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Abstract—Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on

palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic

usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper,

we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the

following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly

improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation

algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion

scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or

Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very

useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed

algorithm has achieved a good performance. In the case of verification, the recognition system’s False Rejection Rate (FRR) is

16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10�5, while in the

identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

Index Terms—Palmprint, orientation field, the composite algorithm, density map, data fusion.

Ç

1 INTRODUCTION

PALMPRINT recognition has considerable potential as a
personal identification technique. Palmprints share

most of the discriminative features with fingerprints and,
in addition, possess a much larger skin area and other
discriminative features such as principal lines. For access
control usages, scanning the palmprint is not only fast but
also highly acceptable for the public [1]. Palmprint
recognition also has a significant role in forensic applica-
tions as about 30 percent of the latents recovered from crime
scenes are from palms [2]. One of the most important goals
of the FBI’s Next Generation Identification System is to
develop a national palmprint identification system [3].

Fig. 1 shows a typical palmprint image. There are two
basic features in a palmprint: ridges and creases. Ridges are
formed by the arrangement of the mastoid in the dermal
papillary layer. They come into being during the three-to-
four months of the fetal stage and are fixed in the adolescence
stage [4]. The ridge pattern of the palm is unique for an
individual, just like the finger tip [1]. But unlike the
fingerprint, there are many creases in the palmprint. They
can be further classified as immutable and mutable creases.
Immutable creases mainly consist of three principal lines,
namely, radial transverse crease, proximal transverse crease,
and distal transverse crease. They divide the palmprint into

three regions: thenar, hypothenar, and interdigital. Mutable
creases mainly come from drying cracks, which come into
being in Spring and Winter when the weather is dry and
disappear when it is wet in Summer and Autumn [5]. These
are also easily masked by compression and noise [6]. Both the
principal lines and ridges are firmly attached to the dermis,
and are immutable for the whole life [7].

Existing research on palmprint recognition mostly
concentrates on low-resolution (about 100 ppi) images [9],
[10], [11], [12], [13], [6], [14], which are mainly captured by
contactless devices. For low-resolution images, palmprint
ridges cannot be observed, and the matching is mainly
based on crease and texture features. Shu and Zhang [15]
extracted the hand shape and principal line features to
build the palmprint recognition system. Zhang and Shu [16]
presented the datum point invariance and line feature
matching characteristics in palmprint verification. Duta
et al. [17] tried to represent and match the principal lines
with feature points which locate on the principal lines and
are extracted by a series of morphological operations. You
et al. [18] matched the principal lines by the interesting
points, which are extracted by the Plessey operator [19]. In
[9], Zhang et al. proposed a contactless low-resolution
palmprint acquisition device using a CCD camera and a 2D
Gabor phase encoding scheme is proposed to extract
palmprint textures. In [6], Huang et al. highlighted the
discriminative power of principal lines and used those to
design a palmprint verification system. Sun et al. [20]
proposed the ordinal palmprint representation and unified
several low-resolution palmprint recognition algorithms
into a framework. In [21], Yue et al. proposed a modified
fuzzy C-means cluster algorithm for competitive code-
based palmprint recognition. Kumar [22] integrated cohort
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information in the decision making and a better perfor-
mance was reported.

But, for high-security applications (e.g., forensic usages),
high-resolution palmprints are required in which the highly
discriminative ridge feature [1] can be observed. Moreover,
certain ridge patterns are acceptable in a court of law [23],
which facilitates its use in forensic applications. Further, the
prints lifted from a crime scene usually have poor quality and
a complex background which warrants extraction of features
in addition to texture in order to make a reliable identification.

The presence of a large number of creases is one of the
major challenges in reliable extraction of the ridge informa-
tion. Creases break the continuity of ridges, leading to a
large number of spurious minutiae. Moreover, in regions
having high crease density, the orientation field of the ridge
pattern is obscured by the orientation of creases. In [8], a
minutiae-based high-resolution palmprint recognition sys-
tem achieving acceptable accuracy was recently reported by
Jain and Feng. A region-growing algorithm was proposed
which could extract the orientation field on palmprints in
the presence of creases. And a novel minutia descriptor,
MinutiaCode, was utilized. In the matching stage, the
weighted sum of minutiae and orientation field similarities
was calculated to measure the similarity between palm-
prints. The algorithm achieved a rank-1 recognition rate of
78.7 percent when searching live-scan partial palmprints on
a background database containing 10,200 full palmprints.

In this paper, we propose a multifeature-based high-
resolution palmprint recognition system in which minutiae,
orientation field, density map, and principal line map are
reliably extracted and combined to provide more discrimi-
natory information. A novel orientation field estimation
algorithm is proposed which is not significantly affected by
the presence of creases. It can adaptively choose a suitable
estimation method according to the qualities of different
regions. A novel fusion scheme is also designed for
identification applications. And it achieves a higher recogni-
tion rate than the conventional fusion methods, such as the
weighted sum rule, SVMs, and Neyman-Pearson rule. In
addition, we found that the density map feature is a good
supplement to minutiae for palmprint recognition. The
experimental results on a database containing 14,576 full
palmprints from 13,736 unique palms indicate that the

proposed method achieves a much better performance than
the algorithm proposed in [8]. In verification experiments,
the False Rejection Rate (FRR) is 17 percent lower than that
obtained using the algorithm proposed in [8] when the False
Acceptance Rate (FAR) is 10�5. In the case of identification,
the rank-1 live-scan partial palmprint recognition rate of our
system reaches 91.7 percent, which is 9.7 percent higher than
the case when Jain and Feng’s technique is used.

The rest of this paper is organized as follows: In Section 2,
the novel orientation field estimation algorithm is intro-
duced. Section 3 describes the extraction of the other features.
The features are fused by the proposed heuristic rule for
identification usages and the conventional statistical learning
methods for verification usages in Section 4. In Section 5, the
experimental results are presented and analyzed. Finally, we
finish with conclusions in Section 6.

2 THE COMPOSITE ORIENTATION FIELD

ESTIMATION

It is crucial for the palmprint recognition system to reliably
estimate the orientation field. It is used in ridge enhance-
ment and minutiae validation, making it very important in
minutiae extraction. Various orientation estimation algo-
rithms have been proposed for fingerprints [24], [25], [26].
These algorithms consist of two main steps: initial estima-
tion and postsmoothing. Lots of postsmoothing methods
have been designed, including the hierarchical gradient
method [24], the model-based method [26], the region-
growing algorithm [8], etc. But no matter how powerful
these smoothing algorithms are, they all rely on the results
provided by the initial estimation. If there are overwhelm-
ing errors in the initial estimation results, no smoothing
algorithms can generate reliable results magically.

There are three commonly used initial estimation
methods, namely, the gradient-based method [24], the
discrete Fourier transform (DFT) [8], and the Gabor-filter-
bank method [25]. The basic idea of the gradient-based
method is that the ridge and valley can be seen as black-and-
white stripes and the ridge’s direction is perpendicular to the
gradient direction. As for the Fourier transform method, it
assumes that sine waves can effectively represent the black-
and-white stripes, so the peak in the frequency domain of a
local area corresponds to the central lines of the stripes in the
image. The Gabor-filter-bank method shares the same basic
assumption with the Fourier transform method. In the
frequency domain, the Gabor-filter-bank method multiplies
the frequency spectrum of the local area with a series of Gabor
filters and selects the direction of the Gabor filter with the
strongest response as the local ridge direction. This method is
very time-consuming and is not suitable for processing prints
with a large image size or online applications.

The above-mentioned methods perform well on the
prints with few creases. But they cannot reliably estimate
the orientation of palmprints with many creases. Basically,
they focus on the change of grayscale and treat the black and
white stripes equally, so the direction information of the
black and white stripes would both influence the result. If
there are no or few creases, both of them will provide correct
information. However, for palmprints containing lots of

946 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 5, MAY 2011

Fig. 1. The principal lines, regions, ridges, and minutiae in a palmprint [8].



creases, the amount of white stripes will greatly increase,
bringing much noise for the estimation algorithm. As a
result, when the creases are overwhelming in a local region,
the output of the above estimation algorithms will be wrong.

2.1 Main Procedure

In a police expert’s experience, when he checks a latent
palmprint, he will concentrate on the direction of black
ridges, ignoring the disturbances of white stripes which are
produced by creases. The expert would also consider the
ridge orientation in the neighborhood while estimating the
orientation field in a local area.

Following this experience, we propose a novel orienta-
tion estimation algorithm for palmprints. A new initial
estimation method is developed to reliably estimate the
orientation field even in regions having many creases. But
its computational cost, like the Gabor-filter-bank-based
method, is much higher than the traditional gradient-based
and the DFT method. In order to reduce the computational
cost, we develop a composite algorithm. In this algorithm,
first, the creases in a palmprint are located; for the regions
with few creases, the traditional method is employed,
whereas the designed initial estimation method is used for
the regions with many creases. This effectively combines
the robustness of the novel and efficiency of the traditional
methods. As a postsmoothing procedure, the region
growing algorithm [8] is applied. A schematic diagram of
the composite algorithm is shown in Fig. 2.

The first stage of the composite algorithm consists of
estimation of ridge quality and determination of the initial
estimation algorithm to be applied. In this stage, we use the
crease extraction algorithm proposed in [6] to extract
creases. In order to reduce the computational complexity,
the image is divided into 16� 16 pixel blocks and the crease
features are computed for each of these blocks. The output
of the crease extraction algorithm contains the crease
orientation, ID, and the crease energy, IE . The crease
orientation associated with a crease refers to the direction
parallel to the crease, whereas crease energy corresponds to
the width of the crease. The quality value for each block is
computed as a sum of crease energy values for all of the
creases present inside a 64� 64 pixel neighboring region
around the block under consideration.

The conventional DFT [8] method is applied for the

blocks whose crease energy is smaller than a threshold.

Here, we determine k most likely orientations of the block,

denoted as X ¼ ½X1; X2; . . . ; Xk�T , Xi ¼ ð�i; fiÞ, where �i is

the ridge direction and fi is the ridge density. Assuming that

the ith peak in the frequency spectrum is at ðui; viÞ, then the

corresponding candidate solution, Xi ¼ ð�i; fiÞ, is given by

�i ¼ arctan vi
ui
� �

2 ;

fi ¼
ffiffiffiffiffiffiffiffiffi
u2
iþv2

i

p
64 :

(
ð1Þ

For the block with a large number of creases, a Radon-
transform-based method (RTBM) is developed to focus on
ridges and find out their directions, ignoring the distur-
bances from white stripes.

2.2 Radon-Transform-Based Orientation Estimation

For a pixel on the ridge, it should be a part of a low intensity
stripe. As the ridge direction is slowly varying, a ridge can

be approximated by a straight line in a local area. The
Radon transform [27] is a robust method to detect lines in
the image, which is defined as

Rðr; �Þ½Iðx; yÞ� ¼
XW
x¼0

XH
y¼0

Iðx; yÞ�ðr� x cos �� y sin �Þ; ð2Þ

where Iðx; yÞ is the gray level at the location ðx; yÞ, W is the
image width, H is the image height, r is the vertical distance
from the line to the origin, and � is the inclination. Then, the
problem of detecting lines is changed to voting for the best
parameters.

Note that the original Radon transform is performed on
the whole image, whereas we just want to search for ridges
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Fig. 2. The flowchart of the composite algorithm.



in a small local area. So, we utilize the modified finite

Radon transform [6] to detect the ridge lines. The procedure

of the proposed Radon-transform-based method is demon-

strated in Fig. 3. First, all of the pixels in the current block’s

64� 64 pixel neighboring area � are scanned and those

whose grayscales are lower than Gr are selected. Let the
pixel at the location ðx0; y0Þ be one of the selected pixels.
Then, normalization is performed in a circular region �
centered at ðx0; y0Þ in the radius of 27 pixels by subtracting
the mean of gray levels from every pixel. Next, the modified
finite Radon transform is performed on � as

rð�;x0; y0Þ ¼
X
ðx;yÞ2�

Iðx; yÞ0�ððx� x0Þ cos �þ ðy� y0Þ sin �Þ;

ð3Þ

where Iðx; yÞ0 is the normalized gray level. In practice, the
value of � is discretized with �=12 as its minimum unit. The
� that minimizes rð�;x0; y0Þ, say �0, is picked out. And we
associate a confidence value to the estimate given by

c0ðx0; y0Þ ¼ �rð�0;x0; y0Þ: ð4Þ

To ascertain the coarse orientation of local ridge lines, the
directions of the points in the block’s 64� 64 pixel
neighboring area � should be taken into consideration.
The respective aggregate confidence values of different
directions are computed as

cbð’Þ ¼
X
ðx;yÞ2�

fðc0ðx; yÞÞIð�0ðx; yÞ ¼ ’Þ; ð5Þ

where f is a nonlinear function. It takes the form of

fðcÞ ¼ 0; if c � cT ;
c; if c > cT ;

�
ð6Þ

where cT is the truncation threshold and is empirically set
as 200 in our experiment. This nonlinear function eliminates
the effect of points that are highly unreliable, e.g., points
near creases or points in a blurred or stained region.

Finally, the k directions with the top-k confidence values
are considered as candidate ridge directions, and the ridge
density extraction algorithm [28] is performed along the
k directions separately.

2.3 Postsmoothing

Postsmoothing is used to correct the minor errors in the
initial estimation result. As a postsmoothing procedure, we
apply the region growing algorithm proposed by Jain and
Feng in [8] in order to select the final orientation.

One of the main assumptions of the region growing
algorithm is that the ridge direction and density are fixed in
a local region. The region growing procedure is initialized
at a set of seed points. To become a seed, the area should
possess at least 20 connected blocks in which the adjacent
blocks’ first candidate solutions satisfy the continuity
criterion. Two solutions, Xa ¼ ð�a; faÞ and Xb ¼ ð�b; fbÞ,
are deemed to be continuous if

j�a � �bj � 1
6 �;

j1=fa � 1=fbj � 3:

�
ð7Þ

The next step is to grow from seeds and form regions.
The four neighboring blocks of the current growing block
are checked to find solutions continuous with the current
block. Those blocks having continuous solutions with the
current block are added to the region. Finally, regions
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Fig. 3. The procedure of the proposed Radon-transform-based
method. In the �0 image, the different directions are represented by
different colors. For example, red, green, and blue represent 45, 120,
and 165 degrees counterclockwise from the horizon, respectively. In
the c0 image, the confidence values are shown in different
grayscales. For the confidence statistical result, the confidences of
12 directions are represented by their line lengths. The selected top-k
high-confidence orientations are marked in red.



grown from different seeds are merged to form the final
orientation field.

2.4 Computational Complexity

The computational cost of the composite algorithm varies
with the amount of creases in the palmprint. Let TComposite
be the time consumption of the composite algorithm, and
then we have

TComposite ¼ TCreaseExtraction þ �TRTBM
þ ð1� �ÞTDFT þ TRegionGrowing;

ð8Þ

where TCreaseExtraction is the cost of crease extraction, TRTBM
is the time consumption of the RTBM, TDFT is the cost of
carrying out the DFT method, TRegionGrowing is the time
performing region growing, and � is the proportion of
blocks with heavy creases among all the blocks. In our
experiments, for palmprints with enormous creases, � may
reach 41 percent, while for those with little creases, � may
be as low as 10 percent. For the palmprint database used in
this paper, the average value of � is about 21 percent.

2.5 Comparison with the Orientation Estimation
Algorithm in [8]

In this section, we compare the proposed composite
algorithm with the orientation field estimation algorithm
proposed in [8].

In [8], the initial orientation estimation is performed by
the DFT method in 64� 64 neighborhood. And the six
waves with the strongest amplitude in the frequency
domain of each block are used as candidates. Finally, the
region growing algorithm selects the final orientation for
each block from the candidates.

Compared with the algorithm in [8], the main difference
of the proposed composite algorithm is in the initial
estimation stage. Unlike the algorithm proposed in [8], we

extract the quality of each image block and use it to select
the appropriate initial estimation algorithm. We use the
more robust Radon-transform-based method at the blocks
with dense creases, while the DFT method is applied for the
blocks with few creases.

Several comparisons between the proposed composite
algorithm and the algorithm in [8] are shown in Fig. 4.
Figs. 4a and 4f show two segments of palmprints with many
creases. The resolution of these palmprints is 500 ppi, the
same as that of the images in [8]. From Figs. 4c and 4h, we
can see that the Radon transform-based initial estimation
method can reliably extract the orientation field for the
prints with many creases. And the result is much reliable
than that of the DFT method, as shown in Figs. 4b and 4g.
After postsmoothing, the final orientation field obtained by
the proposed method is more accurate. Note that with more
reliable orientation field, the following steps, such as
minutiae extraction, are more effective. As a result, the
whole recognition system’s accuracy is improved, as shown
in Section 5.2.

3 FEATURE EXTRACTION

By using the composite algorithm, the orientation field can
be reliably extracted. Now, we will introduce the extraction
of minutiae, density map, and principal line map.

3.1 Minutiae

With reliable orientation field and density map information,
a series of image processing steps can be performed to extract
minutiae [24], [26], [29], [30]. First, the ridges are enhanced by
the Gabor filter according to the local ridge direction and
density. Second, the image is binarized and thinned to get the
skeleton ridge image. Finally, minutiae are extracted as the
endings and bifurcations points of ridge lines. The initial
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Fig. 4. Comparison of orientation field extraction: (a) and (f) are the original images, (b) and (g) are the initial orientation fields estimated by DFT, the
initial estimation method in [8], (c) and (h) are the initial orientation fields produced by the Radon-transform-based method, (d) and (i) are the final
orientation fields extracted by the algorithm of [8], and (e) and (j) are the final orientation fields produced by the proposed composite algorithm.



minutiae set is denoted by M ¼ fm1;m2; . . . ;mng, where
mi ¼ fxi; yi; �ig. xi, yi, and �i represent the ith minutia’s
x-coordinate, y-coordinate, and direction, respectively.

There are many spurious minutiae in the initial set, and a
large portion of them are caused by creases. As creases cannot
be fully removed by image enhancement, they will break the
continuity of ridges and produce spurious minutiae. Since
many creases are changeable with seasons and weathers [5],
the resulting spurious minutiae are not robust.

The traditional method to remove the spurious minutiae
caused by creases is to determine whether there are two
minutia points with the same or opposite direction in a
small neighboring area [26]. This procedure is based on the
fact that creases are narrow, which is not valid for
palmprints that have thick creases. Note that increasing
the size of a neighboring area in order to accommodate
thick creases will cause many genuine minutiae to be
misclassified as imposter ones. The best way to remove the
spurious minutiae is to make use of the crease information
itself, which is extracted at the first step of the composite
algorithm. If a minutia is close to a crease, then it is quite
likely to be a spurious one. In our experiments, this method
can effectively remove the spurious minutiae caused by
creases. An example is shown in Fig. 5.

Next, the minutia’s confidence level is evaluated based
on the difference of the ridge direction produced by the
composite algorithm and the gradient-based method in the
region around the minutia. If the difference is high, the local
image quality is poor and the confidence level associated
with the minutia is low.

When matching two palmprint images, alignment
should be performed as, usually, there is deformation
between palmprints. The classic minutiae-based general
Hough transform is applied to find the optimal transforma-
tion parameters [24].

The similarity of two sets of minutiae is computed as the
product of matching quantity score Smn and quality score
Smq. Smn is measured by the sum of matched minutiae pairs’
confidence level productions. Smq is computed as the
proportion of matched minutiae in all the minutiae within
the common area. And the amount of minutiae in the
common area for reference and query palmprints are
defined to be the sum of the minutiae’s confidence level
on minutia extraction, which are denoted by Cr and Cq,
respectively. The combined similarity score Sm from the
minutiae feature is estimated as follows:

Sm ¼ Smn � Smq ¼
Cp

Cp þ 20
�

C2
p

CrCq
; ð9Þ

where 20 is considered as the minimum value of Cp for
genuine matches estimated on the training data set. This
formulation reduces the effect of spurious minutiae on
computation of matching scores.

3.2 Density Map

In our system, the density map is extracted simultaneously
with the orientation field by using the composite algorithm.
The similarity of the density map Sd is also defined as a
product of matching quantity Sfn and quality Sfq. The
matching quantity is measured by the number of matched
block pairs. A matched block pair is comprised of two
overlapped blocks whose ridge distance (the inverse of
ridge density) difference is within 1 pixel. The matching
quality reflects the average ridge distance differences of all
of the blocks in the common area. The similarity score Sd is
calculated as

Sd ¼ Sdn � Sdq ¼
Nd

Nd þ 900

� 1

Nb

X
ðx;yÞ2�

expð�j1=frðx; yÞ � 1=fqðx; yÞjÞ;
ð10Þ

where Nd is the number of matched blocks, 900 is the
estimation of the minimum matched block numbers for
genuine matches, � denotes the common area, Nb is the
number of blocks in the common area, and fr and fq denote
the ridge densities of reference and query palmprints,
respectively.

A similar formula is used to measure the similarity of the
orientation field from two palmprints.

3.3 Principal Line Map

We need to further distinguish the principal lines from all of
the detected creases. The general Hough transform [31] is
applied to detect the principal lines. Let w cos �þ h sin � ¼ r
be the major axis of a candidate rectangular area corre-
sponding to a principal line, and the general Hough
transform is defined as

Gð�; rÞ ¼
Z H

0

Z W

0

IEðw; hÞIðjr� w cos �� h sin �j

< W=2ÞIðjIDðw; hÞ � �j < �Þdwdh;
ð11Þ

where IEðw; hÞ and IDðw; hÞ are the crease energy and
crease direction, respectively, � and W are the thresholds of
the direction and position difference, respectively, and I is
the characteristic function whose value is 1 if the criterion is
satisfied and 0 if not. In the experiment, W and � were
empirically set as 80 pixels and �=6, respectively.

Next, the strongest k peaks of the parameter space ��R
are obtained and are denoted by ð�i; riÞ ði ¼ 1; 2; . . . ; kÞ. These
peaks correspond to k rectangular areas. The creases outside
the rectangular areas are erased to form the principal line
energy image IPE and the principal line direction image IPD.
And in our experiment, k was empirically set as 5. The
principal line points extracted are shown in Fig. 6d.

The similarity of principal line maps is measured by the
proportion of matched principal line energy in all of the
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Fig. 5. Removal of spurious minutiae caused by creases: (a) before
removal and (b) after removal.



energy within the common area. Two energy points are
deemed to be matched if they are located at the same position
and the direction difference between their corresponding
principal lines is less than �=6. The similarity is computed as

Sp ¼
Em

minfEr;Eqg
; ð12Þ

where Er and Eq are the principal line energy sum in the
common area for reference and query palms, respectively,
and Em denotes the matched energy. It is calculated by

Em ¼
X
ðw;hÞ

min
�
IPrE ðw; hÞ; I

Pq
E ðw; hÞ

�
� I
���IPrD � IPqD �� � �=6�;

ð13Þ

where Pr and Pq denote the reference and query palmprints,
respectively.

4 MULTIFEATURE FUSION

After the steps described, we get the matching scores of
multiple features, including minutiae, orientation field,
density map, and principal line map. In this section, we
describe the techniques to combine them to measure the
final similarity of two palmprints. Several fusion technol-
ogies have been proposed for the low-resolution palmprint
recognition. Wang et al. [32] fused the palmprint image
and palm vein image at the feature level. In [33], Kumar
and Zhang fused multiple feature scores at the decision
level and proposed a product of sum rule. In [34],
Hennings-Yeomans et al. used the product rule for
palmprint classification. Due to the differences in the
nature of the application scenarios, we consider separate
fusion techniques for verification and identification. For
verification, we use some conventional statistical learning

methods for the classification of the genuine and imposter
matches. For identification, a novel heuristic rule is
proposed to achieve a higher identification rate.

4.1 Statistical Methods for Verification

Given the similarity scores of various features between two
palmprints, the verification system should decide whether
they are from the same palm. The performance of
verification is usually evaluated using the curve of the
Receiver Operating Characteristic (ROC), which is a graph
of FRR versus FAR. The simplest fusion technique is to
compute the linear weighted sum of all of the similarity
scores S ¼

Pk
i wiSi and set a threshold ST . If S is higher

than ST , it is deemed a genuine match or else an imposter
one. This is equivalent to separating two classes by a
hyperplane in the feature space. But in most cases, the
genuine and imposter matches are not linearly separable.

In order to accommodate nonlinearly separable densities,
we learn the probability that a given match S� is genuine
P ðGjS�Þ or imposter P ðIjS�Þ and use a threshold-based
classification for the two densities. Here, G denotes the
genuine scores and I denotes the impostor scores. Examples
of such techniques include SVMs [35] and the Neyman-
Pearson rule [36].

SVMs have two basic advantages: First, the kernel
techniques can be used to convert nonlinearly separable
densities into a pair of linearly separable ones, and second,
SVMs minimize the maximum expected generalization
error, leading to good generalization ability [37].

As for the Neyman-Pearson rule, supposing the genuine
class-conditional density is denoted by P ðSjGÞ and the
imposter class-conditional density is denoted by P ðSjIÞ, the
classification criterion is given by

S 2 G; if PðSjGÞ > �PðSjIÞ;
I; if PðSjGÞ � �PðSjIÞ:

�
ð14Þ

To estimate the class-conditional density distributions
P ðSjGÞ and P ðSjIÞ, the Parzen window method is applied.
And Gaussian kernel is used as the window function

P̂NðxÞ ¼
1

N

XN
i¼1

1

VN
’

x� xi
hN

	 

; ð15Þ

where ’ðuÞ ¼ 1ffiffiffiffi
2�
p expð� 1

2 u
2Þ, xi is the similarity vector of

the ith training sample, N is the number of training
samples, hN is the window width, VN ¼ hdN , and d is the
dimension of x.

4.2 A Heuristic Rule for Identification

In an identification task, given a query palmprint, it is
compared with all of the palmprints in the database and
they are ranked according to their similarities to the query
palmprint in descending order. The performance of
identification is usually evaluated by the identification rate,
which is defined as the probability that the identified
palmprint can be ranked within the top-k candidates. A
graph showing the identification rates for different values
of k is called a Cumulative Match Curve (CMC). Although
the CMC and ROC curves are very relevant, the optimiza-
tion goals of verification and identification are quite
different [38]. So the best fusion methods for verification,
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Fig. 6. Principal line map extraction: (a) a palmprint, (b) crease energy
image, areas of higher grayscale have higher energy, (c) crease
direction image, different crease directions are represented by different
colors, and (d) extracted principal line map.



such as SVMs and Neyman-Pearson methods, are not
optimal for identification tasks. The weighted sum rule
performs well when different features are conditionally
independent, but its performance deteriorates if some
features are conditionally correlated [39]. For our study,
the minutiae and orientation field features are heavily
correlated as the ridge direction information is embedded
into them simultaneously. To improve the system’s perfor-
mance, a novel heuristic rule is developed by analyzing the
characteristics and correlations of different features.

As minutiae and density map features are of low
correlation and have comparable discriminative power,
they can be fused by the weighted sum rule as

Smd ¼ wmSm þ ð1� wmÞSd; ð16Þ

where Sm, Sd are the matching scores of minutiae and
density map, respectively. The weight wm is evaluated at
the training set and empirically set as 0.65.

In the case of the principal line map, although its
discriminative power is worse than the other features, it can
provide independent global information of the palmprint.
In the experiment, many genuine and imposter matches
have similar low-similarity scores. But we also find that
only genuine matches can reach high similarity scores. So, if
the matching score of the principal line map is low, its
influence on the final result should be weak and the
decision should be primarily based on the information
provided by the other features. But in case two palmprints’
principal line maps are very similar, the rule should assert
that they are quite likely to be from the same palm. Let Sp be
the matching score of the principal line, then the similarity
score of the above three features, Smdp, is calculated by

Smdp ¼ Smd þ Smd �
1

1� Sp
: ð17Þ

When Sp is low, the result is mainly influenced by the
similarity of minutiae and density map. However, when Sp
is close to 1, the value of 1

1�Sp is high, and it will add a lot to
the matching score.

As for the orientation field, its discriminative power is
not good for palmprint recognition because many palms
have similar ridge direction patterns. The information of the
orientation field is heavily correlated with minutiae since
the direction of minutia fully captures the ridge orientation
at that point. In [40], Chen et al. reconstructed the
orientation field by using minutiae information and
achieved a satisfying result, which also proved the above
conclusion. So the rule should mainly rely on the informa-
tion provided by the other features. If the similarity of the
other features is low, the overall similarity should be low.
Otherwise, the similarity of the orientation field, So, can be
taken into consideration. Considering these factors, the
overall similarity is defined as

S ¼ Smdp þ Smdp � So: ð18Þ

5 EXPERIMENTAL RESULTS

In this section, we describe the database and details of the
specific experiments which include the following:

1. comparison between different orientation field esti-
mation algorithms,

2. analysis of different feature combinations,
3. analysis of different fusion methods,
4. comparison with the previous algorithm.

5.1 Palmprint Database

Up to now, there has been no publicly available high-
resolution palmprint database. To test the algorithm, we built
a large-scale palmprint database containing 14,576 full
palmprints from 13,736 palms, which is referred to as
THUPALMLAB. The database’s size is much larger than
the database used in [8]. The image size is 2;040� 2;040 pixels
with 500 ppi resolution and 256 grayscales. The database
contains both full and partial palmprints. The set of full
palmprints consists of two parts; 120� 8 of them are collected
from 120 different palms by using a Hisign palm scanner.
During the image acquisition, we did not guide the subjects to
simulate the real situations and each palm was pressed eight
times. The remaining 13,616 palmprints are inked images
provided by the Forensic Science Department of the Chinese
Police, which are from 13,616 different palms, one print for
each palm. These 13,616 palmprints were scanned at the same
resolution as the live scanned images. To simulate the latents
recovered from crime scenes, we scanned partial palmprints
from different regions of the palms, following the method in
[8]. For each of the first 120 palms, two partial prints are
scanned from the thenar, hypothenar, and interdigital
regions of the first two presses, respectively. As a result, we
collected 120� 6 partial palmprints from 120 unique palms.
Among all of the palmprint images, about 17 percent of them
are of relatively poor quality due to large amounts of creases,
deformity, smudges, blurs, incompleteness, etc. The database
is summarized in Table 1 and some of the sample images are
shown in Fig. 7.

In experiments, we specified the palmprints from 40 palms
with multiple prints as the training set. All of the remaining
palmprints, including 80� 8 multiple prints, 80� 6 partial
prints, and 13,616 single prints, form the test set. In the
verification experiment, the 80� 8 multiprint and 13,616
single print full palmprints from the test set are matched with
each other, leading to 2,240 genuine and 600,000 imposter
matches. In the identification experiment, the 80� 6 partial
palmprints are used as query palmprints and 80 full
palmprints from the corresponding third impressions are
mixed with the 13,616 single print palmprints to form the
background database.

5.2 Comparison between Different Orientation Field
Estimating Algorithms

We compared the composite orientation estimation algo-
rithm with the orientation estimation algorithm in [8]. Two
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TABLE 1
Summary of the THUPALMLAB Database



recognition systems were built. One uses the proposed

algorithm, the other uses the algorithm in [8], and all of the

other techniques used for evaluation, etc., are exactly the

same. The matching is done by combining the decisions of

classifiers based on minutiae and orientation field as in [8].

We tested the two systems’ performance both by verifica-

tion and identification experiments, and the corresponding

ROC and CMC curves are shown in Fig. 8, respectively.
As shown in Fig. 8, the system using the proposed

orientation estimation algorithm has better performance in

both the verification and identification experiments. The

main factor contributing to the improved performance is

the highly reliable orientation field extraction procedure. As

the ridge direction and density information are necessary for

minutiae extraction, minutiae thus obtained are also more

reliable.

5.3 Discriminative Power of Different Feature
Combinations

The discriminative power of different feature combinations

is compared for verification and identification usages,

respectively. The features in decreasing order of discrimi-

native power are minutiae, density map, orientation field,

and principal line map. Unlike fingerprints, the discrimina-
tory power of the density map is greater than that of the
orientation field. The reasons lie in the following aspects:
First, the ridge distances of palmprints are in a much larger
range, which is 8 to 13 pixels. Besides, the ridge distances of
different palms in the same region (e.g., thenar) have a larger
difference. In the case of orientation field, the ridge
directions are quite similar for different palms in the same
region. Fig. 9 shows two palmprints from different palms
having similar orientation field patterns. However, their
ridge density distributions are quite different, as shown in
Figs. 9e and 9f.

We analyzed the increase in discriminative power when
minutiae are combined with the other features, since
minutiae is the most important feature and the alignment
is based on minutiae information. The features are fused by
the SVMs for verification and by the weighted sum rule for
identification. For the SVMs, we used the RBF kernel and set
C ¼ 10, � ¼ 10; 6; 3 for combining 2, 3, 4 features, respec-
tively. The ROC and CMC curves are shown in Fig. 10. As
shown in Fig. 10, incorporating just the density map leads to
similar improvement as the case when all of the additional
features are used. This is because both the minutiae and
density map have good discriminative power and are highly
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Fig. 7. Sample palmprint images from the THUPALMLAB database: (a) live-scanned full palmprint image, (b) inked full palmprint image, (c)-(e) partial
palmprints.



independent, while we can find that although the accuracy
of only using orientation field is much higher than that of
principal line map, the discriminative power of their
combinations with minutiae is almost the same in verifica-
tion. And in identification test, although the combination of
minutiae and orientation field has higher top-1 and top-2
identification rate, the combination of minutiae and princi-
pal line map outperforms it in the top-3 identification rate.
When combining two additional features with minutiae, the
combination of minutiae, density map, and principal line
map shows better performance than that of minutiae,
density map, and orientation field in both verification and

identification tests. That is because the correlation between
the orientation field and minutiae is strong, whereas that
between the principal line map and minutiae is relatively
weak. The above conclusions can also be drawn when using
the other data fusion methods.

5.4 Comparison between Different Fusion Methods

We compared the performance of different fusion methods,
including weighted sum rule, SVMs, Neyman-Pearson rule,
and the proposed heuristic rule. The parameters are
computed on the training set for both verification and
identification. The SVMs uses the RBF kernel and the
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Fig. 9. Two palmprints from different subjects with similar orientation field but diverse density map patterns: (a), (b) original palmprint images,
(c), (d) orientation fields, (e), (f) density maps. In the density map images, the grayscale value is proportional to the ridge density.

Fig. 8. The ROC and CMC curves of the proposed composite orientation estimation algorithm and the algorithm in [8] on THUPALMLAB: (a) ROC

curves and (b) CMC curves.



parameters are set as C ¼ 10; � ¼ 10 and C ¼ 7; � ¼ 8 for
verification and identification, respectively. In the case of
the Neyman-Pearson rule, hN is set as 0.07 and 0.08 in the
verification and identification tests, respectively. The para-
meters of the heuristic rule are described in Section 4.2. And
the weighted sum rule is given as

S ¼ 0:53Sm þ 0:28Sd þ 0:10So þ 0:10Sp: ð19Þ

These weights are also estimated using the training set.
Next, recognition systems were built using different

fusion methods to combine the four features, while keeping

all of the other parts the same. Their performances in

verification and identification experiments on THUPALM-

LAB are shown in Fig. 11.
In the verification experiment, fusion by the SVMs can

get more accurate results than the other three methods. And
the performance of the Neyman-Pearson rule, the weighted
sum rule, and the proposed heuristic rule is similar, while
in the identification experiment, the result is quite different
and the proposed heuristic rule shows a best performance.

5.5 Comparison with Previous Works

We compared our algorithm with Jain and Feng’s
algorithm [8] on the THUPALMLAB. Based on the above
analysis, we select the SVMs as the fusion method for the
verification system and the proposed heuristic rule for the
identification system.

Fig. 12a shows the FRR obtained by the proposed
approach is 16 percent, which is 17 percent lower than that
obtained using the approach proposed in [8] at a FAR of 10�5.
The Equal Error Rate (EER) values of the proposed approach
and the approach in [8] are 4.8 percent and 7.0 percent,
respectively. Fig. 12b shows the CMC curves of identification
experiment. Our technique achieves a rank-1 identification
rate of 91.7 percent, which is 9.7 percent higher than that
using the approach in [8]. About 94.3 percent of the
corresponding palms can be found in the top-10 candidates
using our approach. Both of the experiments indicate that the
proposed algorithm achieves much better performance than
the previous algorithm.

Performance improvement is mainly because of the
following three reasons: 1) Multiple features, including
minutiae, orientation field, density map, and principal line
map, are utilized to provide more discriminative informa-
tion, 2) the composite algorithm can estimate the orientation
field more reliably in the case of regions with dense creases,
and 3) the statistical learning method and the proposed
heuristic rule are employed for verification and identifica-
tion, respectively, to make better use of the multiple features.

6 CONCLUSIONS

In this paper, we developed a novel high-resolution
palmprint recognition system which can handle palmprints
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Fig. 10. The ROC and CMC curves of the combinations of minutiae and additional features on THUPALMLAB: (a) ROC curves and (b) CMC curves.

Fig. 11. The ROC and CMC curves of classifiers using weighted sum rule, SVMs, Neyman-Pearson rule, and the proposed heuristic rule on

THUPALMLAB: (a) ROC curves and (b) CMC curves.



with a large amount of creases, leading to much higher

accuracy than the previous systems. The main contributions

are as follows:
First, use of multiple features for palmprint recognition

to significantly improve the matching accuracy.
Second, design of a quality-based and adaptive orienta-

tion field estimation algorithm. It can reliably estimate the

ridge direction by adaptively choosing suitable estimation

method according to the image quality.
Third, use of a novel heuristic rule for identification

applications to combine different features.
Fourth, the discriminative power of different feature

combinations is analyzed and we find that density is very

useful for palmprint recognition.
We argue that further research on palmprint recognition

should focus on handling nonlinear deformation and

matching efficiency. Relative nonlinear deformation among

different impressions of the same palm is unavoidable in

the case of a contact-based scanner. And this significantly

affects the matching of minutiae, orientation, and density

map, especially in the case of palmprints that have much

larger size as compared to fingerprints. Another challenge

for high resolution palmprint recognition is fast matching in

a large-scale database. A better indexing and searching

method should be studied.
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