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A B S T R A C T

Vascular landmark detection plays an important role in medical analysis and clinical treatment. However,
due to the complex topology and similar local appearance around landmarks, the popular heatmap regression
based methods always suffer from the landmark confusion problem. Vascular landmarks are connected by
vascular segments and have special spatial correlations, which can be utilized for performance improvement.
In this paper, we propose a multi-task global optimization-based framework for accurate and automatic
vascular landmark detection. A multi-task deep learning network is exploited to accomplish landmark heatmap
regression, vascular semantic segmentation, and orientation field regression simultaneously. The two auxiliary
objectives are highly correlated with the heatmap regression task and help the network incorporate the
structural prior knowledge. During inference, instead of performing a max-voting strategy, we propose a global
optimization-based post-processing method for final landmark decision. The spatial relationships between
neighboring landmarks are utilized explicitly to tackle the landmark confusion problem. We evaluated our
method on a cerebral MRA dataset with 564 volumes, a cerebral CTA dataset with 510 volumes, and an aorta
CTA dataset with 50 volumes. The experiments demonstrate that the proposed method is effective for vascular
landmark localization and achieves state-of-the-art performance.
1. Introduction

Anatomical landmarks in vascular structures, which are distributed
at the bifurcation positions and hierarchically divide the vessel into
multiple morphological and functional units, play an important role
in clinical diagnosis and treatment planning (Zheng et al., 2015).
Anatomical landmark detection is also a prerequisite for subsequent
medical image analysis tasks, such as vessel centerline extraction (Chen
et al., 2020), segmentation initialization (Oktay et al., 2017), and
image registration (Han et al., 2015; Almasi et al., 2018). Since manual
annotation is always tedious and time-consuming (Elattar et al., 2016),
robust and automatic landmark detection methods are meaningful for
clinical usages.

Recently, deep learning-based methods have demonstrated superior
performance in anatomical landmark detection due to their strong
ability to learn task-oriented features (Zhang et al., 2017; Payer et al.,
2019; Zhong et al., 2019; Qian et al., 2019; Ghesu et al., 2019; Alansary
et al., 2019; Noothout et al., 2020; Lang et al., 2020; Al and Yun, 2020;
Oh et al., 2020; Zeng et al., 2021; Xu et al., 2021; Chen et al., 2022;
Laiz et al., 2023). However, in terms of vascular landmark detection,
there still remain many challenges. Firstly, vascular structures around
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the same landmark may have various shapes (Fig. 1(c)), meanwhile
different landmarks may have similar local appearances. The large
intra-class variations and small inter-class differences bring landmark
confusion problems. Taking the popular heatmap regression based
methods (Payer et al., 2019; Zhong et al., 2019; Lang et al., 2020; Oh
et al., 2020; Xu et al., 2021) as an example, the heatmap prediction
of a certain landmark may have strong responses at several positions
(Fig. 1(d)). These false positive responses may lead to mislocalization
of the target landmark to other bifurcation positions and a very large
detection error. Secondly, it is difficult to model the spatial distribution
of landmarks due to the complex vascular topology. Physiological
variations, such as loss of one or multiple cerebrovascular segments
(Fig. 1(a)), and disease-related effects, such as vessel deformation
caused by aneurysm and stenosis (Fig. 1(b)), may change the local
appearance around landmarks, bringing further challenges. Moreover,
the optimization process of deep learning networks relies on large-scale
annotated dataset, while it is especially difficult to annotate vascular
structures. The limited size of the training dataset severely limits the
development of vascular landmark detection algorithms.
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Fig. 1. Illustration of vascular landmark detection challenges. (a) Physiological variation of missing left PCoA segment. (b) Pathological effects of aneurysm and stenosis on left
ICA segments. (c) MCA-M1 segments of different shapes with arrows indicating the directions of vessel extension. (d) Landmark confusion problem exemplified by one landmark.
The ground truth and predicted heatmaps are shown in 2D form using maximum intensity projection. The red, blue, and green dots denote the landmark ground truth, predicted
positions of the max-voting strategy and the proposed method, respectively.
Different from organ landmarks such as skull (Chen et al., 2022) and
prostate (Tuysuzoglu et al., 2018), vascular landmarks are connected by
vascular segments, providing potential clues for localization. It is essen-
tial to incorporate structural prior information and spatial relationships
between landmarks, which have not been fully explored in existing
methods. The vascular network can be modeled as a graph model
by taking landmarks and vascular segments as vertices and edges,
respectively. In this way, the landmark spatial distribution and adjacent
relationships are encoded and contribute to the detection performance.

In this paper, we present a novel framework for anatomical land-
mark detection in vascular structures, which consists of a multi-task
learning network and a global optimization-based landmark decision
strategy. The multi-task network is exploited for initial landmark
heatmap regression, where vascular semantic segmentation and orien-
tation field regression are introduced as auxiliary objectives to guide
the backbone network to capture more discriminative features. Given
a heatmap prediction, a general landmark inference method is the
max-voting strategy (i.e., selecting the voxel with the highest temper-
ature). However, disturbed by false positive responses, this strategy
may misdetect the target landmark at other bifurcation locations (blue
dot in Fig. 1(d)). To overcome this problem, a global optimization
method is proposed for final landmark decision by evaluating the
spatial relationships between pairs of landmarks explicitly (green dot
in Fig. 1(d)). The proposed method considerably extends our previous
work (Tan et al., 2021). In addition to a more detailed literature review,
other major extensions in this work include (1) a more reasonable ori-
entation field design along the direction of vessel extension, (2) a global
optimization-based post-processing method to tackle the landmark
confusion problem, (3) comprehensive evaluations with three different
vascular landmark detection tasks, (4) a new metric to evaluate three
types of topological detection errors automatically, and (5) further
discussion of the detection performance in clinical applications.

Our contributions can be summarized as follows:

• We develop a deep learning framework specific for vascular land-
mark detection, combining a multi-task U-shape network and a
2

global optimization based landmark decision algorithm, where
the multi-task network accomplishes landmark heatmap regres-
sion, vascular semantic segmentation, and orientation field re-
gression simultaneously.

• To overcome the landmark confusion problem, we propose a
global optimization-based post-processing algorithm for landmark
decision, where the structural prior and the spatial relationships
between landmarks are incorporated explicitly.

• We present a new metric to evaluate three types of topological
errors in vascular landmark detection, which reflects the anatom-
ical rationality of landmark predictions and is relevant to clinical
applications.

• We evaluated our method on three datasets with different vascu-
lar structures and imaging modalities. The experiments demon-
strate that our method is effective for vascular landmark detection
and achieves state-of-the-art performance.

2. Related work

2.1. Anatomical landmark detection

There have been numerous efforts for anatomical landmark detec-
tion in medical images over the past decades. Atlas-based (Isgum et al.,
2009) and statistical shape models (SSMs)-based (Norajitra and Maier-
Hein, 2017) methods perform non-rigid alignment between template
images with landmark annotations and target images, which are limited
by anatomical abnormalities and imaging artifacts. Random forests
(RFs)-based methods (Criminisi et al., 2013; Gao and Shen, 2015;
Urschler et al., 2018) estimate landmark locations using a regression-
voting mechanism. These methods rely heavily on hand-crafted features
and calculation processes, which are difficult to be optimized with
training data.

Recently, deep learning-based methods have generated overwhelm-
ing enthusiasm and achieved remarkable progress in anatomical land-
mark detection. They can be broadly categorized into coordinate re-
gression, heatmap regression, and deep reinforcement learning (DRL).
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Coordinate regression based methods (Zhang et al., 2017; Qian et al.,
2019; Noothout et al., 2020; Zeng et al., 2021) analyze local image
patterns and predict absolute landmark coordinates or displacement
vectors towards the target landmark. For example, Noothout et al.
(2020) performed patch classification and displacement regression in
parallel. Zeng et al. (2021) treated landmark detection task as a multi-
level regression problem, where cascaded convolutional neural net-
works estimate the coarse positions of all landmarks simultaneously
and refine each landmark independently. The limitation of these meth-
ods is that the mapping from image to coordinates involves highly
nonlinear complexity and may lead to overfitting problem (Payer et al.,
2019). Heatmap regression based methods (Payer et al., 2019; Zhong
et al., 2019; Lang et al., 2020; Oh et al., 2020; Xu et al., 2021) have
yielded state-of-the-art performance and become increasingly popular.
They suggest generating a pseudo-saliency map for each landmark, then
the position with the maximum response is chosen as the prediction.
Compared with coordinate regression based approaches, these methods
are intrinsically more suitable for landmark detection by changing
the focus from the point of interest to the region of interest. Payer
et al. (2019) introduced an end-to-end fully-convolutional network for
heatmap regression and further refined the results by introducing a
spatial configuration component to model the geometric relationships
between landmarks. Xu et al. (2021) designed a dependency mining
module and a local voting algorithm for hip landmark detection. More
recently, Ao and Wu (2023) employed an encoder–decoder architec-
ture named FARNet with a feature aggregation module for multi-scale
feature fusion and a feature refinement module for high-resolution
heatmap regression. Some studies combined these two methods. Chen
et al. (2022) first performed heatmap regression on down-sampled
volumes for coarse predictions, and then progressively refined the
landmarks by attentive offset regression on multi-resolution patches. In
contrast to the first two paradigms, DRL-based methods (Ghesu et al.,
2019; Alansary et al., 2019; Al and Yun, 2020; Browning et al., 2021)
detect landmarks by searching for an optimal path from an initial start-
ing position towards the target landmark. Ghesu et al. (2019) adopted
a deep RL-agent to navigate in the image space exploiting multi-scale
image representations. Alansary et al. (2019) presented an extensive
evaluation of several different RL-based models. However, multi-agent
system has high computational complexity, making it difficult to locate
multiple landmarks simultaneously.

A relevant problem to vascular landmark detection is anatomical
labeling, which refers to dividing the centerline into several semantic
categories according to landmarks. Most existing methods formulate
the tubular structure in a graph representation and realize labeling
using rule-based (Mori et al., 2005), geometric feature classification-
based (Matsuzaki et al., 2015), or graph matching-based (Bogunović
et al., 2013; Robben et al., 2016; Liu et al., 2022) approaches. These
methods usually assume an existing centerline-plus-diameter model
(Matsuzaki et al., 2015; Liu et al., 2022), or need to extract the tubu-
lar structure semi-automatically (Mori et al., 2005; Bogunović et al.,
2013). An exception is the work of Robben et al. (2016), where the
authors first computed an overcomplete segmentation, and optimized
the centerlines and labels using integer programming. This is the
biggest difference from the landmark detection task, which expects to
localize landmarks directly from the input image without dependence
on segmentation performance.

2.2. Structural prior modeling

How to model structural prior information and incorporate the
relationships between landmarks is a key issue in anatomical landmark
detection, which has drawn increasing attention in previous litera-
ture. Yang et al. (2017) interactively evolved the probability maps with
the message passing schemes and refined the final predictions with
sparsity regularization. Tuysuzoglu et al. (2018) estimated anatomical
3

landmarks and contour of the prostate in parallel, making the algo-
rithm more contextually aware. Aiming for vertebrae identification and
localization, Liao et al. (2018) developed a multi-task bidirectional
recurrent network to encode the long-range contextual information.
Furthermore, Zhang et al. (2020) proposed to learn bone segmentation
and landmark digitization jointly. A more similar work is the multi-task
network for cerebral landmark detection (Tan et al., 2022), which as-
sociates vascular variations with local bifurcation appearance changes.
The main difference between Tan et al. (2022) and this study is that the
former can only be applied to cerebral landmark detection and does not
take full advantage of the spatial relationships between landmarks.

More broadly, there are many tasks in computer vision domain
similar to anatomical landmark detection, such as facial landmark
localization (Zeng et al., 2017) and human pose estimation (Wang
et al., 2020; Cao et al., 2021). For example, Zeng et al. (2017) modeled
facial landmarks as a tree model and characterized the relationships
in hierarchical order. Wang et al. (2020) proposed a graph pose re-
finement module for top-down human pose estimation. As a milestone
innovation, Cao et al. (2021) utilized part affinity fields (PAFs) to
encode the localization and orientation of limbs, which provides a
new insight into the problem of anatomical landmark detection. We
note that the human keypoints connected by limbs are similar to the
anatomical landmarks connected by vascular segments, both of which
can be regarded as a graph structure.

Inspired by Cao et al. (2021), we propose to employ orientation
fields distributed on vascular segments to model the spatial relation-
ships between neighboring landmarks. Moreover, vascular semantic
segmentation is introduced to enhance the contextual information.
During inference, different from the multi-task schemes mentioned
above (Tuysuzoglu et al., 2018; Zhang et al., 2020; Tan et al., 2022),
where the auxiliary tasks are only designed to guide the network
to learn more discriminative features, in our method, both semantic
segmentation and orientation field predictions participate in the land-
mark decision process. In this way, the landmark correlations can be
considered explicitly, boosting localization performance.

3. Method

In this work, we provide a deep learning-based framework for
vascular landmark detection. The overall workflow is presented in
Fig. 2. Firstly, we employ a multi-task network for landmark heatmap
regression, where vascular semantic segmentation and orientation field
regression are introduced as auxiliary objectives. For each landmark,
several candidate positions are generated by finding local maxima
values in the heatmap prediction. Subsequently, a global optimization-
based post-processing algorithm is proposed for final landmark de-
cision. Besides, we introduce a new evaluation metric to calculate
the topological errors in vascular landmark detection, which reflects
the anatomical rationality of landmark predictions and is relevant to
clinical applications.

3.1. Multi-task network

Recently, multi-task learning has shown promising performance by
leveraging the synergy among associated tasks (Vandenhende et al.,
2022) and is widely applied in many domains, including image classi-
fication (Kuang et al., 2017), semantic segmentation (Dai et al., 2016),
and medical image analysis (Graham et al., 2019; He et al., 2020; Song
et al., 2020; Zhou et al., 2021; Gende et al., 2022; Brenes et al., 2022;
Choi et al., 2023). In this section, we propose a multi-task network
for initial landmark detection, where heatmap regression, vascular
semantic segmentation, and orientation field regression are learned in
parallel. The goal is to learn a shared representation among different
tasks and guide the network to capture more discriminative features.

The backbone of the proposed multi-task network is based on an
improved 3D UNet (Ronneberger et al., 2015), following the encoder–
decoder architecture. The detailed structure of the network is shown
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Fig. 2. Illustration of the proposed framework for vascular landmark detection, which contains a multi-task network and a global optimization-based landmark decision strategy.
Fig. 3. Architecture of the proposed multi-task network, which accomplishes landmark heatmap regression, vascular semantic segmentation, and orientation field regression
simultaneously.
in Fig. 3. The encoder module consists of multiple residual blocks (He
et al., 2016) to generate increasingly abstract feature representations,
with each block followed by a 2 × 2 × 2 max pooling layer with the
stride 2 for downsampling. Each residual block contains two 3 × 3 × 3
convolutional layers with batch-normalization operators (Ioffe and
Szegedy, 2015) and ReLU activations (Nair and Hinton, 2010), while a
shortcut connection is applied between the input and output to avoid
gradient vanishing problem. The decoder module contains several
decoding blocks, roughly symmetrical to the residual blocks in the en-
coder. In each decoding block, the input is first fed to a deconvolutional
layer. Then, the upsampled intermediate features are concatenated with
the corresponding ones from the encoder module and processed using
a residual block. These skip connections between the encoder and
decoder modules incorporate low-level fine features with high-level
abstract features, preserving more spatial details for better localization.
The number of filters starts with 16, which doubles at each residual
block and halves at each decoding block. After the decoder module, the
network is split into three branches to accomplish tasks simultaneously.
Each branch contains a same residual block as the encoder module to
capture task-specific features and a 1 × 1 × 1 convolutional layer to
generate pixel-wise prediction. A softmax activation is applied only for
the semantic segmentation branch.

Following the encoder–decoder architecture, the backbone network
is adapted from the widely used 3D U-Net (Ronneberger et al., 2015).
We replace the plain convolutional layer with a residual block (He
et al., 2016) to avoid the gradient vanishing problem, which con-
tains two convolution operators and a shortcut connection between
the input and output. Skip connections between the encoder and de-
coder modules incorporate low-level fine features with high-level ab-
stract features, preserving more spatial details for better localization.
The network is then split into three branches to accomplish tasks
simultaneously. The details of each task are described as follows.
4

3.1.1. Landmark heatmap regression
In the first branch, inspired by Payer et al. (2019), we convert

the landmark detection problem into a heatmap regression task. The
discrete coordinates of a landmark are modeled as a channel heatmap
with a Gaussian distribution centered at the landmark position. The
heatmap temperature 𝐻∗

𝑖 (𝑥) on voxel 𝑥 ranging in [0,1] represents
the probability to be the 𝑖th landmark. The distribution is determined
according to the distance from voxel 𝑥 to landmark position 𝑥𝑖, with the
standard deviation 𝛿 controlling the size. Formally, the multi-channel
heatmap for 𝑁𝑙 landmarks is defined as follows:

𝐻∗
𝑖 (𝑥) = 𝑒−

1
2𝛿2

(𝑥−𝑥𝑖)2 , 𝑖 = 1, 2,… , 𝑁𝑙 . (1)

In order to deal with the class imbalance problem, we apply a
weighted L2 loss function ℎ𝑒𝑎𝑡 between the predicted heatmaps 𝐻𝑖
and the ground truth heatmaps 𝐻∗

𝑖 . The weights are set to be the
exponential powers of the ground truth volume.

3.1.2. Vascular semantic segmentation
In the second branch, the network is responsible for predicting the

vascular semantic segmentation. According to the anatomical topology,
an artery can be hierarchically decomposed into multiple morpholog-
ical and functional units. These vascular segments are viewed as dif-
ferent semantic classes. To prepare the semantic segmentation ground
truth, the entire vascular structure is divided into different vascular seg-
ments according to the corresponding bifurcation landmarks. That is,
the landmark is located at the interface of two adjacent substructures,
which makes the semantic segmentation task highly correlated with
the landmark detection objective. In this way, we enhance contextual
information and provide richer feature representations for modeling
structural prior knowledge.
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Specifically, the vascular semantic segmentation task is regarded as
a multi-channel voxel-wise classification problem. The output contains
𝑁𝑠 + 1 channels, where the first 𝑁𝑠 channels correspond to the 𝑁𝑠
vascular segment classes and the last one belongs to the background.
We train this network branch using a weighted Dice loss function 𝑠𝑒𝑔
to deal with the class imbalance problem. During inference, we obtain
the final semantic segmentation prediction by assigning each voxel the
class with the highest probability.

3.1.3. Orientation field regression
In the third branch, taking inspiration from Cao et al. (2021), we

employ 3D orientation fields to model the spatial relationships between
neighboring landmarks explicitly. Considering that paired landmarks
are connected by vascular segments, the orientation field is constructed
based on the vascular semantic segmentation. In the preliminary con-
ference publication (Tan et al., 2021), the orientation field was simply
defined as a set of unit vectors in the hierarchical structure pointing
from the upper to the lower bifurcation landmarks. However, we
argue that this may be unreasonable especially for long and curved
vessels, since it is difficult for stacked convolutional layers to capture
long-range dependency due to the limited receptive field.

More intuitively, we define the orientation field as the tangential
direction of the lumen centerline. To prepare the orientation field
ground truth, the centerline of each vascular segment is extracted by
performing skeletonization algorithm on the semantic segmentation
annotation. The lumen slope of each point on the centerline is then
set as the 3D unit vector between the voxel position and the adjacent
centerline point. In the lumen segmentation, the orientation field values
of the voxels on each section perpendicular to the centerline are set to
be the same as the corresponding centerline sampling point. For voxels
belonging to the background, the vector is zero-valued. In this way, the
orientation field changes slowly along the direction of vessel extension,
which is easier to learn based on the local image pattern. In order to
reduce memory occupation, we combine the vector fields of all vascular
segments into a single 3D volume, that is, the output has three channels
corresponding to the 𝑥, 𝑦, and 𝑧 coordinate axes. Assisted by semantic
segmentation and orientation field regression, the multi-task network
preserves both location and orientation information across the vascular
structure.

Similarly, a weighted L2 loss function 𝑜𝑟𝑖 is applied for this branch.
The final loss function is formulated by the linear combination of all
losses:

 = ℎ𝑒𝑎𝑡 + 𝛼𝑠𝑒𝑔 + 𝛽𝑜𝑟𝑖, (2)

where the hyperparameters 𝛼 and 𝛽 are dynamically adjusted to make
the different components having the same scale after the training
stabilization.

3.2. Global optimization-based decision strategy

Given a heatmap prediction, a general landmark inference method
is to perform max-voting or weighted-voting strategy. However, this
scheme mainly relies on local appearance, and the spatial relationships
among landmarks are not taken into consideration. In vascular land-
mark detection, false positive responses at other landmark positions are
frequent and may lead to misdetection of the target landmark. In this
paper, we propose a global optimization-based post-processing method,
which combines the predictions of vascular semantic segmentation and
orientation field regression to select the most anatomically reason-
able landmark configuration. Overall, the proposed landmark decision
strategy comprises three main steps: (1) graph construction, (2) edge
weight calculation, and (3) global optimization. The schematic diagram
is illustrated in Fig. 4.
5

3.2.1. Graph construction
Anatomical landmarks are located at bifurcation positions of the

vascular structure, dividing the vessel into multiple segments with
unique physiological functions. According to the anatomical topology,
we model the vascular structure as an undirected graph 𝐺(𝑉 ,𝐸), where
the vertex set 𝑉 =

{

𝑣𝑖
}𝑁𝑙
𝑖=1 and edge set 𝐸 =

{

𝑒𝑖
}𝑁𝑠
𝑖=1 are defined as

landmarks and vascular segments, respectively. If a pair of landmarks
are located at the ends of a vascular segment, they are connected in the
graph. Considering that the correct landmark location is often included
in the highlighted response area of the heatmap prediction but may
not have the highest temperature, for each landmark, we obtain 𝑛
candidate points 𝑣𝑖 =

{

𝑣1𝑖 , 𝑣
2
𝑖 ,… , 𝑣𝑛𝑖

}

by finding local maxima values
in the corresponding heatmap prediction. In this way, there are 𝑛2

candidate edges between two types of candidate points in pairs. Par-
ticularly, the edges in the graph 𝐺 is automatically adjusted according
to the semantic segmentation result to deal with the situations where
some vascular segments may not exist (e.g., physiological variations of
cerebral vessels). If the number of voxels belonging to a certain vascular
segment in the semantic segmentation result is less than a threshold (set
to 5 in the experiments), the corresponding edge is removed from 𝐺.

During inference, a graph prediction 𝐺 (i.e., a predicted landmark
configuration) can be formed by selecting one candidate point for each
type of landmarks. The key insight of the decision strategy is to find an
optimal graph 𝐺∗ conforming the anatomical prior by calculating the
edge weights.

3.2.2. Edge weight calculation
To evaluate the reasonability of a set of candidate points, both

local appearance and anatomical prior information need to be taken
into consideration. Benefiting from the strong ability of convolutional
neural networks (CNNs) to learn feature representations, the heatmap
prediction reflects the confidence of the local appearance around each
voxel position. To incorporate the structural prior knowledge, we de-
fine matching score between paired landmarks. Therefore, the edge
weight in the constructed graph 𝐺 consists of vertex confidence and
edge matching score. Note that we do not define the vertex weight
separately for simplicity.

Specifically, as shown in Fig. 4(b), consider two candidate points
𝐴 and 𝐵 belonging to the endpoints of cerebrovascular segment MCA-
M1. Let 𝐴𝑔𝑡 and 𝐵𝑔𝑡 be the landmark ground truth positions. Given the
outputs of the multi-task network, the local orientation field on MCA-
M1 segment is obtained from the overall orientation field prediction
filtered by the corresponding semantic segmentation result. The pseudo
centerline is extracted from the segmentation using skeletonization
algorithm. Then we find two points 𝐴′ and 𝐵′ on the pseudo centerline
closest to 𝐴 and 𝐵 respectively, and a path 𝐴′ → 𝐵′ from point 𝐴′ to
𝐵′ along the centerline. Connect point 𝐴 and 𝐴′, 𝐵′ and 𝐵 to obtain a
path from point 𝐴 to 𝐵:

𝐴 → 𝐵 = (𝐴 → 𝐴′) + (𝐴′ → 𝐵′) + (𝐵′ → 𝐵). (3)

Subsequently, we sample uniformly on the path 𝐴 → 𝐵 and calcu-
late the matching score point by point. If a sampling point 𝑝 lies on the
centerline (i.e., 𝑝 ∈ (𝐴′ → 𝐵′)), the sampling point is defined as a vector
product; for other sampling points, the matching score is defined as a
penalty term. Formally, we define the matching score 𝑆𝑝 at an sampling
point 𝑝 as:

𝑆𝑝 =
{

𝑑𝐴𝐵 ⋅ 𝑂(𝑝), if 𝑝 ∈ (𝐴′ → 𝐵′)
−𝜏, otherwise (4)

here 𝑑𝐴𝐵 denotes the unit vector from point 𝐴 to 𝐵 and 𝑂(𝑝) is the
redicted vector at voxel 𝑝 in the orientation field. 𝜏(𝜏 > 0) is the
enalty coefficient.

The matching score of point A and B is given by:

𝐴𝐵 = 𝑆𝐴𝐴′ + 𝑆𝐴′𝐵′ + 𝑆𝐵′𝐵

=
∑

𝑑𝐴𝐵 ⋅ 𝑂(𝑝) − 𝜏(𝑙𝐴𝐴′ + 𝑙𝐵′𝐵), (5)

𝑝∈(𝐴′→𝐵′)
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Fig. 4. Schematic diagram of the proposed global optimization-based landmark decision strategy.
where 𝑙𝐴𝐴′ and 𝑙𝐵′𝐵 denote the number of sampling points of path
𝐴 → 𝐴′ and 𝐵′ → 𝐵 respectively, proportional to the path length.

The vertex confidence is chosen as the predicted heatmap probabil-
ity 𝐻(𝐴) and 𝐻(𝐵) on the candidate points. In this way, the weight of
the edge connecting point 𝐴 and 𝐵 is defined as the weighted sum of
the matching score and the vertex confidence, with 𝛾 controlling the
trade-off:

𝑊𝐴𝐵 =
𝐻(𝐴) +𝐻(𝐵)

2
+ 𝛾 ⋅ 𝑆𝐴𝐵 . (6)

We emphasize that the essence of matching score is to simultane-
ously constrain the spatial relationships between adjacent landmarks
and the degree of deviation from the vascular segment region. The first
term in Eq. (5) is the discrete form of the line integral of the vector
product along the path 𝐴′ → 𝐵′, which constrains the relative orienta-
tion and distance between paired candidate points to be consistent with
the extension direction and length of the corresponding vascular seg-
ment. The second term penalizes candidate points deviating from the
vascular segment. The predicted position is considered unacceptable if
it is located on the surrounding tissue.

Additionally, perfect semantic segmentation prediction is not nec-
essary in our method, since only a pathway in the vascular segment
is required instead of a strict centerline. In other words, the network
is supposed to detect the main vascular region. The vascular boundary
does not need to be finely segmented, which is more challenging due
to poor contrast, irregular shape, and varying noise. This also avoids
the misleading of suboptimal semantic segmentation results in the
landmark decision strategy.

3.2.3. Global optimization
The edge weights measure the correlations between candidate

points belonging to paired landmarks. Given the constructed graph and
the calculated edge weights, the landmark detection task is transformed
into selecting a candidate position for each landmark such that the
constructed graph 𝐺∗ has the maximum sum of edge weights. More
formally, consider a graph 𝐺(𝑉 ,𝐸) with 𝑁𝑙 vertices 𝑉 =

{

𝑣𝑖
}𝑁𝑙
𝑖=1 and

𝑁𝑠 edges 𝐸 =
{

𝑒𝑖
}𝑁𝑠
𝑖=1. Let each landmark has 𝑛 candidate points 𝑣𝑖 =

{

𝑣1𝑖 , 𝑣
2
𝑖 ,… , 𝑣𝑛𝑖

}

, 𝑣𝑖 ∈ 𝑉 . For a pair of candidate point (𝑣𝑐𝑖𝑖 , 𝑣
𝑐𝑗
𝑗 ), 𝑐𝑖, 𝑐𝑗 ∈

[1, 𝑛] belonging to paired landmarks (𝑣𝑖, 𝑣𝑗 ), let the corresponding edge
weight be 𝑊𝑣𝑐𝑖𝑖 𝑣

𝑐𝑗
𝑗

. Then, the optimization objective can be written as:

max
𝑐𝑖 ,𝑐𝑗∈[1,𝑛]

∑

𝑣𝑖 ,𝑣𝑗∈𝑃 𝑊𝑣𝑐𝑖𝑖 𝑣
𝑐𝑗
𝑗
, (7)

where 𝑃 denotes the set of paired landmarks connected by vascular
segments. Fig. 4(c) illustrates a simple case of 𝑁𝑙 = 3, 𝑁𝑠 = 2, 𝑛 =
2 as an example, which can be easily generalized to complex graph
6

structures. In this way, the spatial relationships between landmarks and
global structural prior are incorporated explicitly, while the anatom-
ically implausible landmark configurations due to the false positive
responses are suppressed. A basic solution for this optimization problem
is to traverse all candidate point combinations, with exponential time
complexity (i.e., for 𝑁𝑙 landmarks and 𝑛 candidate points per landmark,
the number of iterations required is 𝑛𝑁𝑙 ). We use the Markov Random
Field (MRF) model (Li, 2009) to reduce the time complexity to be linear
with the number of edges (Schwarz et al., 2012).

It is noteworthy that in the proposed post-processing method, only
the correlations between pairs of landmarks connected by vascular
segments are taken into consideration, since there is no obvious spa-
tial dependence between landmarks far away. Our method has no
restrictions on the vascular topology and can be applied to different
tubular structures. For example, for ‘‘isolated’’ landmark without edge
connection in the graph (e.g., aortic landmark 2 and 3 in Fig. 5(c)),
only the vertex confidence participates in edge weight calculation.
Furthermore, the hyperparameters can be flexibly adjusted in practical
applications. For example, the penalty coefficient 𝜏 can be increased
appropriately to encourage the predicted landmarks located within the
vascular region.

4. Experiments and results

We evaluated our method on three 3D volume datasets with dif-
ferent vascular structures and imaging modalities (Fig. 5). The experi-
mental results show that our approach achieves superior performance
compared to state-of-the-art methods. Furthermore, we conducted an
ablation study to investigate the contribution of each component in the
proposed framework.

4.1. Datasets

4.1.1. Cerebral MRA dataset
The cerebral magnetic resonance angiography (MRA) datasets con-

sist of a public part and a private part. The public dataset contains 104
scans of healthy volunteers selected from the UNC dataset1 (for a total
of 109 scans), where the samples with incomplete ICA-C5 segments due
to limited scanning range (2 scans) and deletion variation of unilateral
ACA-A segment (3 scans) were excluded. These two situations will
lead to the missing of corresponding landmarks. The private dataset
contains 460 scans collected clinically with aneurysms or stenosis. For

1 https://public.kitware.com/Wiki/TubeTK/Data.

https://public.kitware.com/Wiki/TubeTK/Data
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Fig. 5. Example images in three datasets with anatomical landmark and semantic
segmentation annotations.

each volume, nineteen clinically relevant cerebrovascular landmarks
and binary segmentation around the Circle of Willis (CoW) region
were annotated manually by one of the authors and verified by an
experienced neurosurgeon. The landmark annotations of the public
dataset have been released by us.2 The annotation rules refer to Bradac
(2014). Then the semantic segmentation label containing 20 classes was
established based on the binary segmentation and landmarks, followed
by manual correction. The semantic segmentation generation was per-
formed on 104 public and 40 private scans. The network was trained
and tested on the public and private datasets separately to enable
fair comparisons on the public part. The public dataset was randomly
divided into 70 training scans, 7 validation scans, and 27 test scans. For
the private dataset, 10 and 150 scans with only landmark annotations
were selected randomly as the validation and the test sets respectively,
while the remaining 300 data composed the training set. All scans were
spatially normalized to 0.513 mm × 0.513 mm × 0.8 mm firstly, and
intensity-based rigid registration was performed by taking a training
sample as the template. Then, the scans were automatically cropped to
192 × 160 × 96 according to the mean landmark distribution.

4.1.2. Cerebral CTA dataset
Computed tomography angiography (CTA) is another common

imaging modality used in cerebrovascular examination and treatment.
The cerebral CTA dataset consists of 510 scans collected clinically with
acute ischemic stroke. Twenty-five landmarks were annotated manually
for each scan. Note that there are 6 landmarks defined only on the
CTA modality (landmark 20–25), since the public MRA images do not

2 http://ivg.au.tsinghua.edu.cn/dataset/Cerebral-MRA/Cerebral-
MRA.html.
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Fig. 6. Illustration of three types of topological detection errors and corresponding test
samples, where the red and green dots denote the landmark ground truth and predicted
positions, respectively.

cover the complete ICA vascular segments. We annotated 60 scans with
binary segmentation around the CoW region, and the cerebrovascular
structure was divided into 26 semantic classes. All images were regis-
tered rigidly to one of training samples based on intensity and cropped
to 208 × 160 × 144 with voxel spacing as 0.488 mm × 0.488 mm ×
0.625 mm. We randomly selected 10 and 150 scans with only landmark
annotations as the validation and the test sets respectively, while the
remaining 350 scans were used for training.

4.1.3. Aorta CTA dataset
The aorta CTA dataset contains 50 scans with isotropic voxel spac-

ing of 1 mm. All patients have severe aortic dissection, where the
torn aortic intima brings a challenge to landmark detection. Fifteen
landmarks and binary segmentation were annotated manually by a
radiologist, then the semantic segmentation label containing 10 seg-
ments was established accordingly. Two scans were selected randomly
as the validation set, and four-fold cross-validation was performed on
the remaining 48 images. We did not apply rigid registration due to
the large individual variations in vessel size. According to the average
distribution of landmarks in the training set, we divided the images
into three subregions along the longitudinal axis, and the models
were trained for each subregion separately. The data preprocessing
operations were repeated for each fold of validation.

4.2. Evaluation metrics

We evaluate the performance of vascular landmark detection with
two metrics commonly used in the literature: Mean Radial Error (MRE)
and Successful Detection Rate (SDR). The MRE calculates the Eu-
clidean distance (in millimeter) between the predicted and ground
truth landmark locations. The associated standard deviation (SD) is also
reported. The SDR measures the successful detection percentage, where
a landmark with the detection error within the predefined precision
threshold is regarded to be detected successfully. In our experiments,
we used four precision thresholds (2 mm, 3 mm, 4 mm, and 5 mm) for
all datasets.

In addition, we propose a novel evaluation metric to calculate the
topological errors in vascular landmark detection, which refers to the
predictions that result in significant deformations, deviations, or distor-
tions of the vascular topology. Empirically, the topological errors can be
classified into three types (see the second row of Fig. 6): (I) detections
outside vessels (e.g., on bones or organ tissues), (II) detections on the
wrong vascular segments, and (III) detections at other locations of the
correct vascular segment (e.g., on other bifurcations). These three types
of topological errors are mutually exclusive and clinically unacceptable,

http://ivg.au.tsinghua.edu.cn/dataset/Cerebral-MRA/Cerebral-MRA.html
http://ivg.au.tsinghua.edu.cn/dataset/Cerebral-MRA/Cerebral-MRA.html
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which can be misleading for subsequent applications, such as vascular
labeling. We regard the semantic centerline as the correct vascular
topology, then the topological errors can be quantitatively evaluated by
calculating the deviation of landmark predictions from the centerline.
If the prediction is too far from the centerline, it is considered to
fall outside the vascular region (type I error). If the prediction falls
near the centerline part corresponding to other vascular segments, it
is mislocated (type II error). If the prediction falls near the correct
centerline part but is off the correct position, it may be located at
other bifurcations that cannot accurately describe the distribution of
the target segment (type III error).

Specifically, we first generate a pseudo-semantic centerline from
the original image using landmark annotations by the minimum cost
path algorithm. The centerline of each segment is obtained by finding
the optimal path between the two corresponding landmarks. Part of
the centerlines needs to be extended manually to consider the farther
bifurcation points (required only in metric calculation). Then, we find
the nearest point on the centerline for each landmark prediction. If
the distance 𝑑1 from the landmark to the centerline is greater than
he radius threshold 𝑇𝑟, the prediction is classified as a type I error
Fig. 6(a)). Otherwise, if the closest point is on the wrong vascular
egment, the prediction is classified as a type II error (Fig. 6(b)). For
rifurcation landmarks, the three adjacent vascular segments are all
orrect segments. If the closest point is on the right vascular segment,
alculate the sum of the distances of the landmark prediction perpen-
icular to the centerline 𝑑1 and along the centerline 𝑑2. If the sum is

greater than the distance threshold 𝑇𝑑 , the prediction is classified as
a type III error (Fig. 6(c)), otherwise the prediction is topologically
correct. The radius threshold 𝑇𝑟 for each vascular segment is defined as
the average radius of the segmentation annotations with a margin 𝜃𝑟.
Considering the different vessel sizes, 𝜃𝑟 was set to 3 mm for cerebral
vessel and 4.5 mm for aorta empirically. 𝑇𝑑 was set to 4.5 mm for
cerebral vessel and 8.5 mm for aorta. We report the topological error
rates (ERs, in %) for all experiments. The ER is the number of each type
of errors divided by the total number of landmarks, where the latter is
the product of the number of predefined landmarks and test samples.

Furthermore, we report the average time cost of the data prepro-
cessing and landmark detection methods (in second).

4.3. Implementation details

The proposed framework was implemented in PyTorch on an
NVIDIA GeForce RTX 3090 GPU. During training, the backbone net-
work was first trained with only vascular semantic segmentation
branch, then the heatmap regression and orientation field regression
branches were added and trained jointly. The multi-task network was
trained for around 500 epochs using an Adam optimizer (𝛽1 = 0.5, 𝛽2 =
0.999) with a learning rate of 0.0001.

For the number of candidate points 𝑛, a large 𝑛 provides a higher
probability of containing the right locations, but introduces computa-
tional burden and potential error interference. During inference, we
empirically chose 𝑛 as 4 for all experiments. The hyperparameters
in Eqs. (4) and (6) were selected on the validation sets and vary
with the datasets. The effect of hyperparameter settings on detection
performance is discussed in ablation experiments. The structure of
graph 𝐺 follows the anatomical topological definition. In particular, for
the aorta dataset, the trunk was not considered in 𝐺, since the spatial
correlations are mainly reflected on the nine branches.

4.4. State-of-the-art comparison

To evaluate the proposed method, we compared it with several
state-of-the-art methods for anatomical landmark detection: (1)
heatmap regression-based methods SCN (Payer et al., 2019) and FAR-
8

Net (Ao and Wu, 2023), (2) coordinate regression-based methods
(Noothout et al., 2020; Zeng et al., 2021), (3) a reinforcement learning-
based method DQN (Alansary et al., 2019), and (4) a deep learning
method combining heatmap and coordinate regression architectures
SA-LSTM (Chen et al., 2022). It is worth noting that these methods can
solve the landmark confusion problem to a certain extent. SCN (Payer
et al., 2019) introduced a spatial configuration component to model the
landmark spatial distribution. FARNet (Ao and Wu, 2023) suggested
aggregating multi-scale features and applying coarse-to-fine supervi-
sions. Noothout et al. (2020) and Zeng et al. (2021) and SA-LSTM (Chen
et al., 2022) employed multi-stage frameworks and performed global-
to-local estimation of landmark localization. DQN (Alansary et al.,
2019) proposed a deep Q-network based model with novel hierarchical
action steps. For SCN (Payer et al., 2019), DQN (Alansary et al.,
2019), SA-LSTM (Chen et al., 2022), and FARNet (Ao and Wu, 2023),
we adapted the codes made publicly available by the authors,3,4,5,6

ollowing the default settings. For DQN (Alansary et al., 2019), we
plit the predefined landmarks into several groups and detected 2–

landmarks at a time while the default is 2. We reimplemented
he methods of Noothout et al. (2020) and Zeng et al. (2021) since
here is no public implementation. The performance of the modified
-Net (Ronneberger et al., 2015) (the backbone network with only
eatmap regression branch) is also investigated. We note that the pro-
osed post-processing algorithm relies on predictions of the multi-task
etwork, and thus was not performed on these comparison methods.
he same data preprocessing steps were performed for all methods.

.4.1. Public cerebral MRA dataset
For the public cerebral MRA dataset, the results on the test set

valuated by MRE, associated SD, SDR, and ER are listed in Table 1.
ur method achieves an average accuracy of 1.27 ± 0.48 mm, which

hows significant improvements by 0.48 mm (27% reduction), 0.82 mm
39% reduction), 0.81 mm (39% reduction), 0.58 mm (31% reduc-
ion), 0.4 mm (24% reduction), 0.42 mm (25% reduction) over SCN,
QN, Noothout et al. (2020) and Zeng et al. (2021), SA-LSTM, and
ARNet, respectively. The methods in DQN, Noothout et al. (2020)
nd Zeng et al. (2021), and SA-LSTM detect landmarks in a coarse-
o-fine manner, where the coarse stages prevent outlier predictions,
esulting in a smaller SD of MRE and higher SDR within large distance
hresholds. However, due to the highly nonlinear complexity involved
n the mapping from image to landmark locations, it is not trivial to
irectly regress the coordinates or residuals at the refinement stages. In
ontrast, the heatmap-based methods (U-Net, SCN, and FARNet) focus
n the local features of each voxel, which may result in landmark con-
usion problem due to similar local appearances, leading to significant
ocalization errors in some cases. Compared with these approaches, our
roposed method maintains superior and robust performance in SDR
ithin various precision thresholds.

For topological detection errors, the methods based on heatmap
egression (U-Net, SCN, FARNet, and ours) hardly show type I errors
enefiting from the high contrast of vessels in the MRA images. Com-
ared with U-Net, previous state-of-the-art methods show fewer type II
rrors and more type III errors, which indicates that their predictions
re affected by redundant vascular branches or curvature mutations
ithout sufficient structural prior knowledge, such as the length and
xtension direction of the vascular segments. In contrast, our multi-task
earning network (MTN) significantly corrects the topological errors of
ypes II and III, while the post-processing algorithm further improves
he landmark detection performance.

The MREs for each landmark are shown in Fig. 7. Some landmarks
re intrinsically more challenging due to variable vessel shape and

3 https://github.com/christianpayer.
4 https://github.com/amiralansary/rl-medical.
5 https://github.com/runnanchen/SA-LSTM-3D-Landmark-Detection.
6
 https://github.com/JuvenileInWind/Farnet/.

https://github.com/christianpayer
https://github.com/amiralansary/rl-medical
https://github.com/runnanchen/SA-LSTM-3D-Landmark-Detection
https://github.com/JuvenileInWind/Farnet/
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Table 1
Quantitative comparisons with state-of-the-art methods on the public cerebral MRA dataset. The results were evaluated by MRE, associated SD,
SDRs in four distance ranges, and ERs of three error types, with the best performance shown in bold. ‘‘MTN’’ stands for the proposed multi-task
network.

Method MRE (SD) (mm, ↓) SDR (%, ↑) ER (%, ↓)

2 mm 3 mm 4 mm 5 mm I II III

U-Net (Ronneberger et al., 2015) 3.29 (1.82) 81.48 84.60 87.72 89.08 0.00 7.99 9.36
SCN (Payer et al., 2019) 1.75 (0.50) 75.44 84.41 90.25 93.57 0.00 2.14 9.94
DQN (Alansary et al., 2019) 2.09 (0.44) 63.74 80.90 90.25 92.79 1.17 1.75 12.67
Noothout et al. (2020) 2.08 (0.40) 57.89 80.31 92.98 95.13 3.70 2.34 8.77
Zeng et al. (2021) 1.85 (0.33) 67.45 86.35 93.37 95.91 2.14 1.95 7.99
SA-LSTM (Chen et al., 2022) 1.67 (0.35) 75.05 86.74 92.98 95.52 1.17 1.17 8.19
FARNet (Ao and Wu, 2023) 1.69 (1.11) 85.38 89.67 91.62 93.76 0.19 2.34 7.02

MTN 1.73 (0.90) 86.16 90.06 91.81 93.76 0.00 2.34 6.04
Proposed 1.27 (0.48) 87.72 92.01 93.57 95.71 0.00 1.17 5.26
Fig. 7. Mean radial errors (MREs, in mm) for nineteen landmarks in the public cerebral MRA dataset. See Fig. 5(a) for the meaning of landmark index.
interference of additional branches, such as the bifurcation landmarks
between MCA-M1, M2 segments (landmark 5 and 6), and between PCA-
P2 A, P2P segments (landmark 12 and 13). Symmetric landmarks have
similar detection difficulty in theory, but exhibit different detection
errors, which may be caused by the limited test set. On larger test sets
(e.g., the private cerebral MRA dataset and the cerebral CTA dataset),
symmetric landmarks have similar detection performance (see Figs. 8
and 9).

A typical sample is illustrated in Fig. 11(a). It can be observed that
our method suppresses the anatomically unreasonable predictions and
solves the landmark confusion problem effectively. On average, the
data preprocessing times per scan (including resize, registration, and
crop operations) for all methods was 9.82 ± 2.80 s, varying with the
original data size. The average inference times of each method are listed
in Table 5. The inference time of our method is 3.11 ± 0.47 s, where the
post-processing stage is the most time-consuming part (2.60 ± 0.22 s)
due to the complex edge weight calculation process.

4.4.2. Private cerebral MRA dataset
The private dataset contains 40 scans with semantic segmentation

and landmark annotations (called full annotation) and 420 scans with
only landmark annotations. 150 and 10 scans were randomly selected
from the latter as the test and validation sets respectively, consistent
across all experiments. It is noteworthy that the proposed method
requires landmark and semantic segmentation annotations simultane-
ously, while the comparison methods (SCN, DQN, Noothout et al.
(2020) and Zeng et al. (2021), SA-LSTM, FARNet) rely only on land-
mark annotations. Considering that semantic segmentation annotation
is more time-consuming and labor-intensive, we trained the proposed
method with 200 scans (40 scans with full annotations and 160 scans
with only landmark annotations) and the other three methods with all
remaining 300 scans for fair comparison. The multi-task network was
9

optimized using  for the fully annotated scans and ℎ𝑒𝑎𝑡 for the data
with only landmark annotations. The experimental results on the test
set are shown in Table 2 and Fig. 8. It can be observed that our method
obtains the lowest detection error of 1.36 ± 0.53 mm (25% reduction
than SCN, 38% reduction than DQN, 33% reduction than Noothout
et al. (2020), 28% reduction than Zeng et al. (2021), 16% reduction
than SA-LSTM, and 21% reduction than FARNet. Our method also
achieves higher SDRs especially for small precision thresholds and the
lowest ERs for the three types of topological errors. Typical detection
results are illustrated in Fig. 11(b).

Moreover, we compared our method trained using the whole train-
ing set and only 40 fully annotated scans respectively. As shown in
Table 2, larger training dataset reduces the MRE by 0.41 mm (23%
reduction) and increases the SDR within 2 mm by 6.63%, which
indicates that our method does not rely on a large number of semantic
segmentation annotations, and the detection performance can be sig-
nificantly improved by expanding training dataset with only landmark
annotations. The average data preprocessing time and inference times
per scan are shown in Table 5.

4.4.3. Cerebral CTA dataset
For the cerebral CTA dataset, we randomly selected 10 and 150

scans with only landmark annotations as the validation and test sets,
respectively. Similar to the private MRA dataset, we trained the pro-
posed method with 60 fully annotated scans and 140 scans with only
landmark annotations, while 350 scans were used in the comparison
methods (SCN, DQN, Noothout et al. (2020) and Zeng et al. (2021),
SA-LSTM, FARNet). The results on the test set are presented in Table 3
and Fig. 9. Compared with MRA scans, the cerebral CTA dataset is more
challenging due to widespread noise interference, resulting in more se-
rious landmark confusion problems. Therefore, the proposed multi-task
configuration and post-processing scheme achieve greater performance
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Table 2
Quantitative experiments on the private cerebral MRA dataset, with the best performance shown in bold. ‘‘MTN’’ stands for the multi-task
network.

Method MRE (SD) (mm, ↓) SDR (%, ↑) ER (%, ↓)

2 mm 3 mm 4 mm 5 mm I II III

U-Net (Ronneberger et al., 2015) 2.86 (1.97) 82.60 87.82 90.74 92.32 0.00 7.68 7.93
SCN (Payer et al., 2019) 1.82 (0.53) 75.79 84.21 89.68 92.95 0.00 3.33 9.96
DQN (Alansary et al., 2019) 2.18 (0.50) 63.12 80.60 89.61 93.61 0.81 2.53 13.23
Noothout et al. (2020) 2.03 (0.49) 61.54 83.23 92.81 94.95 3.33 3.05 8.42
Zeng et al. (2021) 1.89 (0.43) 68.81 86.56 92.60 95.26 1.19 2.28 9.30
SA-LSTM (Chen et al., 2022) 1.62 (0.40) 74.60 87.23 93.82 95.86 0.81 2.60 6.77
FARNet (Ao and Wu, 2023) 1.73 (1.12) 83.40 89.89 92.46 94.42 0.04 3.79 6.25

MTN 1.68 (0.98) 86.14 90.81 93.16 94.32 0.00 2.67 5.82
Proposed 1.36 (0.53) 86.70 91.61 93.96 95.12 0.00 1.72 5.79

MTNa 2.06 (1.22) 79.72 86.56 90.18 92.32 0.00 3.72 8.32
Proposeda 1.77 (0.85) 80.07 87.09 90.77 92.91 0.00 2.77 8.63

a Indicates the proposed method trained using only 40 fully annotated data.
Fig. 8. Mean radial errors (MREs, in mm) in the private cerebral MRA dataset.
Table 3
Quantitative results on the cerebral CTA dataset measured by MRE, associated SD, SDRs in four distance ranges, and ERs of three error types,
with the best performance shown in bold. ‘‘MTN’’ stands for the proposed multi-task network.

Method MRE (SD) (mm, ↓) SDR (%, ↑) ER (%, ↓)

2 mm 3 mm 4 mm 5 mm I II III

U-Net (Ronneberger et al., 2015) 4.47 (2.68) 62.67 75.97 83.31 86.19 0.08 11.79 6.51
SCN (Payer et al., 2019) 2.60 (0.74) 54.77 73.01 83.25 89.07 0.19 4.99 12.27
DQN (Alansary et al., 2019) 2.73 (1.01) 50.11 71.76 84.29 90.16 1.31 4.08 12.88
Noothout et al. (2020) 2.86 (0.96) 42.80 66.56 80.48 87.87 5.52 5.63 8.96
Zeng et al. (2021) 2.69 (0.52) 39.36 68.03 84.19 92.08 1.01 3.92 13.63
SA-LSTM (Chen et al., 2022) 2.54 (0.41) 41.01 66.93 84.83 92.85 2.45 4.19 9.55
FARNet (Ao and Wu, 2023) 2.59 (1.53) 63.89 79.95 87.44 91.20 0.67 5.47 9.92

MTN 2.58 (1.27) 65.87 80.91 88.75 92.35 0.03 4.75 7.57
Proposed 2.18 (0.72) 66.11 81.28 89.31 93.09 0.03 3.52 8.19
Fig. 9. Mean radial errors (MREs, in mm) for twenty-five landmarks in the cerebral CTA dataset. See Fig. 5(b) for the meaning of landmark index.
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Table 4
Quantitative results on the aorta CTA dataset evaluated by MRE, associated SD, SDRs in four distance ranges, and ERs of three error types,
with the best performance shown in bold. ‘‘MTN’’ stands for the proposed multi-task network.

Method MRE (SD) (mm, ↓) SDR (%, ↑) ER (%, ↓)

2 mm 3 mm 4 mm 5 mm I II III

U-Net (Ronneberger et al., 2015) 4.38 (2.35) 52.64 75.69 84.31 86.11 0.69 3.89 7.78
SCN (Payer et al., 2019) 2.82 (1.71) 52.64 78.06 88.06 91.25 0.83 0.97 4.31
DQN (Alansary et al., 2019) 2.93 (1.02) 49.31 69.72 88.19 91.81 1.25 0.83 5.56
Noothout et al. (2020) 3.03 (0.95) 38.61 58.19 87.22 92.36 2.36 0.69 4.58
Zeng et al. (2021) 2.91 (0.85) 42.5 66.81 88.06 91.81 1.81 0.56 4.86
SA-LSTM (Chen et al., 2022) 2.86 (0.69) 46.94 67.78 79.17 88.19 1.53 0.69 5.14
FARNet (Ao and Wu, 2023) 2.89 (1.15) 53.06 73.75 86.53 89.03 0.69 1.11 5.28

MTN 2.91 (1.22) 55.83 77.78 86.11 89.44 0.42 1.53 6.11
Proposed 2.52 (0.99) 57.22 79.44 88.47 91.53 0.28 0.56 4.17
Fig. 10. Mean radial errors (MREs, in mm) for fifteen landmarks in the aorta CTA dataset. See Fig. 5(c) for the meaning of landmark index.
improvements over the traditional heatmap regression network (U-Net)
by 1.89 mm (42% reduction) and 2.29 mm (51% reduction) in MRE,
respectively. As illustrated in Fig. 9, similar to the MRA dataset, the
bifurcation landmarks between MCA-M1, M2 segments (landmark 5
and 6), and between PCA-P2 A, P2P segments (landmark 12 and 13)
have larger detection error due to variable vascular structures. The
landmarks on the bilateral ICA segments (landmark 20 to 25) exhibit
small detection errors, which are more spatially consistent with less
variations.

Compared with the state-of-the-art approaches, our method out-
performs SCN by 0.42 mm (16% reduction), DQN by 0.55 mm (20%
reduction), Noothout et al. (2020) by 0.68 mm (24% reduction), Zeng
et al. (2021) by 0.51 mm (19% reduction), SA-LSTM by 0.36 mm (14%
reduction), and FARNet by 0.41 mm (16% reduction) in MRE metric.
In particular, after the post-processing algorithm, the proposed method
exhibits fewer type II errors but more type III errors, since the post-
processing algorithm may correct the detection errors of type II to other
locations on the right vascular segments. Qualitative results are shown
in Fig. 11(c). The average data preprocessing time and inference times
are reported in Table 5.

4.4.4. Aorta CTA dataset
In the aorta CTA dataset, the trunk was not included in the con-

structed graph, and the nine major branches were independently op-
timized. For the landmarks without edge connection (landmark 2 and
3), the predicted positions of the multi-task network were not changed
in the post-processing stage. We report the results on the test set in
Table 4 and Fig. 10. Our method obtains lower detection error by
0.3 mm (11% reduction), 0.41 mm (14% reduction), 0.51 mm (17%
reduction), 0.39 mm (13% reduction), 0.34 mm (12% reduction), and
0.37 mm (13% reduction) than SCN, DQN, Noothout et al. (2020) and
Zeng et al. (2021), SA-LSTM, and FARNet, respectively.

For topological detection errors, compared with cerebral vessels, the
aorta is more prone to type I errors due to the interference of the ob-
vious vertebrae, while the ER of type II exhibits significant reductions,
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since the vascular segments of the aorta are easier to distinguish. The
MREs for each landmark are shown in Fig. 10. Landmark confusion
problems in the aorta are mainly found at the secondary bifurcation
landmarks in the abdominal region (landmark 9–12), which are dis-
turbed by tiny branches and show large detection errors. Qualitative
comparisons are presented in Fig. 11(d).

Experiments were conducted on the top (aortic arch), middle (ab-
dominal aorta), and bottom (common iliac artery) parts of the aorta
separately. On average, the overall preprocessing time (only crop op-
eration) was 3.15 ± 0.69 s. The total inference times are listed in
Table 5.

4.5. Ablation study

To validate the components of the proposed method, we performed
an ablation study on the public cerebral MRA dataset using the back-
bone network with different task configurations. Quantitative results
are summarized in Table 6. Qualitative predictions with the multi-task
network and overall framework are shown in the last two rows of
Fig. 11.

The heatmap regression network (U-Net in Table 1) obtains high
SDRs even within small distance thresholds but the highest ER of type II
error, which indicates that the network learns representative local fea-
tures but suffers from severe landmark confusion problems. By adding
semantic segmentation and orientation field regression as auxiliary
tasks successively, the detection error of the network shows significant
reduction by 0.96 mm and 0.6 mm respectively, with the SDR and
ER metrics improving accordingly. In particular, utilizing orientation
field regression as the single auxiliary task is inferior to semantic
segmentation. Although the orientation field contains more structural
information (distribution and direction of vascular segments), it is
difficult to learn without the assistance of semantic segmentation. By
replacing the max-voting strategy with the proposed post-processing
method, the MRE metric further reduces by 0.46 mm. Visualization
examples show that the post-processing method corrects unreasonable
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Table 5
Average time cost per scan (in second) and associated standard deviation for data preprocessing and comparison methods on different
datasets.

Method Public cerebral MRA Private cerebral MRA Cerebral CTA Aorta CTA

Data preprocessing 9.82 (2.80) 10.35 (3.01) 17.04 (4.87) 3.15 (0.69)

U-Net (Ronneberger et al., 2015) 0.45 (0.09) 0.49 (0.10) 1.07 (0.21) 0.73 (0.15)
SCN (Payer et al., 2019) 1.16 (0.05) 1.13 (0.03) 2.47 (0.11) 1.65 (0.03)
DQN (Alansary et al., 2019) 5.25 (2.75) 5.63 (2.79) 8.21 (4.05) 4.15 (1.79)
Noothout et al. (2020) 0.12 (0.01) 0.12 (0.01) 0.83 (0.56) 0.57 (0.08)
Zeng et al. (2021) 1.53 (0.09) 1.79 (0.10) 2.94 (0.33) 3.11 (0.17)
SA-LSTM (Chen et al., 2022) 1.31 (0.16) 1.30 (0.11) 1.87 (0.21) 1.65 (0.19)
FARNet (Ao and Wu, 2023) 1.29 (0.18) 1.27 (0.19) 2.51 (0.37) 2.30 (0.24)
Proposed 3.11 (0.47) 3.23 (0.53) 4.33 (0.74) 5.73 (0.86)
Table 6
Ablation study on the public cerebral MRA dataset of different task configurations and hyperparameter settings in the post-processing algorithm,
with the best performance shown in bold. ‘‘MTN’’ stands for the proposed multi-task network.

Method MRE (SD) (mm, ↓) SDR (%, ↑) ER (%, ↓)

2 mm 3 mm 4 mm 5 mm I II III

Heat 3.29 (1.82) 81.48 84.60 87.72 89.08 0.00 7.99 9.36
Heat+Seg 2.33 (1.74) 84.21 87.91 90.06 92.01 0.00 5.07 5.65
Heat+Ori 2.63 (1.67) 84.80 87.13 88.89 91.03 0.00 6.04 5.85
MTN 1.73 (0.90) 86.16 90.06 91.81 93.76 0.00 2.34 6.04

𝜏 = 0, 𝛾 = 75 1.35 (0.51) 86.74 91.03 92.79 94.93 0.19 1.36 5.85
𝜏 = 3, 𝛾 = 75 1.67 (0.64) 85.58 89.86 91.42 93.37 0.00 0.97 7.21
𝜏 = 0.3, 𝛾 = 0 1.63 (0.56) 83.63 87.72 89.47 91.81 0.58 1.17 9.36
𝜏 = 0.3, 𝛾 = 7500 1.66 (0.88) 86.35 90.25 92.01 93.96 0.00 2.14 6.04
𝜏 = 0.75, 𝛾 = 125 1.31 (0.50) 87.52 91.62 93.18 95.32 0.00 1.17 5.65
𝜏 = 0.3, 𝛾 = 75a 1.27 (0.48) 87.72 92.01 93.57 95.71 0.00 1.17 5.26

a Indicates the optimal hyperparameter setting selected on the validation set.
redictions while keeping the correct predictions unchanged, which
lso demonstrates that our framework solves the landmark confusion
roblem effectively.

Furthermore, we compared the performance of different hyperpa-
ameter settings in the proposed post-processing algorithm, all of which
ere performed on the predictions of the multi-task network. The
ptimal hyperparameter setting selected on the validation set is 𝜏 = 0.3,
= 75. The penalty coefficient 𝜏 constrains the predictions near the

orresponding vascular segments, which contributes to the reduction
f the ERs of type I and type II. When 𝜏 is 0, the ERs of types I
nd II show a small increase. When 𝜏 is very large (e.g., 𝜏 = 3), the

algorithm may correct the predictions to the wrong positions of the
right segments, bringing higher ER of type III. On the other hand,
the weight 𝛾 controls the proportion of matching score and heatmap
confidence in the final score. When 𝛾 is 0, the decision strategy only
considers the matching score without utilizing the local image features
encoded in the heatmaps. When 𝛾 is very large (e.g., 𝛾 = 7500), the post-
processing algorithm is approximately equivalent to the max-voting
strategy. Except for the extreme cases mentioned above, changing the
hyperparameter setting will have only a slight impact on the final
experimental results (e.g., 𝜏 = 0.75, 𝛾 = 125).

5. Discussion

Overall, we propose a deep learning-based framework for vascular
landmark detection in medical images. We embed the anatomical struc-
tural prior in the multi-task network and utilize the spatial relationships
between neighboring landmarks explicitly to optimize the final pre-
dictions. The experimental results demonstrate that our method can
be applied to vascular landmark detection tasks differing in landmark
number, vascular structure, and imaging modality, without the need
for complex modifications. Compared with other state-of-the-art ap-
proaches (Payer et al., 2019; Noothout et al., 2020; Alansary et al.,
2019; Chen et al., 2022), our method achieves superior detection
performance, higher location accuracy especially within small distance
thresholds, and less topological detection errors, which are more im-
portant clinically. Furthermore, considering that our method requires
12
semantic segmentation annotations in addition to landmark annota-
tions, we introduced more scans when training these state-of-the-art
approaches for fairer comparisons.

To study the clinical application of vascular landmark detection,
we developed a non-learning algorithm to generate vascular seman-
tic segmentation from landmark prediction and manual annotation
of binary segmentation. The main flow of the algorithm is to seg-
ment the refinement centerline by landmark predictions, and label
the remaining voxels in the binary segmentation following the nearest
neighbor strategy. The mean Dice coefficient of all vascular segments
was evaluated for quantitative comparison. Taking 10 private MRA test
data for example, our method, the methods proposed in Payer et al.
(2019), Noothout et al. (2020), Alansary et al. (2019), and Chen et al.
(2022) yield results of 90.20%, 83.16%, 82.84%, 83.05%, and 85.02%,
respectively, which indicates that our method captures the structural
prior information more effectively.

There are some limitations in our proposed method. We assume
that all predefined landmarks exist in the image and do not discuss
the case where some landmarks are missing (e.g., some landmarks are
invisible due to vascular obstruction), which may be solved by setting a
threshold for the confidence of candidate points. Another limitation is
to perform multi-task network and post-processing method in a cascade
manner, where the complex edge weight calculation process greatly
increases the inference time. In the future, we will investigate how
to integrate the optimization process into an end-to-end deep learning
framework.

6. Conclusion

In this paper, we propose a multi-task global optimization-based
method for automatic vascular landmark detection. A multi-task net-
work is exploited for initial heatmap prediction, where vascular se-
mantic segmentation and orientation field regression are introduced as
auxiliary objectives to incorporate anatomical prior information. Dur-
ing inference, instead of performing a max-voting strategy, we present
a global optimization-based post-processing algorithm for reliable land-
mark decision. The spatial relationships between landmarks are utilized
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Fig. 11. Qualitative comparisons on (a) public cerebral MRA, (b) private cerebral MRA, (c) cerebral CTA, and (d) aorta CTA datasets. The yellow dashed lines connect the landmark
ground truth and predicted positions with large detection errors. Different landmarks are differentiated by color. Some landmarks are not drawn due to occlusion.
explicitly to tackle the landmark confusion problem. The proposed
method was evaluated using three datasets with different vascular
structures and imaging modalities. Experimental results demonstrate
that our framework provides a significant improvement and achieves
state-of-the-art performance. Future studies will include extending the
proposed method to other anatomical tubular structures.
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