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Abstract—Elastic distortion of friction ridge skin is one of
the major challenges in fingerprint matching. Since existing
fingerprint matching systems cannot match seriously distorted
fingerprints, criminals may purposely distort their fingerprints
to evade identification. Existing distortion detection techniques
require availability of specialized hardware or fingerprint video,
limiting their use in real applications. In this paper we conduct a
study on fingerprint distortion and develop an algorithm to detect
fingerprint distortion from a single image which is captured using
traditional fingerprint sensing techniques. The detector is based
on analyzing ridge period and orientation information. Promising
results are obtained on a public domain fingerprint database
containing distorted fingerprints.

I. INTRODUCTION

Although automatic fingerprint recognition technologies
have rapidly advanced during the last forty years, there still
exists several challenging research problems, for example,
recognizing low quality fingerprints. Fingerprint matcher is
very sensitive to image quality as observed in the FVC2006
[1], where the matching accuracy of the same algorithm varies
significantly among different datasets due to variation in image
quality. The difference between the accuracies of plain, rolled
and latent fingerprint matching is even larger as observed in
technology evaluations conducted by the NIST [2].

A number of factors may contribute to the degradation of
fingerprint image quality, including small finger area, cuts and
abrasions on the finger, wet or dry finger, dirt on the finger or
sensor, and skin distortion.

The consequence of low quality fingerprints depends on
the type of the fingerprint recognition system. A fingerprint
recognition system can be classified as either a positive or
negative system. In a positive recognition system, such as
physical access control systems, the user is supposed to be
cooperative and wishes to be identified. In a negative recog-
nition system, such as identifying persons in watch-lists and
detecting multiple enrollment under different names, the user
of interest (e.g. criminals) is supposed to be uncooperative and
does not wish to be identified. In a positive recognition system,
low quality will lead to false reject of legitimate users and
thus bring inconvenience. The consequence of low quality for
a negative recognition system, however, is much more serious,
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Fig. 1. The low capability of existing techniques in matching and detecting
distorted fingerprints generates a serious security hole in fingerprint-based
person recognition systems. These two images in FVC2004 DB1 are from
the same finger. The right one contains severe distortion as illustrated by
the corresponding triangles. The match score between these two images
computed by a well-known commercial fingerprint matcher, VeriFinger, is
0. According to the well-known NIST fingerprint image quality (NFIQ)
assessment algorithm, the quality level of both images are 1, the highest level.

since malicious users may purposely reduce fingerprint quality
to prevent fingerprint system from finding the true identity [3].
In fact, law enforcement officials have encountered a number
of cases where criminals attempted to avoid identification by
damaging or surgically altering their fingerprints [4].

Hence it is especially important for negative fingerprint
recognition systems to detect low quality fingerprints so that
the fingerprint system is not compromised by malicious users.
A widely used fingerprint quality control software is the well-
known NIST fingerprint image quality software (NFIQ) [5].
However, skin distortion, a very important quality factor, is
not considered in NFIQ as well as other fingerprint quality
assessment algorithms [6]. For example, the NFIQ value of
the right fingerprint in Fig. 1, which is severely distorted, is
1, the highest quality level. Note that, for a negative fingerprint
recognition system, its security level is as weak as the weakest
point. Thus it is urgent to develop a distorted fingerprint
detection algorithm to fill the hole of current fingerprint quality
assessment techniques.

Elastic distortion is introduced due to the inherent flexi-
bility of fingertips and contact-based fingerprint acquisition
procedure. Since the shape of fingertips is not flat, the surface
of fingers has to be pressed onto the surface of fingerprint
sensor or paper. Distortion is unavoidably introduced in this
procedure. Although several contactless fingerprint acquisition
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techniques have been introduced recently [7], contact-based
techniques are still the dominating one, especially in law
enforcement applications. Distortion in different fingerprint
images of the same finger is usually different due to variations
in contact area, direction and force of pressure. Inconsistent
distortion increases the intra-class variations (difference a-
mong fingerprints from the same finger) and thus leads to false
non-matches due to limited capability of existing fingerprint
matchers in recognizing distorted fingerprints (see Fig. 1 for
an example). So it is the inconsistence of distortion rather
than the distortion itself that causes false non-matches. To
alleviate the problem caused by inconsistent distortion, the
user should press the finger in a common and comfortable
way. For example, the finger should be horizontal to the
sensor/paper surface and the direction of press force is vertical
to the sensor/paper surface. Such requirement is analogous to
those in face recognition systems where the user is required to
have a frontal pose and a neutral expression. However, there
must be a proper way to enforce such requirement since (1) we
cannot expect malicious users to follow the requirement and
(2) most of the users in many negative recognition systems,
such as border control systems, are not criminals.

The rest of the paper is organized as follows. In section II,
we review related work. The details of the proposed approach
are given in section III and experimental results are presented
in section IV. Finally, we summarize the paper in section V.

II. RELATED WORK

Existing techniques for handling distortion can be coarsely
classified into four categories.

A. Distortion-Tolerant Matching

The most popular way to handle distortion is to make
the matcher tolerant to distortion [8]-[10]. In other words,
they deal with distortion for every pair of fingerprints to be
compared. For example, the following three types of strategies
have been adopted to handle distortion: (i) assume a global
rigid transformation and use a tolerant box of fixed size [8]
to compensate for distortion; (ii) explicitly model the spatial
transformation by Thin-Plate Spline model [9]; and (iii) only
enforce constraint on distortion locally [10].

However, allowing larger distortion in matching will in-
evitably result in higher false match rate. For example, if we
increased the bounding zone around a minutia, many non-
matched minutiae will have a chance to get paired.

B. Fingerprint Adjustment

Senior and Bolle [11] deal with distortion by normalizing
ridge density in the whole fingerprint to a fixed value. They
showed this can improve genuine match scores. However,
ridge density is known to contain discriminating information
and several researchers have reported improved matching
accuracy due to incorporating ridge density information into
minutiae matchers [12], [13]. Simply unifying ridge density
of all fingerprints will lose discriminating information in
fingerprints and may increase false match rate.

Ross et al. [14] learn the deformation pattern from a set of
training images of the same finger and transform the template
with the least deformation using the average deformation with
other images. They show this leads to higher minutiae match-
ing accuracy. But this method has the following limitations: (i)
acquiring multiple images of the same finger is inconvenient in
some applications and existing fingerprint databases generally
contain only one image per finger; and (ii) even if multiple
images per finger are available, a malicious person can still
adopt unusual distortion, which is not reflected in the training
data, to cheat the matcher.

C. Proper Sensor Design and Operation

Another way of reducing distortion is to properly design
the sensor and correctly perform the acquisition. Singer-finger
scanner with properly designed moundings around the sensor
can mechanically constrain the force and torque within an
acceptable range. Capturing four fingers simultaneously using
tenprint scanners may also reduce distortion. Police staff
responsible for fingerprinting suspects may follow a standard
procedure to record fingerprints so that the relative distortion
between different images of the same finger is small.

However, this type of method has some limitations: (i)
it cannot handle distorted fingerprints in existing fingerprint
databases; (ii) fingerprint operators in non-forensic applica-
tions typically did not receive as much training as operators
in forensic applications; (iii) controlled fingerprinting as done
in law enforcement agencies is not acceptable in civilian or
governmental applications where most of the users are not
criminals; and (iv) malicious users may distort the finger skin
using some chemical techniques or surgically.

D. Distortion Detection

It is desirable to automatically detect distortion during
fingerprint acquisition so that severely distorted fingerprints
can be rejected. Several researchers have proposed to detect
improper force using specially designed hardware [15]-[17].
Bolle et al. [15] proposed to detect excessive force and
torque exerted by using a force sensor. They showed that
controlled fingerprint acquisition leads to improved matching
performance [16]. Fujii [17] proposed to detect distortion by
detecting deformation of a transparent film attached to the
sensor surface. Dorai et al. [18] proposed to detect distortion
by analyzing the motion in video of fingerprint.

However, the above methods have the following limitations:
(1) they require special force sensors or fingerprint sensors with
video capturing capability; (ii) they can not detect distorted
fingerprint images in existing fingerprint databases; and (iii)
they cannot detect fingerprints which are distorted before
pressing on the sensor.

III. PROPOSED APPROACH

The proposed approach falls into the fourth category, dis-
tortion detection. However, different from existing distortion
detection approaches, our approach can detect distortion based



Fig. 2. Ridge period images of three normal fingerprints. The blue triangle
indicates the location of delta point. Ridge period below the delta is larger
(brighter) than the rest region.

on a single fingerprint image which is obtained using tradi-
tional fingerprint sensing techniques. An important merit of
the proposed approach is that it can be easily incorporated into
existing automatic fingerprint recognition systems, since it (i)
does not require designing new fingerprint sensors; (ii) can
detect distorted fingerprints in existing fingerprint databases;
and (iii) does not require any change of fingerprint matchers.

Given a grayscale fingerprint image, the proposed algorithm
computes a distortion degree, a real number in [0, 1], by
analyzing its ridge period image and ridge orientation field.
The ridge period image and orientation field are estimated
from the skeleton image outputted by VeriFinger. In the
following subsections, we describe distortion estimation based
on ridge period image, ridge orientation field, and their fusion.

A. Ridge Period

A common assumption used in several related work [11] is
that the ridges in a normal fingerprint' are constantly spaced.
If a fingerprint is severely distorted, the above assumption will
be violated. Based on this assumption, the standard deviation
o of ridge period in the whole fingerprint image can be used
to distinguish distorted fingerprints from normal fingerprints.

However, after examining many fingerprints, we noticed that
ridge period in normal fingerprints is not uniform. As can
be observed from the ridge period images of three normal
fingerprints in Fig. 2, ridge period below the delta is generally
larger than that in the other region. o in the whole fingerprint
is not a good feature for detecting distortion. So we first
detect the delta point using VeriFinger and draw a horizontal
separating line passing through it. Only the region above the
separating line is used to compute o. As shown in Fig. 3, o
in the cropped fingerprint is better than in the whole image in
distinguishing distorted fingerprints from normal fingerprints.

If there is no delta points detected, we draw a separating
line passing through the middle point between the lower core
point and the lower boundary of the foreground area. If there
is no singular points detected, the separating line is set as the
line passing through the vertical center of the finger. These
three cases are shown in Fig. 4.

A fingerprint is called a normal fingerprint if it is captured in a normal
manner, i.e., the finger is parallel to the sensor surface and the pressing force
is vertical to the sensor surface.

(b) Distorted fingerprint

Fig. 3. Advantage of computing the standard deviation of ridge period only
in the top region. (a)/(b) contains the normal/distorted fingerprint, its period
image and the cropped period image. The blue triangle is the delta point
and the red line is the separating line. The difference of o between the two
fingerprints becomes more obvious after cropping.

Fig. 4. Three cases in cropping the fingerprint for computing standard
deviation of ridge period: (i) delta is detected; (ii) delta is missing but the
core is detected; and (iii) no singular points are detected. The blue circle is
the core, the blue triangle is the delta, and the red line is the separating line.

B. Ridge Orientation

A fingerprint can be roughly segmented into three regions:
the top region, the middle region, and the bottom region.
Singular points always appear in the middle region. Since
fingerprint pattern (arch, loop, whorl) classification is based on
the orientation field in the middle region, this region is also
termed as the pattern area in the literature. The orientation
field in the top and bottom region of finger is similar among
different fingerprints as we can see from the ridge orientation
fields shown in Fig. 5. Since we have observed that distor-
tion tends to occur in the top region, we consider only the
orientation field in this region for detecting distortion.

The top region of a fingerprint is determined as follows. If
a top core point is detected by VeriFinger, we regard the parts
above the top core point as the top region. If there is no core
points detected, the part above the vertical center of the finger
is regarded as the top region.

Ridges in the top region of a normal fingerprint are of
concave shape with certain curvature. However, we noticed
that in many severely distorted fingerprints, ridges in the top
region have a smaller curvature and sometimes they even
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Fig. 5. Orientation field of three patterns: loop, whorl, and arch. A fingerprint
is separated into three regions by the two red separating lines.

Cropped normal curvature image

Tangent curvatureimage  Cropped Tangent curvature image

(a) Normal fingerprint

Normal curvatureimage  Cropped normal curvature imase

Tangent curvatureimage  Cropped Tangent curvature imase

(b) Distorted fingerprint

Fig. 6. Advantage of computing the mean curvature only in the top region.
Before cropping, the mean curvature of the distortion fingerprint is larger. But
after cropping, the mean curvature of the normal fingerprint is larger.

become convex. So we compute the normal curvature image
and the tangent curvature image of a fingerprint. The means
kN and rr of the two curvature images are used as the features.
An example is given in Fig. 6 to show the necessity of using
only the curvatures in the top region for detecting distortion.

The definition of normal curvature and tangent curvature
at a point O is illustrated in Fig. 7. A local coordinate
system is defined using O as the origin and the local ridge

Fig. 7. Normal curvature at point O is computed as the angle between local
ridge orientation at point A and point B. Tangent curvature at point O is
computed as the angle between local ridge orientation at point C' and point
D.

Fig. 8.  Advantage of fusing ridge period and curvature information for
distortion estimation. The left/middle/right column contains the distorted
fingerprint, its period image and its normal curvature image. The top distorted
fingerprint cannot be detected based only on the curvature image, while the
bottom distorted fingerprint cannot be detected based only on the period
image. Due to fusion, both fingerprints are correctly detected as distorted
fingerprints.

orientation #(O) as the direction of x axis. The coordinates
of points A, B,C,D in the local coordinate system are
(0, ), (0,=X), (—=A,0), (A, 0), where X is empirically set as
24 pixels. The angle between 6(A) and 6(B) is termed as
the normal curvature. The angle between 6(C') and 0(D) is
termed as the tangent curvature.

C. Fusion

Considering that the discriminating power of each of the
three features alone is limited, we use the weighted sum rule
to fuse the three features into a distortion degree

d=wio’" +ws(l — kY) + ws(1 — KT), (1)

where o, K\, Kk} are the normalized features in the range
[0,1] using the min-max normalization, and the weights are
empirically set as 0.2, 0.5, 0.3. We chose this simple fusion
rule because it does not require a large number of samples
for training. Two examples are given in Fig. 8 to show the
advantage of the fusion.



IV. EXPERIMENTS

The proposed algorithm can be used in two ways: (i) de-
tecting severely distorted fingerprints as a standalone module;
or (ii) combining with existing fingerprint quality assessment
algorithms to form a more accurate quality measure. Hence
two experiments were conducted to evaluate the proposed
algorithm.

A. Detection of Distorted Fingerprints

Since there is no public domain fingerprint dataset where
distorted and normal fingerprints are labeled, we use the fol-
lowing procedure to label distorted and normal fingerprints in
public domain datasets. The filenames of selected images will
be made publicly available so that other interested researchers
can evaluate their approaches on the same dataset.

Normal fingerprint samples are taken from DBI_A of
FVC2002. This database is selected because it contains rel-
atively few distorted fingerprints. This database contains 800
fingerprints from 100 fingers and 8 impressions per finger.
To make sure the independence of the samples, we just
use one sample from each finger. The following procedure
is used to select one normal fingerprint from each of the
100 different fingers. Firstly, VeriFinger is used to find the
matching minutiae between any two mated fingerprints. Then
we estimate a rigid transformation using the matching minutiae
and align the minutiae of one fingerprint w.r.t. the other one.
A distortion score is computed as the mean distance between
matching minutiae. For every finger, we select the impression
whose distortion score with other impressions of the same
finger is minimum as the normal fingerprint.

Distorted fingerprint samples are taken from DBI1 of
FVC2004, which contains 880 fingerprints from 110 fingers
and 8 impressions per finger. The procedure of obtaining
distorted samples is similar to the procedure of obtaining
normal samples. The only difference is that we select the
fingerprint with the maximum distortion score as the distorted
sample. Note that this procedure cannot find all distorted
fingerprints since the matching minutiae found by VeriFinger
for many distorted fingerprints are wrong. So we also manually
removed some incorrectly selected fingerprints and added
missed distorted fingerprints. Finally, we obtained 75 distorted
samples. All distorted fingerprints shown in this paper are from
these 75 images. Among all 523 genuine matches associated
with these 75 distorted fingerprints, the matching scores of
34.8% of them are 0 according to VeriFinger. This indicates
that distorted fingerprint is indeed a challenging problem even
for well optimized commercial fingerprint matchers.

Based on this dataset of normal and distorted fingerprints,
we conducted a classification experiment using the proposed
distortion detector. A distorted fingerprint is called a positive
sample and a normal fingerprint is called a negative sample. A
sample is classified as a positive sample if its distortion degree
computed by the proposed algorithm is above a predefined
threshold. If a distorted fingerprint is classified as a positive
sample, a true positive occurs. If a normal fingerprint is
classified as a positive sample, a false positive occurs. By
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Fig. 9. ROC curves of the proposed method and the NFIQ algorithm
in detecting distorted fingerprints in a dataset consisting of 75 distorted
fingerprints and 100 normal fingerprints. Since very few fingerprints in this
dataset has NFIQ values larger than 2, the only one feasible threshold value
for NFIQ is 2. At this threshold, the FPR of NFIQ is as high as 78% and its
TPR is only 48%.

varying the threshold value, we obtained a set of true positive
rates (TPR) and false positive rates (FPR), which can be
plotted as a Receiver Operating Characteristic (ROC) curve.

The ROC curves of the proposed method and the NFIQ al-
gorithm are given in Fig. 9. Since NFIQ has only five different
values, with 1 being the highest quality and 5 being the lowest
quality, its ROC curve is only valid at several points. In fact,
very few fingerprints in this dataset has NFIQ value larger than
2. Therefore, the only feasible threshold value for NFIQ is 2.
At this threshold value, the FPR of NFIQ is as high as 78%
and its TPR is only 48%. In contrast, the proposed algorithm
can achieve 98.67% TPR at 1% FPR. This experiment shows
that that the proposed method outperforms the NFIQ algorithm
significantly in detecting distorted fingerprints..

B. Assessment of Fingerprint Quality

The proposed algorithm can be viewed as a fingerprint
quality assessment algorithm, although it considers only one
aspect of fingerprint quality, namely distortion. A recommend-
ed method for evaluating fingerprint quality assessment algo-
rithms in [19] is to combine the quality assessment algorithm
with a fingerprint matcher and report the False Non-Match
Rate (FNMR) versus Reject Rate (RR) curve. A good quality
assessment algorithm should be able to significantly reduce
the FNMR by only rejecting a small number of poor quality
images. Since the proposed distortion estimation algorithm
is aimed at filling the gap of existing fingerprint quality
assessment algorithms, we need to examine whether a com-
bination of the proposed algorithm and the NFIQ algorithm
performs better than NFIQ alone. In this experiment, two
quality assessment algorithms (the NFIQ algorithm, and a
max rule fusion? of the proposed algorithm and the NFIQ
algorithm), the VeriFinger matcher, and all fingerprint images
in FVC2004 DB1 are used. The FNMR vs. RR curves of the

2For fusion purpose, the NFIQ value has been linearly mapped to [0, 1]
with 0 indicating the highest quality.
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Fig. 10. FNMR vs. Reject Rate curves of the NFIQ algorithm and the fusion
of NFIQ and the proposed algorithm on FVC2004 DB1. Since NFIQ has only
five different values, its curve is only valid at several points.

Fig. 11. NFIQ algorithm assigns the highest quality level to these three
severely distorted fingerprint images. The distortion degrees of these images
estimated by the proposed algorithm are, 0.8153, 0.8660, and 0.9465, respec-
tively, indicating that they are severely distorted fingerprints.

NFIQ algorithms and the fusion algorithm are shown in Fig.
10.

Fig. 10 shows that the proposed distortion estimation algo-
rithm does improve the ability of the NFIQ algorithm in de-
tecting and rejecting poor quality fingerprints. At lower reject
rates (< 0.05), the NFIQ algorithm can correctly reject very
poor quality fingerprints and the proposed algorithm is not
helpful. However, at reject rates above 0.05, the contribution
of the proposed algorithm becomes evident, indicating that
many distorted fingerprints, whose image quality is good, are
correctly rejected. Three such examples are given in Fig. 11.

V. CONCLUSIONS

False non-match rates of fingerprint matchers are very high
in the case of severely distorted fingerprints. This generates
a security hole in automatic fingerprint recognition systems
which can be utilized by criminals and terrorists. Since existing
fingerprint image quality assessment algorithms, such as the
NFIQ algorithm, do not take distortion into account, it is ur-
gent to develop new techniques to detect distorted fingerprints.
We proposed a novel approach based on analyzing ridge period
and orientation information for detecting the distorted finger-
prints. Different from previous distortion detection algorithms,
the proposed algorithm can detect distortion from a single
image which is obtained using traditional fingerprint sens-
ing techniques. Such properties are very desired in practical

applications. Experimental result on a public domain dataset
demonstrates that the proposed distortion detector can detect
most severely distorted fingerprints at a low false positive rate.
We also show that by fusing the proposed distortion estimation
algorithm with the NFIQ algorithm, the ability of predicting
fingerprint quality is significantly improved.

The current algorithm still has some limitations. Firstly, the
size of the distorted fingerprint database is small. Secondly,
it cannot rectify distorted fingerprints such that they can
be identified. Lastly, this algorithm cannot reliably estimate
distortion in latent fingerprints. We plan to overcome the above
limitations in the future.
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