation field as a factor in computing match
score. Since we only have manually marked minutiae for la-
tents, a reconstruction algorithm is used to obtain orientation
field from minutiae.
The proposed matcher was tested on two latent fingerprint

databases, NIST SD27 database and West Virginia University
latent fingerprint database (WVU LFD). Two COTS matchers
and a state-of-the-art noncommercial fingerprint matching algo-
rithm (MCC SDK) were also evaluated on the same databases.
Our algorithm was found to perform better than the other three
matchers being compared on both the databases. Extensive ex-
periments on fusion of matchers and effect of fingerprint quality
were also conducted.
The rest of the paper is organized as follows: in Section II, re-

lated work is reviewed; in Section III, all steps of our proposed
method are described; in Section IV, our experimental results
are presented and discussed; in Section V, we present our con-
clusions and future work.

II. RELATED WORK

In this section, we review related work in four areas: pub-
lished research on full fingerprint matching,1 published research
on latent fingerprint matching, evaluation of latent fingerprint
technologies (ELFT), and evaluation of latent examiners.

A. Full Fingerprint Matching

The majority of the algorithms developed for fingerprint
matching are based on minutiae. Although minutiae carry a
great amount of discriminatory information, in some cases

1See Chapter 4 in [7] for a more comprehensive review of this topic.

additional features may help increase the accuracy. Most pro-
posed algorithms for fingerprint matching that use nonminutiae
features also use minutiae. For example, some algorithms
combine ridge orientation with minutiae information either at
feature level by including ridge orientation information in local
minutiae descriptors [8], [9] or at score level by combining
scores from minutiae matching and global orientation field
matching [9], [10].
Several recent studies on fingerprint matching have focused

on the use of local minutiae descriptors [6], [8], [9], [11]–[14].
In most of these studies, the initial step consists of using local
minutiae descriptors to obtain the alignment between two
fingerprints by considering the most similar minutiae pair;
then, a global consolidation step is performed to obtain a better
matching performance. Since these algorithms are usually
tuned and evaluated using FVC databases (plain fingerprints)
or NIST Special Database 4 (rolled fingerprints), their perfor-
mances on latent fingerprints are unknown.

B. Latent Fingerprint Matching

Recent research and development efforts on latent finger-
prints can be classified into three streams according to the
manual input required from fingerprint examiners: consistent
with existing practice, increasing manual input, or reducing
manual input. Because of large variations in latent fingerprint
quality and specific requirements of practical applications
(crime scenes, border crossing points, battle fields), each of the
three streams has its value.
Improved latent matching accuracy has been reported by

using extended features, which are manually marked for latents
[15]–[18]. However, marking extended features (orientation
field, ridge skeleton, etc.) in poor quality latents is very
time-consuming and might be only feasible in rare cases. Thus,
some studies have concentrated on latent matching using a
reduced amount of manual input, such as manually marked re-
gion of interest (ROI) and singular points [19], [20]. However,
only a small portion of latents can be correctly identified using
this approach. Hence our proposed matcher takes manually
marked minutiae as input and, therefore, it is consistent with
existing practice. There have also been some studies on fusion
of multiple matchers [21] or multiple latent prints [22].

C. Evaluation of Latent Fingerprint Technologies

NIST has been conducting a multiphase project on Evalua-
tion of Latent Fingerprint Technologies (ELFT) to evaluate la-
tent feature extraction and matching techniques [23]. Since all
participating algorithms in ELFT are proprietary, we have no
information on the details of these algorithms. The purpose of
ELFT-Phase I was to assess the feasibility of latent fingerprint
identification systems using Automated Feature Extraction and
Matching (AFEM), while the purpose of ELFT-Phase II was
to actually measure the performance of state-of-the-art AFEM
technology and evaluate whether it was viable to have those sys-
tems in the operational use to reduce the amount of time needed
by latent examiners to manually mark latents thereby increasing
the throughput.
In Phase I, latent images were selected from both opera-

tional and nonoperational scenarios. The most accurate system
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Fig. 2. Latent fingerprints of three different quality levels in NIST SD27.
(a) Good; (b) bad; (c) ugly.

showed a rank-1 accuracy of 80% (100 latents against 10,000
rolled prints) [24]. In Phase II, latent images were selected from
only operational environments. The rank-1 accuracy of the
most accurate system was 97.2% (835 latents against 100,000
rolled prints) [25]. These accuracies cannot be directly com-
pared since the Phase I and Phase II evaluations used different
latent databases. Furthermore, the quality of latents used in
Phase II is better compared to Phase I. As shown in Fig. 2, the
quality of latents varies significantly.
The impressive matching accuracy reported in ELFT does not

support that the current practice of manually marking minutiae
in latents should be changed. Although latents in Phase II were
selected from operational scenarios, they represent successful
identifications in actual case examinations using existing AFIS
technology. In the ACE-V process, when the examiner analyzes
the latent image he/she decides whether the latent has value for
exclusion only, value for individualization or no value. If a la-
tent is classified as of no value, no comparison is performed. If
the latent is classified in one of the other two categories, then
comparisons are performed and the examiners can make an in-
dividualization, an exclusion, or determine the comparison to
be inconclusive. So the latents which are successfully identified
constitute only a small part of all latents, which are of reason-
able quality. For this reason, in the ELFT-Phase II report [25]
the authors concluded that only a limited class of latents can
benefit from AFEM technology.
NIST has conducted another evaluation of latent fingerprint

technologies using extended feature sets manually marked by
latent examiners [26]. In this evaluation, the purpose was to in-
vestigate the matching accuracy when (i) latent images and/or
(ii) sets of manually marked features were provided. This eval-
uation suggested that the highest accuracy was obtained when
the input included both the latent image and manually marked
features.

D. Evaluation of Latent Examiners

A latent examiner can be viewed as a slow but very accu-
rate “matcher”. Because they are much slower than automatic
matchers, quantitatively estimating the accuracy of latent exam-
iners is not easy. Hence the numbers of fingerprint pairs used
in several “black box” tests of latent examiners are not large
[27]–[29]. Although the exact numbers reported in these studies
may not reflect the real practice, the qualitative conclusions are
very useful. It was found that latent examiners’s conclusion are
not always in agreement, especially in the case of poor quality

latents [27]. In addition, the same examiner can change his/her
conclusions on the same fingerprint pair at a later time [28].
These inconsistences may increase under bias [29].
These issues associated with including latent examiners in the

latent identification process will only be solved when the au-
tomatic matcher can outperform latent examiners in accuracy.
No matter how successful the application of automatic finger-
print recognition technologymight be, we cannot say fingerprint
matching is a “solved problem” before we can reach the goal of
outperforming latent examiners.

III. LATENT MATCHING APPROACH

Given a latent fingerprint (with manually marked minutiae)
and a rolled fingerprint, we extract additional features from both
prints, align them in the same coordinate system, and compute
a match score between them. These three steps are described in
the following subsections. An overview of the proposed algo-
rithm is shown in Fig. 3.

A. Feature Extraction

The proposed matching approach uses minutiae and orienta-
tion field from both latent and rolled prints. Minutiae are man-
ually marked by latent examiners in the latent, and automati-
cally extracted using commercial matchers in the rolled print.
Based on minutiae, local minutiae descriptors are built and used
in the proposed descriptor-based alignment and scoring algo-
rithms. Orientation field is reconstructed fromminutiae location
and direction for the latents as proposed in [30], and orientation
field is automatically extracted from the rolled print images by
using a gradient-based method. Local minutia descriptors and
orientation field reconstruction are presented in the following
subsections.
1) Local Minutia Descriptor: Local descriptors have been

widely used in fingerprint matching (e.g. [6], [8], [11], [12],
[18]). Feng and Zhou [31] evaluated the performance of local
descriptors associated with fingerprint matching in four cate-
gories of fingerprints: good quality, poor quality, small common
region, and large plastic distortion. They also coarsely classi-
fied the local descriptors as image-based, texture-based, and
minutiae-based descriptors. Their results show that the minu-
tiae-based descriptor, Minutia Cylinder Code (MCC) [6], per-
forms better in three of the four categories, and texture-based
descriptor performs better for the small common region cate-
gory.
A minutia cylinder records the neighborhood information of

a minutia as a 3-D function. A cylinder contains several layers
and each layer represents the density of neighboring minutiae
along the corresponding direction. The cylinder can be con-
catenated as a vector, and therefore the similarity between two
minutia cylinders can be efficiently computed. Fig. 4(b) shows
the sections of two valid cylinders associated with the two cor-
responding minutiae (in the latent and in the rolled print) indi-
cated in Fig. 4(a). A more detailed description of the cylinder
generation and of the similarity between two cylinders can be
found in [6].
2) Orientation Field Reconstruction: Orientation field

can be used in several ways to improve fingerprint matching
performance, such as by matching orientation fields directly
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Fig. 3. Overview of the proposed approach.

Fig. 4. Sections of two cylinders associated with the two corresponding minu-
tiae, one in latent and other in rolled print. (a) Latent and corresponding rolled
print with a mated minutiae pair indicated. (b) Sections of the cylinder corre-
sponding to the minutia indicated in the latent (first row) and in the rolled print
(second row).

and fusing scores with other matching scores, or by enhancing
the images to extract more reliable features. Orientation field
estimation using gradient-based method is very reliable in good
quality images [7]. However, when the image contains noise,
this estimation becomes very challenging. A few model-based
orientation field estimation methods have been proposed
([32]–[34]) that use singular points as input to the model. In
the latent fingerprint matching case, it is very challenging to
estimate the orientation field based only on the image due to the
poor quality and small area of the latent. Moreover, if singular
points are to be used, they need to be manually marked (and
they are not always present) in the latent fingerprint image.

Fig. 5. Latent fingerprint in NIST SD27 and the reconstructed orientation field
overlaid on the latent.

Hence, we use a minutiae-based orientation field reconstruc-
tion algorithm proposed in [30] which takes manually marked
minutiae in latents as input and outputs an orientation field. This
approach estimates the local ridge orientation in a block by av-
eraging the direction of neighboring minutiae. The orientation
field is reconstructed only inside the convex hull of minutiae.
Since the direction of manually marked minutiae is very reli-
able, the orientation field reconstructed using this approach is
quite accurate except in areas absent of minutiae or very close
to singular points (see Fig. 5 for an example). For rolled finger-
prints, orientation field is automatically extracted using a gra-
dient-based method [7].

B. Alignment

Fingerprint alignment or registration consists of estimating
the parameters (rotation and translation) that align two finger-
prints. There are a number of features that may be used to esti-
mate alignment parameters between two fingerprints, including
singular points, orientation field, ridges, and minutiae. There are
also a number of methods to align two fingerprints: Generalized
Hough Transform, local descriptors, energy minimization, etc.2

In the latent matching case, singularities are not always
present in latents, making it difficult to base the alignment of
the fingerprint on singular points alone. To obtain manually
marked orientation field is expensive, and to automatically ex-
tract orientation field from a latent image is a very challenging

2Refer to Chapter 4 of [7] for details and published work.
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problem. Since manually marking minutiae is a common prac-
tice for latent matching, our approach to align two fingerprints
is based on minutiae.
Local descriptors can also be used to align two fingerprints. In

this case, usually the most similar minutiae pair is used as a base
for the transformation parameters (rotation and translation), and
the most similar pair is chosen based on a measure of similarity
between the local descriptors of the minutiae pair.
Ratha et al. introduced an alignment method for minutiae

matching that estimates rotation, scale, and translation param-
eters using a Generalized Hough Transform [35]. Given two
sets of points (minutiae), a matching score is computed for each
transformation in the discretized set of all allowed transforma-
tions. For each pair of minutiae, one minutia from each image
(latent or full), and for given scale and rotation parameters,
unique translation parameters can be computed. Each parameter
receives “a vote” that is proportional to the matching score for
the corresponding transformation. The transformation that gives
the maximum score is considered the best one. In our approach,
the alignment is conducted in a similar way, but the evidence for
each parameter is accumulated based on the similarity between
the local descriptors of the two involved minutiae, with the sim-
ilarity and descriptor being the ones described in Section III-A1.
The descriptor-based Hough transform alignment algorithm

takes as input two sets of minutiae, and , and two sets of
local descriptors and , one set corresponding to the latent
and one to the rolled print. Each set contains a local descriptor
for each minutia. A high level algorithm of the proposed ap-
proach to align two fingerprints given the sets of minutiae and
of local descriptors is shown in Algorithm 1.

Algorithm 1 Descriptor-based Hough Transform.

Input: ,
, , and

Output: A set of 10 rigid transformation matrices
Initialize the accumulator array
Compute local minutiae descriptor similarity for
every possible minutiae pair using and
for all possible pair do

Compute their direction difference
if then

Compute translation parameters
and increase the voting for this set of
alignment parameters:

(1)

end if
end for
Smooth using a Gaussian low-pass filter
Find 10 highest peaks in
for each peak do

Compute a rigid transformation between two
fingerprints using minutiae pairs that contributed
to peak and its immediate neighborhood

if the estimated rigid transformation is not reliable
then

Repeat the voting in peak and its
neighborhood using a refined range
Find the highest peak in the small
neighborhood of peak

end if
end for

Given two sets of minutiae, one from the latent and the other
from the rolled print being compared, translation and rotation
parameters can be obtained for each possible minutiae pair (one
minutia from each set). Let and be
the minutiae sets for latent and rolled prints, respectively, cen-
tered at their means. Then, for each pair of minutiae, we have

(2)

(3)

Since the scale (resolution) is fixed in fingerprint matching,
unique translation parameters can be obtained for each pair
based on the rotation difference between the two minutiae in
the pair. The translation and rotation parameters need to be
quantized to the closest bins. After the quantization, evidence
is accumulated in the corresponding bin based on the similarity
between the local minutiae descriptors. The assumption here is
that true mated minutiae pairs will vote for very similar sets of
alignment parameters, while nonmated minutiae pairs will vote
randomly throughout the parameter space. As a result, the set
of parameters that presents the highest evidence is considered
the best one. For robustness, ten sets of alignment parameters
with strong evidence are considered.
In order to make the alignment computationally efficient and

also more accurate, we use a two-step approach to compute the
alignment parameters for a fingerprint pair. The first step is to
perform the voting using the Descriptor-based Hough Trans-
form. If the bins are too small, the true peak in the Hough Trans-
form space cannot receive sufficient votes. On the other hand,
if the bins are too large, they will not provide accurate align-
ment parameters. The strategy we adopted is to keep the bins
relatively large, and to include a second step to compute reli-
able alignment parameters. This second step consists of using
the minutiae pairs that vote for a peak to compute a rigid trans-
formation between the two fingerprints. The use of voting minu-
tiae pairs to compute the transformation gives more accurate
alignment parameters than directly using the peak parameters.
In cases where a rigid transformation matrix cannot be reliably
obtained, the voting is repeated inside a neighborhood of the
corresponding peak, but with a smaller bin. A peak is chosen
from this refined Hough Transform space, and used as the align-
ment parameters.

C. Similarity Measure

For each of the 10 different alignments, a matching score be-
tween two fingerprints is computed by comparing minutiae and
orientation fields. Themaximum value of the 10 scores is chosen
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as the final matching score between the two fingerprints. The de-
tails for computing matching scores of minutiae and orientation
field are given below.
To compute minutiae matching score under a given align-

ment, we first find the corresponding minutiae pairs (one in the
latent, one in the rolled print). For this purpose, we align the
minutiae sets of the two fingerprints and then find an one-to-one
matching3 between the two minutiae sets using a greedy al-
gorithm. For each minutia in the latent, a set of candidate
minutiae in the rolled print is found. A minutia in the rolled
print is called a candidate if it has not yet been matched to any
minutia, and both its location and angle are sufficiently close
to . The threshold values for spatial distance and for
angle distance were determined empirically. Among all candi-
dates, the one closest to in location is chosen as the matching
minutia of .
After the corresponding minutiae are found, we compute a

matching score between the latent and the rolled print. Suppose
that pairs of matching minutiae between the latent and the
rolled print are found. Theminutiae matching score between
the two fingerprints is given by

(4)

where denotes the similarity between the minutia
cylinder codes of the th pair of matched minutiae,

maps the spatial distance
of the th pair of matched minutiae into a similarity score, and
denotes the number of minutiae in the latent.
According to (4), the matching score depends on the number

of matching minutiae, which itself is affected by the distance
threshold . However, due to large distortion present in many
latents, it is difficult to choose an appropriate value for .
While a large threshold value will lead to more matching minu-
tiae for distorted mated pairs, the number of matching minu-
tiae for nonmated pairs will increase too. Hence, we use two
different values (15 pixels and 25 pixels) for and for each
threshold, a set of matching minutiae is found and a matching
score is computed using (4). The mean of the two scores is used
as the minutiae matching score. Fig. 6 shows an example in
which the score of the genuine pair is slightly reduced when
the smaller threshold is used compared to the larger threshold,
while the score of the latent and the rank-1 nonmate4 using large
threshold is greatly reduced when the smaller threshold is used.
We use a simple orientation field matcher that basically mea-

sures the consistency of the orientation differences. If we use
Euclidean distance, for example, to measure the orientation dif-
ferences, a small error in the rotation will contribute a small
amount to the orientation difference for every block being com-
pared, resulting in a large overall difference or small similarity
score. In [36], the authors proposed a distance measure for ori-
entation field matching that can handle small rotation errors.

3One-to-one matching means that each minutia in the latent is matched to at
most one minutia in the rolled print, and vice versa.
4The rank-1 nonmate refers to the nonmated rolled print whose match score

with the latent ranks first among all rolled prints in the database.

Given the aligned latent orientation field and the rolled ori-
entation field , each containing blocks, namely and

, the similarity between the two orientation fields is given
by

(5)

where is 1 if both corresponding blocks are valid, and 0
otherwise.
The overall matching score is given by

(6)

where the weight is empirically set as 0.4. Fig. 7 shows one
example in which the fusion of minutiae matching and orien-
tation field matching scores helps improve the retrieval rank5

of the true mate. The retrieval rank of the true mate improved
from 2 to 1 after the fusion, while the retrieval rank of the rank-1
nonmate according to minutiae matcher was changed from 1 to
3 after the fusion.

IV. EXPERIMENTAL RESULTS

In this section, we first provide a description of the two
databases used in our experiments, and the algorithms to be
compared with the proposed algorithm. Then we report the
performances of alignment and matching. This is followed by
the fusion of matchers and the effect of fingerprint quality.
Finally, we discuss the issue of computational cost.

A. Latent Databases

Matching experiments were conducted on two different la-
tent fingerprint databases: NIST Special Database 27 (NIST
SD27) and West Virginia University Latent Fingerprint Data-
base (WVU LFD).
1) NIST Special Database 27 (NIST SD27): NIST Special

Database 27 is the only publicly available database comprising
latent fingerprints from operational scenarios (latents collected
at crime scenes). It consists of 258 latent fingerprint images and
258 corresponding (mated) rolled prints. Both latents and rolled
prints are available at 500 ppi. The quality of the latents in NIST
SD27 varies, reflecting the operational (casework) quality.
NIST SD27 contains latent prints of three different qualities,

termed “good”, “bad”, and “ugly”, which were classified by la-
tent examiners. Some examples of latents from those three qual-
ities are shown in Fig. 2. Although this classification of latent
prints as “good”, “bad”, and “ugly” is subjective, it has been
shown that such a classification is correlated with the matching
performance [15].
Another indicator of fingerprint quality that affects the

matching performance is the number of minutiae in the latent
print [15]. Based on the number of minutiae in latents in
NIST SD27, Jain and Feng [15] classified latents in NIST SD27

5Retrieval rank of a rolled fingerprint refers to its rank in the whole candidate
list which is sorted in the decreasing order of matching score with the latent.
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Fig. 6. Latent print in which the matching score of the genuine pair is slightly reduced when the small threshold value is used compared to the large threshold
value, while the impostor score is greatly reduced. (a)–(c) shows the latent, the true mate, and the rank-1 nonmate according to large threshold, respectively.
(d)–(g) shows latent minutiae that were matched to rolled print minutiae in the following cases: (d) true mate using small threshold; (e) true mate using large
threshold; (f) nonmate using small threshold; and (g) nonmate using large threshold. In (d)–(g), the scores corresponding to each case are included.

Fig. 7. Latent print identified at a higher rank after fusing minutiae matching scores with orientation field matching scores. The rank of the true mate was improved
from 2 to 1 after the fusion, and the rank of the highest ranked nonmate was 3 after the fusion. (a)–(c) show minutiae and the image of (a) a latent, (b) its true
mate, and (c) the highest ranked nonmate according to minutiae matching. (d) and (f) show latent minutiae and orientation field (in blue) aligned with minutiae and
orientation field of the true mate. (e) and (g) show latent minutiae and orientation field (in blue) aligned with minutiae and orientation field of the rank-1 nonmate.

into three groups: large , medium , and
small , containing 86, 85, and 87 prints, respectively.
We present our experimental results for each of the six quality
groups based on subjective quality and the number of minutiae.

We use manually marked minutiae—provided with NIST
SD27—as features in latent fingerprints. For rolled fingerprint
images, the minutiae are automatically extracted using the two
commercial matchers.
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Fig. 8. Latent and its corresponding rolled print in WVU latent database. The
NFIQ quality of the rolled print is 4.

2) West Virginia University Latent Database (WVU LFD):
West Virginia University Latent Database6 consists of 449 latent
fingerprint images collected in a laboratory environment and
4,740 rolled prints, including the 449 mated rolled prints of the
449 latents. The latent images in this database are at 1000 ppi,
and they were converted to 500 ppi for our experiments. Fig. 8
shows a latent with its corresponding rolled print in the WVU
latent database. Manually marked minutiae were provided with
these latents. Minutiae were automatically extracted from the
rolled prints using the two commercial matchers.
There is no subjective quality value assigned to the latents in

the WVU database. One of the objective quality measure de-
pends on the number of minutiae in the latent, so any latent can
be assigned an objective quality. If we apply the same objective
quality classification scheme as in NIST SD27 to WVU data-
base, we obtain 208, 80, and 161 latent fingerprints in the objec-
tive qualities of large, medium, and small number of minutiae,
respectively.
The two latent databases, NIST SD27 and WVU, have dif-

ferent characteristics: most of the latent images in NIST SD27
contain significant background noise, while in WVU latent im-
ages, there is a uniform background in most latents. However,
overall, the quality of the rolled prints inWVUdatabase is worse
than the quality of rolled prints in NIST SD27. This could be ex-
plained because in the operational database such as NIST SD27,
rolled prints were captured by experienced law enforcement of-
ficers which may not be the case for the WVU database. If the
rolled prints corresponding to the latents are of poor quality, the
number of mated minutiae is small and, therefore, it is much
more challenging to identify the mates of the latents at rank-1.
Fig. 9 shows the histograms of NFIQ quality [37] of the rolled
prints which have corresponding latents in NIST SD27 and in
WVU databases (258 and 449 rolled prints, respectively). NFIQ
defines five quality levels in the range [1, 5] with 1 indicating
the highest quality.

B. Commercial Matchers

In order to compare the performance of the proposed la-
tent fingerprint matcher, we used two commercial fingerprint

6To requestWVU latent fingerprint database, please contact Dr. Arun A. Ross
(http://www.csee.wvu.edu/~ross/) at Integrated Pattern Recognition and Bio-
metrics Lab (http://www.csee.wvu.edu/~ross/i-probe/).

Fig. 9. Histograms of NFIQ values of rolled prints in NIST SD27 and WVU
databases.

Fig. 10. Alignment accuracy: percentage of correctly aligned latents versus
misalignment threshold.

matchers, referred to as COTS1 and COTS2. In addition, we
also used the algorithm presented in [6], [38] as a benchmark,
for which the SDK was provided by the authors (MCC SDK).
It should be pointed out that none of the three matchers were
designed specifically for the latent matching case. But, despite
our efforts, we could not find any latent fingerprint matcher
SDK or a forensic AFIS that is available for evaluation pur-
poses by a research lab. Still, the matchers we are using in
our comparative study are well known: one of the COTS
(VeriFinger) [39] has been widely used as a benchmark in
fingerprint publications, and MCC is one of the best performing
algorithms in FVC-onGoing [40].

C. Alignment Performance

In order to estimate the alignment error, we use ground truth
mated minutiae pairs from NIST SD27, which are marked by
fingerprint examiners, to compute the average distance between
the true mated pairs after alignment.7 If the average Euclidean
distance for a given latent is less than a prespecified number of
pixels in at least one of the ten best alignments (peaks in the
Descriptor-Based Hough Transform), then we consider it a cor-
rect alignment. This alignment performance is shown in Fig. 10

7Here we use the term ground truth minutiae to refer to minutiae which are
marked by latent examiners by looking at the latent and the corresponding rolled
print at the same time, and we use the term manually marked minutiae to refer
to minutiae which are also marked in the latent by latent examiners, but without
looking at the true mate (rolled print).
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Fig. 11. Examples in which descriptor-based Hough transform (DBHT) alignment is better than generalized Hough transform (GHT) alignment. From left to
right, latent with manually marked minutiae, corresponding rolled print with automatically extracted minutiae, rolled print with latent minutiae aligned by GHT,
and aligned by DBHT.

for the NIST SD27 latent database. The x-axis shows the mis-
alignment threshold,8 and the y-axis shows the percentage of
correctly aligned latent fingerprints in at least one of the ten top
alignments. For comparison, we show the accuracy of aligning
the minutiae sets based on the peaks of the Generalized Hough
Transform (GHT) and based on the most similar minutiae pair
(according to the MCC similarity).9 Two latent alignment ex-
amples are given in Fig. 11 to show the alignment results by
DBHT and GHT. As we can see from this figure, the proposed
algorithm is superior to GHT in challenging cases where the
number of minutiae is small.
There are very few errors in alignment if we set the threshold

value of misalignment as 20 pixels. One of the reasons for these
failure cases is there are a very small number of true mated
minutia pairs in the overlapping area between the latent and
mated rolled print. As a result, not many true mated pairs vote
for the correct alignment parameters. The absence of true mated
pairs is due to a limited number of minutiae in latents and the
error in minutiae detection in the rolled print. One such example
is shown in Fig. 12. Blue squares represent manually marked
minutiae in the latent print (left), red squares represent auto-
matically extracted minutiae in the rolled print (right), and the
green line indicates the only true mated minutiae pair available
for this (latent, rolled) image pair.

D. Matching Performance

In the identification scenario, the size of the background data-
base (or gallery) significantly affects the identification accu-
racy. Therefore, to make the problem more challenging and re-
alistic, we built a large background database of rolled prints

8The alignment is deemed as incorrect if the average distance between mated
minutiae pairs after alignment is larger than this threshold.
9In this case, each alignment is based on one of the ten most similar minutiae

pairs.

Fig. 12. Example of alignment error due to the small number of true mated
minutia pairs in the overlapping area between a latent and its mated rolled print.
Note that there is only one aligned minutiae pair here.

by including the 258 mated rolled prints from NIST SD27, the
4,740 rolled prints from WVU database, and we added 27,000
rolled prints from the NIST Special Database 14 [41]. There-
fore, the total number of rolled prints in the background data-
base is 31,998 from a combination of the rolled prints in the
three databases.
Minutia Cylinder Code (MCC) is used as local descriptor

for minutiae in our experiments. The local descriptors are built
using MCC SDK, which uses the bit-based implementation (bi-
nary descriptors) [38]. The parameters used for MCC are set as
suggested in [38], with the number of cells along the cylinder
diameter as 16 . In our method, the local descriptor simi-
larities are used in both the alignment and scoring process, as
described in Section III.
Our matcher and MCC SDK take minutiae as input. In the

latent cases, we use manually marked minutiae. For the rolled
prints, we used both the COTS to extract minutiae. The perfor-
mance of the proposed matcher using minutiae extracted from
rolled prints using COTS2 is slightly worse on the NIST SD27
database compared to the performance using minutiae extracted
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Fig. 13. Performance of COTS2, MCC SDK, and Proposed Matcher when
the union of manually marked minutiae (MMM) extracted from latents and
automatically extracted minutiae by COTS2 from rolled prints is input to the
matchers. (a) NIST SD27; (b) WVU LFD.

using COTS1; however, for WVU LFD, using COTS2 minutiae
yielded a significantly better performance compared to the per-
formance using minutiae extracted using COTS1. This demon-
strates that the performance of COTS can be significantly af-
fected by the image quality. Overall, since minutiae extracted
from COTS2 resulted in a better performance, we only report
the results in whichminutiae are extracted using COTS2. Fig. 13
shows the performance of COTS2, MCC SDK, and the pro-
posed matcher using manually marked minutiae in latents and
automatically extractedminutiae by COTS2 in rolled prints. The
proposed approach outperforms the other fingerprint matchers
used in our study.
It is worth noticing that the matching performance on WVU

LFD when manually marked minutiae are used is generally
worse than the performance on NIST SD27. We believe this
is due to a number of factors: (i) there are 14 latents with less
than 3 manually marked minutiae in WVU LFD, while the
minimum number of manually marked minutiae in NIST SD27
latents is 5; (ii) while the genuine (latent, rolled) pairs were
provided with the database, after we examined the images in the
WVU database we identified some that appeared to be wrongly
paired; (iii) the quality of the mates (rolled prints) is slightly

Fig. 14. Performance comparison using manually marked minutiae (MMM)
and automatically extracted minutiae from latents. (a) NIST SD27; (b) WVU
LFD.

worse in WVU LFD than in NIST SD27. We did not exclude
any of the latents or (latent, rolled) mated pairs from the WVU
database (from cases (i) and (ii)) to allow future comparisons
by other researchers with our results.
The performance of the COTS matchers, each using its

own proprietary templates for latents (including automatically
extracted minutiae and possibly other features), is worse than
using manually marked minutiae for both the databases. How-
ever, the gap between the performances of manually marked
minutiae and of proprietary template is much larger in the case
of NIST SD27 than in the case of WVU latent database. This
is probably due to the characteristics of the database. Note
that WVU is a laboratory collected database and so most of
the latents in it do not contain background noise. On the other
hand, in NIST SD27 the images are of operational casework
quality and most of the latents contain a large amount of back-
ground noise, which poses a challenge in automatic feature
extraction. Fig. 14 shows the performance of the two COTS
matchers using both manually marked minutiae and proprietary
templates (automatically extracted minutiae) for NIST SD27
and WVU databases.
There have been several studies on latent matching reported

in the literature. Almost all of them are based on NIST SD27.
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Fig. 15. Latent prints correctly identified at rank-1 by the proposed matcher but ranked below 20 by COTS2.

Fig. 16. Latent prints whose mates were not retrieved in the top 20 candidates by the proposed matcher but correctly identified at rank-1 by COTS2 matcher.

TABLE I
COMPARISON OF RANK-1 ACCURACIES REPORTED IN THE LITERATURE FOR

THE NIST SD27 DATABASE

SP: Singular points. ROI: Region of interest. RQM: Ridge quality map.
RFM: Ridge flow map. RWM: Ridge wavelength map.

Table I shows most of the reported results on the matching per-
formance for NIST SD27 database. There is no reported per-
formance on the WVU latent database. It should be noticed that
most of the reported results cannot be directly compared mainly
because of two factors: (i) the amount of input information re-
lated to the latent fingerprint, which could be automatically ex-
tracted features, or manually marked features such as minutiae,
singular points, quality map, etc., or a combination of both;
and (ii) some differences in the composition of the background
databases and their size. In Table I we show the reported rank-1
accuracy, the manual input (for latents) used in each method,
and the size of the background database used. One of the re-
sults that could be almost directly compared to our results is the
reported rank-1 accuracy (34.9%) in [15] when only manually
marked minutiae is used as input, which is the same scenario as
in our proposed matcher. The proposed matcher achieves a sig-
nificantly higher rank-1 accuracy of 53.5% with similar back-
ground database size and images as in [15].
Fig. 15 shows examples of latent prints in WVU LFD cor-

rectly identified at rank-1 by the proposedmatcher. Even though
the number of minutiae in the latents is small, they could still be
correctly identified. The ranks of the true mates using COTS2
matcher are 1871 and 181, respectively.
Fig. 16 shows examples of latent prints in NIST SD27 and

in WVU LFD whose mated full prints are not included in the
top 20 candidates by the proposed matcher, but were correctly

Fig. 17. Score-level fusion of the proposed matcher and COTS2 for NIST
SD27 and WVU databases. (a) NIST SD27; (b) WVU LFD.

identified at rank-1 by COTS2 matcher. The ranks of these la-
tents using the proposed matcher are 3626 and 64, respectively.
In the first latent, a large number of minutiae do not have mated
minutiae due to missing minutiae in the rolled print, and there-
fore the score is not as high as for impostor pairs in which many
more minutiae could be matched. In the second case, we can
see that the minutiae marked in the latent are relatively sparse,
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Fig. 18. Latent print mate from NIST SD 27 identified at rank 1 after score-level fusion of COTS2 and proposed matcher. The first row shows (a) a latent, (b) its
true mate, (c) rank-1 nonmate by the proposed matcher, and (d) rank-1 nonmate by COTS2 matcher. The second row shows (e) latent minutiae, (f)–(h) latent
minutiae (in blue) aligned by the proposed matcher to the rolled print minutiae shown in (b)–(d). In (b)–(d), the numbers in parentheses indicate the ranks that each
rolled print was retrieved by the proposed matcher and COTS2 matcher, respectively.

while the minutiae automatically extracted in the rolled print are
denser. These facts make local neighborhoods (and descriptors)
very different between the latent and its true mate, leading to a
low match score.

E. Fusion of Matchers

We noticed that the twomost accurate matchers (the proposed
and COTS2) perform differently on different latents, meaning
they are complementary to each other. This suggests that a fu-
sion of these two matchers would result in a better performance.
We performed a score-level fusion of these two matchers. The
scores from COTS2matcher were normalized to the range [0, 1]
for each latent (local min-max normalization) because local nor-
malization was shown to perform better than global normal-
ization in the identification scenario [43]. Although the pro-
posed matcher and COTS2 matcher have similar strength, the
fusion weights selected (0.8 and 0.2) were not equal because
of the large range of the scores for the COTS2 matcher. The
performance improvement obtained by the score-level fusion of
COTS2 matcher and the proposed matcher is shown in Fig. 17
for both the databases. Some examples in which the fusion of
the two matchers (COTS2 and proposed matcher) improved the
ranks of the true mates compared to the retrieval ranks by the
individual matchers separately are shown in Figs. 18 and 19.
Note that like those mated pairs (shown in Fig. 15 and Fig. 16)
identified at rank-1 by either one the two matchers, mated pairs
(shown in Fig. 18 and Fig. 19) which both matchers failed to
identify at rank-1 also benefit from the fusion. The reason is the

scores of nonmated pairs given by the two matchers are not con-
sistent.
Improvements were also obtained by combining the proposed

matcher and other matchers in our study (COTS1 and MCC
SDK), but they are not reported here because the fusion per-
formance with COTS2 was consistently better than the perfor-
mance of COTS1 and of MCC SDK. We also performed rank-
level fusion using the highest rank and Borda Count methods
[44]. However, since score-level fusion showed a better perfor-
mance, we only report here results for score-level fusion.

F. Effect of Fingerprint Quality

In Section IV-A, we discuss how the quality of the latent fin-
gerprints can be measured subjectively (assigned by latent ex-
perts as in NIST SD27) and objectively (based on the number
of minutiae available). Rank-1 accuracies are shown for each
quality separately in Tables II, III, and IV for both the latent
databases. We can see that the matching performance is highly
correlated with the number of minutiae available in the latent
prints. The performance of the proposed matcher is consistently
better over all qualities and for both the databases.
The quality of full prints also has a large impact on the

matching accuracy. In Fig. 9, the histograms of NFIQ quality
values for the corresponding rolled prints in each latent data-
base are shown. According to the NFIQ quality measure, the
quality of the rolled prints in WVU database is slightly worse
than the quality of the rolled prints in NIST SD27. The NFIQ
quality measure is an integer value in the range 1 to 5, where 1
is the highest quality and 5 is the worst quality. We observed
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Fig. 19. Latent print mate from WVU LFD identified at rank 1 after score-level fusion of COTS2 and proposed matcher. The first row shows (a) a latent, (b) its
true mate, (c) rank-1 nonmate by the proposed matcher, and (d) rank-1 nonmate by COTS2 matcher. The second row shows (e) latent minutiae, (f)–(h) latent
minutiae (in blue) aligned by the proposed matcher to the rolled print minutiae shown in (b)–(d). In (b)–(d), the numbers in parentheses indicate the ranks that each
rolled print was retrieved by the proposed matcher and COTS2 matcher, respectively.

TABLE II
RANK-1 ACCURACIES FOR VARIOUS SUBJECTIVE QUALITY LEVELS OF

LATENTS IN NIST SD27

TABLE III
RANK-1 ACCURACIES FOR VARIOUS OBJECTIVE QUALITY VALUES OF
LATENTS IN NIST SD27 (LARGE, MEDIUM, AND SMALL REFER

TO THE NUMBER OF MINUTIAE IN THE LATENT)

a significant difference in the matching performance when the
latents were divided into the following two quality groups:
(i) rolled prints are of good quality (NFIQ value of 1, 2 and
3), and (ii) rolled prints are of poor quality (NFIQ values of 4
and 5). The difference in matching performance between good
NFIQ and poor NFIQ qualities for all matchers ranges from
11–21% for NIST SD27, while it ranges from 2–9% for WVU
database (see Tables V and VI). As an example, the rank-1
accuracy of COTS2 matcher on NIST SD27 is 54.9% and
34.0% for good and poor NFIQ quality, respectively.

G. Computational Cost

The implementation of our matching algorithm is in Matlab.
The speed of ourmatcher running in a PCwith Intel Core 2Quad
CPU and Windows XP operating system is around 10 matches
per second. Multithread capability was not utilized. The ma-

TABLE IV
RANK-1 ACCURACIES FOR VARIOUS OBJECTIVE QUALITY VALUES OF
LATENTS IN WVU LFD (LARGE, MEDIUM, AND SMALL REFER

TO THE NUMBER OF MINUTIAE IN THE LATENT)

TABLE V
RANK-1 ACCURACIES FOR LATENTS GROUPED ACCORDING TO NFIQ

QUALITY VALUES OF CORRESPONDING ROLLED
PRINTS IN NIST SD27

TABLE VI
RANK-1 ACCURACIES FOR LATENTS GROUPED ACCORDING TO NFIQ

QUALITY VALUES OF CORRESPONDING ROLLED
PRINTS IN WVU LFD

jority of the running time (70%) is spent matching the local
minutiae descriptors. In a C/C++ implementation, this matching
would be much faster than in Matlab because of the nature of
theMCC descriptors (binary).We did not spend time optimizing
the code for speed.

V. CONCLUSIONS AND FUTURE WORK

We have presented a fingerprint matching algorithm de-
signed for matching latents to rolled/plain fingerprints which
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is based on a descriptor-based Hough Transform alignment.
A comparison between the alignment performance of the
proposed algorithm and the well-known Generalized Hough
Transform shows the superior performance of the proposed
method. We also reported matching results for two different
latent fingerprint databases with a large background database
of around 32K rolled prints. We compared the performance of
the proposed matcher with three different state-of-the-art fin-
gerprint matchers. Experimental results show that the proposed
algorithm performs better than the three fingerprint matchers
used in the study across all image qualities. A score-level fusion
of the proposed matcher and one of the commercial matchers
(COTS2) shows a further boost in the matching performance.
We plan to include a texture-based descriptor to improve the

matching accuracy especially when the overlap between the la-
tent and rolled prints is small. This was suggested in [31]. In
our future work, following the recommendations in [15], [26],
we plan to include additional automatically extracted features
to improve the matching performance without an increase in
manual labor (latent examiner’s markups). Although the pro-
posed matcher is more accurate than the two COTS matchers,
they are significantly faster.We also plan to develop an indexing
algorithm to speed up latent matching.
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