pp: 111 (col fig · Nil)	PR	1890		
pp: 1 11 (001.11g.: 141)	pp:	111	(col.fig.:	Nil)

PROD. TYPE: COM

ED: Pallabi PAGN: Vidya - SCAN: Venki

ARTICLE IN PRESS

PERGAMON

Pattern Recognition III (III) III-III

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY www.elsevier.com/locate/patcog

PATTERN

RECOGNITI

A combination model for orientation field of fingerprints

Jinwei Gu^a, Jie Zhou^{a,*}, David Zhang^b

^aDepartment of Automation, Tsinghua University, Beijing 100084, China

^bBiometrics Technology Centre, Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong

Received 6 December 2002; accepted 14 May 2003

7 Abstract

1

3

5

Orientation field is a global feature of fingerprints that is very important in automatic fingerprint identification systems 9 (AFIS). Establishing an accurate and concise model for orientation fields will not only improve the performance of orientation estimation, but also make it feasible to apply orientation information in the matching process. In this paper, a novel model for

11 the orientation field of fingerprints is proposed. We use a polynomial model to approximate the orientation field globally and a point-charge model at each singular point to improve the approximation locally. These two models are combined together

by a weight function. Experimental results are provided to illustrate the fact that this combination model is more accurate and robust with respect to noise compared with the previous works. The application of the model is discussed at the end.

15 © 2003 Published by Elsevier Ltd on behalf of Pattern Recognition Society.

Keywords: Fingerprint identification; Orientation field; Polynomial model; Point-charge model; Weighting factor

1. Introduction

Among various biometric techniques, automatic fingerprint identification systems (AFIS) are the most popular and reliable for automatic personal identification. During the
last years, fingerprint identification has received increasing attention and the performance of fingerprint identification
systems has reached a high level. However, it is still not satisfactory for a large database or fingerprints with poor
quality [1,2].

A fingerprint is the pattern of ridges and valleys on the surface of a fingertip. In Fig. 1(a), a fingerprint is depicted. In this figure, the ridges are black and the valleys are white.

29 Its *orientation field*, defined as the local orientation of the ridge-valley structures, is shown in Fig. 1(b). The *minutiae*,

ridge endings and bifurcations, and the *singular points*, are also shown in Fig. 1(a). Singular points can be viewed as
points where the orientation field is discontinuous. They

can be classified into two types: A *core* is the point of the

* Corresponding author. Tel.: +86-10-6278-2447; fax: +86-10-6278-6911.

E-mail address: jzhou@tsinghua.edu.cn (J. Zhou).

innermost curving ridges and a *delta* is the center of triangular regions where three different directional flows meet. 37 Most classical AFIS algorithms [1–5] take the minutiae and the singular points, including their coordinates and direction, as the distinctive features to represent the fingerprint in the matching process. But this kind of representation does not utilize all available features in fingerprints and therefore cannot provide enough information for large-scale fingerprint identification tasks [6].

As a global feature, orientation field describes one of 45 the basic structures of a fingerprint. The variation of orientation field is of low frequency so that it is robust with 47 respect to various noises. It has been widely used for minutiae extraction and fingerprint classification, but rarely uti-49 lized into the matching process. In this paper, we focus on the modeling of orientation field. Our purpose is to represent 51 the orientation field in a complete and concise form so that it can be accurately reconstructed with several coefficients. 53 This work is significant in three ways: (a) It can be used to improve the estimation of orientation field, especially for 55 poor-quality fingerprints, therefore it will be of benefit in the extraction of minutiae for conventional fingerprint iden-57 tification algorithms. (b) More importantly, the coefficients

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 1. Example of a fingerprint: (a) singular points and minutiae with its direction; (b) orientation field shown with unit vector.

1 of the orientation field model can be saved for use in the matching step. As a result, information on orientation field can be utilized for fingerprint identification. By combining it 3

with the minutiae information, a much better identification 5 performance can be expected. (c) In Ref. [7], the authors

proposed to synthesize the fingerprint by using information 7 on orientation field, minutiae and the density between the ridges. This makes it possible to establish a complete rep-9 resentation for the fingerprint by combining the orientation model with some other information.

11 Sherlock and Monro [8] proposed a so-called zero-pole model for orientation field based on singular points, which 13 takes the core as zero and the delta as a pole in the complex plane. The influence of a core, z_c , is $\frac{1}{2} \arg(z - z_c)$ for point

z, and that of a delta, z_d , is $-\frac{1}{2} \arg(z - z_d)$. The orientation 15 at z, is the sum of the influence of all cores and deltas. It

- 17 is simple and effective, but inaccurate because many fingerprints that have the same singular points may yet differ in 19 detail. Vizcaya and Gerhardt [9] have made an improvement using a piecewise linear approximation model around sin-
- 21 gular points to adjust the zero and pole's behavior. First, the neighborhood of each singular point is uniformly divided 23 into eight regions and the influence of the singular point is
- assumed to change linearly in each region. An optimization 25 implemented by gradient-descent is then performed to get a piecewise linear function. These two models cannot deal 27 with fingerprint without singular point such as the plain arch
- classified by Henry [10]. Furthermore, since they do not con-29 sider the distance from singular points and the influence of
- a singular point is the same as any point on the same cen-31 tral line, whether near or far from the singular point, serious

error will be caused in the modeling of the regions far from singular points. As a result, these two models cannot be used 33 for accurate approximation to real fingerprint's orientation field. 35

Here we propose a combination model for the orientation field. Since the orientation of fingerprints is quite smooth and 37 continuous except at singular points, we apply a polynomial model to approximate the global orientation field. At each 39 singular point, a point-charge model similar to the zero-pole model is used to describe the local region. Then, these two 41 models are combined smoothly together through a weight function. The advantages of our combination model are as 43 below: (1) It can accurately represent the orientation field at regions either near or far from singular points. (2) Global 45 approximation makes it robust against noise. (3) It has a concise representation, which guarantees a low storage cost 47 for its application to fingerprint identification.

The paper is organized as follows. In Section 2, the com-49 bination model of the orientation field is proposed. The algorithm for computing the model's coefficients is given in 51 Section 3. Experimental results are presented in Section 4. We finish with conclusions and discussion on applications 53 of our model.

2. The combination model of orientation field

From Fig. 1(b), we can see that the orientation pattern 57 of a fingerprint is quite smooth and continuous except near the singular points. That means we can apply a simple and 59 smooth function to approximate it globally.

2

J. Gu et al. / Pattern Recognition III (III) III-III

1 Since the value of a fingerprints' orientation is defined within $[0, \pi)$, it seems that this representation has an intrin-

- 3 sic discontinuity (in fact, the orientation, 0, is the same as the orientation, π , in ridge pattern). So we cannot model the 5 orientation field directly. A solution to this problem is to
- map the orientation field to a continuous complex function. 7 Define $\theta(x, y)$ and U(x, y) to be, respectively, the orientation field and the transformed function, respectively. The

9 mapping can be defined as

$$U = R + iI = \cos 2\theta + i \sin 2\theta, \quad \theta \in [0, \pi),$$
(1)

where R and I denote, respectively, the real part and imag-11 inary part of the complex function, U(x, y). Obviously,

R(x, y) and I(x, y) are continuous with x, y in those re-13 gions. The above mapping is a one-to-one transformation

and $\theta(x, y)$ can be easily reconstructed from the values of 15 R(x, y) and I(x, y).

Now, the modeling of the orientation field can be done in 17 two ways. One is to model the complex function, U(x, y),

in the complex domain directly; the other is to model its 19 real part, R(x, y), and imaginary part, I(x, y), respectively,

- in the real domain. We employ the second method in this paper; the former method will be addressed in our future 21 research.
- 23 To globally represent R(x, y) and I(x, y), two bivariate polynomial models are established, which are denoted by
- 25 PR and PI, respectively. These two polynomials can be formulated as

$$PR(x, y) = (1 \quad x \quad \cdots \quad x^{n}) \cdot P_{1} \cdot \begin{pmatrix} 1 \\ y \\ \vdots \\ y^{n} \end{pmatrix}$$
(2)

(1)

27 and

$$PI(x, y) = (1 \quad x \quad \cdots \quad x^{n}) \cdot P_{2} \cdot \begin{pmatrix} 1 \\ y \\ \vdots \\ y^{n} \end{pmatrix}, \qquad (3)$$

where n is the polynomials' order and the matrices, $P_i \in \mathfrak{R}^{n \times n}, \forall i = 1, 2.$ 29

Near the singular points, the orientation is no longer 31 smooth, so it is difficult to model with a polynomial function. A model named 'point-charge' (PC) is added at each

33 singular point. And for a certain singular point, its influence at the point, (x, y), varies with the distance between the

35 point and the singular point. Fig. 2(a) shows the unit influence vector (tangent vector) caused by a standard core. Its

37 electric flux lines are clockwise along the concentric circle. 39 The influence of a standard (vertical) core at the point, (x, y), is defined as

$$PC_{Core} = H_1 + iH_2 = \begin{cases} \frac{y - y_0}{r} Q + i\frac{x - x_0}{r} Q, & r \leq R, \\ 0, & r > R, \end{cases}$$
(4)

where (x_0, y_0) is this core's position and r =41 $\sqrt{(x-x_0)^2+(y-y_0)^2}$. Because the influence of a core is just like positive electricity, we call Q as the electrical 43 quantity. R is defined as the effective radius. The influence of a standard delta is 45

$$PC_{Delta} = H_1 + iH_2 = \begin{cases} \frac{y - y_0}{r} Q - i\frac{x - x_0}{r} Q, & r \le R, \\ 0, & r > R. \end{cases}$$
(5)

Compared with the model provided in Ref. [8], our point-charge model uses different quantities of electricity to 47 describe the neighborhood of each singular point instead of the same influence at all singular points.

In a real fingerprint, the ridge pattern at the singular points may have a rotation angle compared with the standard one. If 51 the rotation angle from standard position is $\phi(\phi \in [-\pi, \pi))$, see Fig. 2(b)), a transformation can be made as 53

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}.$$
 (6)

Then, the point-charge model can be modified by taking x'and y' instead of x and y, for cores in Eq. (4) and deltas in 55 Eq. (5), respectively.

To combine the polynomial model (PR, PI) with 57 point-charge smoothly, a weight function can be used. For point-charge, the weighting factor at the point, (x,y), is 59 defined as

$$\alpha_{PC}^{(k)}(x,y) = 1 - \frac{r^{(k)}(x,y)}{R^{(k)}},\tag{7}$$

where $(x_0^{(k)}, y_0^{(k)})$ is the coordinate of the *k*th singular point, $R^{(k)}$ is the effective radius (as defined in Eqs. (4)–(5)), and 61 $r^{(k)}(x, y)$ is set as $\min(\sqrt{(x - x_0^{(k)})^2 + (y - y_0^{(k)})^2}, R^{(k)})$. For the polynomial model, the weighting factor at the point, 63 65 (x, y), is

$$\alpha_{PM}(x, y) = \max\left\{1 - \sum_{k=1}^{K} \alpha_{PC}^{(k)}, 0\right\},$$
(8)

where K is the number of singular points. The weight function guarantees that for each point, its orientation follows 67 the polynomial model if it is far from the singular points and follows the point-charge if it is near one of the singular 69 points.

3

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 2. Point-charge model: (a) influence vector around a standard core; (b) real ridge pattern near a core with a rotation angle, ϕ .

1 Then, the combination model for the whole fingerprint's orientation field can be formulated as

$$\binom{R(x, y)}{I(x, y)} = \alpha_{PM} \cdot \binom{PR}{PI} + \sum_{k=1}^{K} \alpha_{PC}^{(k)} \cdot \binom{H_1^{(k)}}{H_2^{(k)}}, \quad (9)$$

3 where *PR* and *PI* are, respectively, the real and imaginary part of the polynomial model, and $H_1^{(k)}$ and $H_2^{(k)}$ are, respectively, the real and imaginary part of point-charge model for

5 tively, the real and imaginary part of point-charge model for the *k*th singular point. Obviously, the combination model

- 7 is continuous with x and y. The coefficient matrices of the two polynomials, *PR* and *PI*, and the electrical qualities,
- 9 { $Q_1, Q_2, ..., Q_K$ }, of the singular points will define the combination model.

3. Implement scheme

4

3.1. Coarse orientation field computation

There are essentially two ways to compute the orientation field: filter-bank based approaches [11–13] and
gradient-based approaches [4,14–16]. The filter-bank

based approaches are more resistant to noise than the gradient-based, but they are discrete-valued (depending on the number of filters) and too computationally expensive.

So we adopt a gradient-based approach in our work. The coarse orientation field, O, and its reliability, W, can be

21 obtained, respectively, by

$$O(x, y) = \frac{1}{2} \tan^{-1} \frac{\sum_{\Gamma} 2G_x G_y}{\sum_{\Gamma} (G_x^2 - G_y^2)} + \frac{\pi}{2}$$
(10)

and

$$W(x, y) = \frac{\left(\sum_{\Gamma} (G_x^2 - G_y^2)\right)^2 + 4\left(\sum_{\Gamma} G_x G_y\right)^2}{\left(\sum_{\Gamma} (G_x^2 + G_y^2)\right)^2},$$
(11)

23 where Γ is a small neighboring region of the point, (x, y), (G_x, G_y) is the gradient vector at (x, y), and the output of 25 $\tan^{-1}(\cdot)$ is within $[-\pi, \pi]$.

We also need to identify the position and type of singular points. Many approaches have been proposed for singular point extraction. Most of them are based on the Poincare 29 index [3,4,16,11]. In this paper, we adopt the algorithm proposed in Ref. [11]. 31

3.2. Polynomial approximation

The above two bivariate polynomials can be computed 33 by using the Weighted Least Square (WLS) algorithm [17]. The coefficients of the polynomial are obtained by minimiz-35 ing the weighted square error between the polynomial and the values of R(x, y) and I(x, y) computed from the real fin-37 gerprint. As pointed above, the reliability, W(x, y), can indicate how well the orientation fits the real ridge. The higher 39 the reliability W(x, y) is, the more influence the point should have. Then W(x, y) can be used as the weighting factor at 41 the point (x, y). As a result, it can efficiently decrease the influence of inaccurate orientation estimation. 43

As we know, a higher-order polynomial can provide a better approximation, but at the same time it will re-45 sult in a much higher cost of storage and computation. Moreover, a high-order polynomial will be ill behaved on 47 numerical approximation. As to a lower-order polynomial, however, it will yield lower approximation accuracy in 49 those regions with high curvature. In our experiments, we have tried 3-order, 4-order and 5-order polynomials, re-51 spectively, and their performances are listed in Table 1. As a tradeoff, we choose 4-order (n = 4) polynomials for 53 the global approximation. The experimental results showed that they performed well enough for most real fingerprints, 55 while preserving a small cost for storage and computation.

3.3. Computation of point-charge model 57

The coefficients of the point-charge model at singular points can be obtained in two steps. First, two parameters are estimated for each singular point: the rotation angle, ϕ , and the effective radius, *R*. Second, charges of singular points are estimated by optimization. 61

Since the average orientation near the singular point can 63 be inferred from the result of polynomial approximation,

J. Gu et al. | Pattern Recognition III (III) III-III

Table 1

The average approximation errors (i.e. the mean error and standard deviation) of the zero-pole model, the piecewise linear model and our combination model with different polynomial order. As a tradeoff, we choose n = 4 for the combination model in our study

	Zero-pole	Piecewise linear	Combination model		
			<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
Mean Standard deviation	14.32 5.47	10.64 4.15	8.43 3.84	5.58 2.42	5.17 2.35

- 1 the rotation angle, ϕ , which can be regarded as the cross angle between the vertical line and the average orientation
- 3 of the ridge pattern around the singular point, can be easily computed. For cores, we can further tell whether it is upward
- 5 or downward by matching the core with an upward core and a downward core template, which are generated from
- 7 the standard point-charge model. For the convenience of computation, we use a same *R* for each singular point, which9 can be determined empirically.

After that, we need to estimate the electrical quantity for each singular point. Since our purpose is to minimize the approximation error, the objective function for the singular

13 points can be represented as

$$\min J = \sum_{\Omega} \left([R(x, y) - \cos(2O)]^2 + [I(x, y) - \sin(2O)]^2 \right),$$
(12)

where O is the original orientation field and Ω is the effective region for the point-charge model. For each singular point, its effective region is a small circle with radius R.

- 17 Ω is the union of all these small circles. The variables in the above optimization problem are the charges of singular
- 19 points, $\{Q_1, Q_2, \dots, Q_K\}$. They can be computed by solving the following equations as

$$\partial J/\partial Q_k = 0, \quad k = 1, 2, \dots, K.$$
(13)

21 In Fig. 3, the results of each step in our implement scheme are listed.

4. Experimental results

Experiments are carried on two sets of fingerprints. The
first set (Set 1) is a sample database from NIST Special Database 14 [18] that contains 40 fingerprint images. The
images' size is 480 × 512. The second set (Set 2) contains 60 fingerprint images captured with a live-scanner, whose
size is 512 × 320. The fingerprints in these two sets vary in quality and type.

- 31 Three orientation models are evaluated on the database: the zero-pole model [8], the piecewise linear model [9] and
- 33 our combination model. All of them use the same algorithm

for singular point extraction and orientation estimation. In global approximation, 4-order bivariate polynomials are em-35 ployed. As pointed in Ref. [16], there is no ground truth for the orientation field of fingerprints and objective error mea-37 surement cannot be constructed. Therefore, it is difficult to evaluate the quality of estimated orientation field quantita-39 tively. Vizcaya and Gerhardt [9] evaluated the approximation error with the original orientation matrix, which is not 41 suitable because the original orientation matrix is often too noisy to meet the real pattern's orientation (see Figs. 5(b) 43 and 6(b) for example). We deal with this problem by two means. First, as mentioned above, the orientation field ex-45 tracted by a Gabor filter-bank (when the number of filters is large enough) is more reliable than the original one based 47 on gradient computing, we can compute the error of the constructed orientation field by comparing it with the orienta-49 tion field extracted by using Gabor filter-bank (but it should also be noted that orientation computation based on Gabor 51 filter is too computationally expensive and not suitable for real applications, as mentioned in Section 3.1). Secondly, 53 the quality of the estimation is assessed by means of manual inspection. 55

In the first one, the approximation error of a fingerprint is defined as the mean absolute error (MAE) on all points between the orientation field reconstructed by the model and the orientation field extracted by the Gabor filter-bank [11] (64-filters), i.e.,

$$MAE = \frac{1}{N} \sum_{(x,y)\in\Omega} d(O_{Recon}(x,y) - O_{Gabor}(x,y)), \qquad (14)$$

where Ω is the region of comparison, which contains totally 61 N points, (x, y) is the coordinate of a point in Ω , O_{Recon} and O_{Gabor} denote the reconstructed orientation map and the 63 orientation field computed by Gabor filter bank, respectively. Since the orientation is in $(0, \pi]$, the function $d(\cdot)$ is defined 65 as

$$d(\theta) = \begin{cases} |\theta|, & |\theta| < \frac{\pi}{2}, \\ \pi - |\theta|, & \text{otherwise.} \end{cases}$$
(15)

Then, by averaging the total approximation error on all the 67 fingerprints in the database, the error of each model can be obtained along with its standard deviation. The results are 69 summarized in Table 1. The mean error of the approximation is 14.32, 10.64, and 5.58, by using the zero-pole model, 71 the piecewise linear model and our combination model, respectively. The standard deviation is 5.47, 4.75, and 2.42, 73 by using these three models, respectively. The results show that our combination model leads to 47.6% reduction in the 75 mean error and 49.1% reduction in the standard deviation compared with the other two models. 77

From observation, it can also be concluded that the performance of our combination model is very satisfactory, and much better than the other two models and the Gabor filter-bank based estimation. Some of the results of our combination model are presented in Fig. 4. Among them there are various fingerprint types: loop, whorl, twin loop, and 83

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 3. The results of each step in our implement scheme of the modeling: (a) original fingerprint with singular points marked; (b) the coarse orientation matrix O; (c) the reconstructed orientation matrix by the combination model; (d) the reliability W; (e) $\cos(2O)$ and (f) $\sin(2O)$ are the transformed images of the coarse orientation matrix O; (g, h) transformed images of the reconstructed orientation matrix.

- 1 plain arch without singular points. It should be noted that the other two models couldn't deal with plain arch fingerprints.
- The reconstructed orientation fields are shown as unit vectors upon the original fingerprint. We can see that the result is
 rather accurate and robust to noise.
- Figs. 5 and 6 give two examples for comparison. (a)
 is the input fingerprint; (b) is the original orientation field for approximation obtained by gradient-based method [14];
- 9 (c) is the orientation field by Gabor filter-bank (64 filters) method [16]; while (d-f) are the orientation fields recon-
- 11 structed, respectively, by the zero-pole model, the piecewise linear model and our own combination model. From the re-
- 13 sults, we can see that: (1) For poor-quality fingerprints, the gradient-based method (see Figs. 5(b) and 6(b)) can only
- 15 extract the orientation field coarsely with much noise. The Gabor filter-bank based method (see Figs. 5(c) and 6(c)) is

better, however, it is still heavily influenced by noise such 17 as creases and scars. The combination model, though based on the coarse orientation field, can reconstruct the orienta-19 tion field smoothly and accurately against the noise. Thus it can be used to improve the orientation field estimation. (2) 21 Among these three models, the zero-pole model can only roughly describe the orientation (see Figs. 5(d) and 6(d)). 23 The piecewise linear model does better near the singular points, but it fails in places far from them, as can easily be 25 observed at the right bottom part in Fig. 5(e) and the top part and bottom part in Fig. 6(e). By contrast, the combination 27 model can describe the orientation of the whole fingerprint image smoothly and precisely, whether the region is near or 29 far from the singular points.

In our experiments, the combination model has a satisfying performance for most fingerprint images. But the

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 4. Examples of reconstructed orientation field by the combination model: (a-d) from Set 1; (e-g) from Set 2. Various types of fingerprint are among them. (e) is a plain arch without singular point modeled only with polynomial model. In contrast, zero-pole and piecewise linear model cannot deal with the plain arch as (e).

 model's parameters are computed by an approximation procedure, so they are heavily influenced by the results
 of original orientation field estimation and singular points extraction. For a few poor-quality fingerprints, if the orig inal orientation field is too unreliable, or if one cannot extract the singular points correctly at all, the approximation performance of the combination model will be bad. In Fig. 7, an example is given, in which (a) is the input fingerprint; (b) is the original orientation field for approximation obtained by gradient-based method; and

7 9

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 5. Comparative result I: (a) original fingerprint; (b) estimated by gradient-based method [14]; (c) estimated by Gabor filter-bank (64 filters) method [16]; (d) reconstructed by zero-pole model; (e) reconstructed by piecewise linear model; (f) reconstructed by the combination model.

(c) is the orientation fields reconstructed by our combination model. Since (a) is too noisy in the right-bottom
 part, there is no reliable orientation information in (b).

8

Consequently, the orientation field reconstructed by our combination model will fail in the right-bottom part, as in (c).

5

....

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 6. Comparative result II: (a) original fingerprint; (b) estimated by gradient-based method [14]; (c) estimated by Gabor filter-bank (64 filters) method [16]; (d) reconstructed by zero-pole model; (e) reconstructed by piecewise linear model; (f) reconstructed by the combination model.

1 Most fingerprints have up to 4 singular points (2 cores and 2 deltas). Assuming that an *n*-order polynomial is applied for a fingerprint with 4 singular points, the total number of 3 coefficients is $2(n+1)^2 + 4(2 \text{ coefficient matrices for } PR$ and 5 PI, and 4 charges for modeling singular points). Since n is

chosen as 4 in our study, that means that only 54 coefficients 7 need to be saved for further usage. As to the computation

cost, about 1 s is required to compute all the coefficients 9 when the entire process is implemented with Matlab 6.1 and C on a Pentium III 500 Hz PC.

5. Discussions and conclusions

In this paper, a combination model for the orientation 13 field of fingerprints is proposed, which can approximate the orientation field accurately and reliably. The experimental results show that our model leads to nearly 50% reduction 15 in the mean error and standard deviation compared with the previous works. Moreover, it can deal with fingerprints without singular points and be implemented efficiently for on-line processing. 19

Our future work will go in two directions. First, our combination model deals with the smoothly continuous ridge 21 pattern and singular points separately, and then combines them together. As we mentioned above, directly modeling 23 U in complex domain is an alternative method. A rational function in complex domain may be employed for U, which 25 will be more universal and concise.

Another direction for further work is the application of 27 this model. First, as indicated above, minutiae points, orientation map and ridge density map can completely describe 29

J. Gu et al. | Pattern Recognition III (III) III-III

Fig. 7. A failure example of the combination model: (a) input fingerprint; (b) original orientation field for approximation obtained by gradient-based method; (c) orientation fields reconstructed by the combination model. In (a), the original image is too noisy in the right-bottom part and there is no reliable orientation information in that part of (b). Consequently, the orientation field reconstructed by our combination model will fail in that region.

1 a fingerprint image. We can use the orientation model with other information to compress, restore or synthesize the fin-

3 gerprint images. Then the noise on the fingerprint images can be completely removed. Secondly, since the coefficients 5

of orientation model can be saved and used for fingerprint matching, we can develop some new methods for fingerprint 7 identification based on the orientation information and some

other information. As a result, the recognition rate can be 9 improved.

6. Summary

11 Among various biometric techniques, automatic fingerprint identification is most popular and reliable for automatic 13 personal identification. Conventional fingerprint identification algorithms take the minutiae and the singular points as 15 the distinctive features to represent the fingerprint. But this kind of representation cannot provide enough information 17 for large-scale fingerprint identification tasks. As a global feature, orientation field describes one of the 19 basic structures of a fingerprint. It has been widely used for

minutiae extraction and fingerprint classification, but rarely 21 utilized into the matching process. Our purpose is to rep-

resent the orientation field in a complete and concise form. 23 Its significance lies in: (a) It can be used to improve the estimation of orientation field, therefore it will benefit in the

25 extraction of minutiae for conventional fingerprint identification algorithms. (b) More importantly, the coefficients of

27 the orientation field model can be saved for the use in the matching stage. As a result, much more information can be

29 utilized for fingerprint identification. (c) This makes it possible to establish a complete representation for the fingerprint by combining the orientation model with some other 31 information.

A so-called zero-pole model was proposed for orientation 33 field based on singular points, which takes the core as zero and the delta as a pole in the complex plane. An improve-35 ment was made by using a piecewise linear approximation model around singular points to adjust the zero and pole's 37 behavior. Unfortunately, these two models cannot deal with fingerprint without singular point such as the plain arch. 39 Furthermore, since they consider that the influence of a singular point is the same as any point on the same central line 41 whether near or far from the singular point, serious error will be caused in the modeling of the regions far from singular 43 points. As a result, these two models cannot be used for accurate approximation to real fingerprint's orientation field. 45

In this paper, we propose a combination model for the orientation field. Since the orientation of fingerprints is quite 47 smooth and continuous except at singular points, we apply a polynomial model to approximate the global orientation 49 field globally. At each singular point, a point-charge model is used to describe the local region. Then, these two models 51 are combined smoothly together through a weight function. Experimental results are provided to illustrate the fact that 53 this combination model is more accurate and robust with respect to noise compared with the previous works. The ad-55 vantages of our combination model are as below: (1) It can accurately represent the orientation field at regions either 57 near or far from singular points. (2) Global approximation makes it robust against noise. (3) It has a concise representa-59 tion, which guarantees a low storage cost for its application to fingerprint identification. 61

PR 1890

ARTICLE IN PRESS

J. Gu et al. | Pattern Recognition III (III) III-III

Acknowledgements

The authors wish to acknowledge support from Natural Science Foundation of China under grant 60205002.

References

7

- [1] A.K. Jain, R. Bolle, S. Pankanti (Eds.), BIOMETRICS: Personal Identification in Networked Society, Kluwer
 Academic Publisher, New York, 1999.
 - [2] D. Zhang, Automated Biometrics: Technologies and Systems, Kluwer Academic Publisher, USA, 2000.
- [3] K. Hrechak, J.A. McHugh, Automated fingerprint recognition
 using structural matching, Pattern Recognition 23 (1990) 893
 –904.
- [4] A. Jain, L. Hong, On-line fingerprint verification, IEEE Trans. Pattern Anal. Mach. Intell. 19 (4) (1997) 302–314.
- [5] R.S. Germain, A. Califano, S. Colville, Fingerprint matching using transformation parameter clustering, IEEE Comput. Sci.
 Eng. 4 (4) (1997) 42–49.
- [6] S. Pankantic, S. Prabhakarb, A.K. Jain, On the individuality of fingerprints, IEEE Trans. Pattern Anal. Mach. Intell. 24 (8) (2002) 1010–1025.
- [7] R. Cappelli, A. Erol, D. Maio, D. Maltoni, Synthetic fingerprint-image generation, in: Proceedings 15th International Conference on Pattern Recognition (ICPR2000), Vol. 3, September 2000, pp. 475–478.

- [8] B. Sherlock, D. Monro, A model for interpreting fingerprint topology, Pattern Recognition 26 (7) (1993) 1047–1055.
- [9] P. Vizcaya, L. Gerhardt, A nonlinear orientation model for global description of fingerprints, Pattern Recognition 29 (7) (1996) 1221–1231.
- [10] E.R. Henry, Classification and Uses of Finger Prints, Routledge, London, 1900.
- [11] A. Jain, S. Prabhakar, L. Hong, A multichannel approach to fingerprint classification, IEEE Trans. Pattern Anal. Mach. 31 Intell. 21 (4) (1999) 348–359.
- [12] K. Karu, A.K. Jain, Fingerprint classification, Pattern 33 Recognition 17 (3) (1996) 389–404.
- [13] A.K. Jain, S. Prabhakar, L. Hong, et al., Filterbank-based fingerprint matching, IEEE Trans. Image Process. 9 (5) (2000) 846–859.
 37
- [14] M. Kass, A. Witkin, Analyzing orientated pattern, Computer Vision, Graphics Image Process. 37 (1987) 362–397.39
- [15] J. Zhou, X. Lu, D. Zhang, C.Y. Wu, Orientation analysis for rotated human face detection, Image Vision Comput. 20 (2002) 257–264.
- [16] A.M. Bazen, S.H. Gerez, Systematic methods for the computation of the directional fields and singular points of fingerprints, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) 45 (2002) 905–919.
- [17] P. Whittle, Prediction and Regulation by Linear Least-Square 47 Methods, The English Universities Press Ltd., London, 1963.
- [18] NIST Special Database 14: NIST Mated Fingerprint Card Pairs
 (MFCP2), available at http://www.nist.gov/srd/nistsd14.htm.

About the Author—JINWEI GU was born in August 1980. He received B.S. degree from Department of Automation, Tsinghua University, Beijing, China, in 2002. Now he is a master student in Department of Automation, Tsinghua University. His research interests are in pattern recognition and intelligent information processing.

51

About the Author—DR. JIE ZHOU was born in November 1968. He received B.S. degree and M.S. degree both from Department of Mathematics, Nankai University, Tianjin, China, in 1990 and 1992, respectively. He received Ph.D. degree from Institute of Pattern Recognition and Artificial Intelligence, Huazhong University of Science & Technology (HUST), Wuhan, China, in 1995. From then to 1997, he served as a postdoctoral fellow in Department of Automation, Tsinghua University, Beijing, China. Now he is Associate Professor in Department of Automation, Tsinghua University.

His research area includes Pattern Recognition, Information Fusion, Image Processing and Computer Vision. He has directed or participated more than 10 important projects. In recent years, he has published more than 10 papers in international journals and more than 30 papers in international conferences. He received Best Doctoral Thesis Award from HUST in 1995. Dr. Zhou is a member of IEEE and a fellow of Chinese Association of Artificial Intelligence (CAAI).

About the Author—DAVID ZHANG graduated in computer science from Peking University in 1974 and received the M.Sc. and Ph.D. degrees in computer science and engineering from Harbin Institute of Technology in 1983 and 1985, respectively. From 1986 to 1988, he was a postdoctoral fellow at Tsinghua University and became an associate professor at Academia Sinica, Beijing, China. He received his second Ph.D. in electrical and computer engineering at University of Waterloo, Ontario, Canada, in 1994. Currently, he is a professor in Hong Kong Polytechnic University, Hong Kong. He is Founder and Director of Biometrics Technology Centre supported by UGC/CRC, Hong Kong Government. He also is Founder and Editor-in-Chief, International Journal of Image and Graphics, and an associate editor, Pattern Recognition, and other five international journals. His research interests include automated biometrics-based identification, neural systems and applications, and parallel computing for image processing & pattern recognition. So far, he has published over 170 papers including seven books around his research areas. Prof. Zhang is a senior member of IEEE.

11