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Since PTZ (pan-tilt-zoom) camera is able to obtain multi-view-angle and multi-resolution information,
PTZ-stereo system using two PTZ cameras has much higher capability and flexibility compared with tra-
ditional stereo system. In this paper, we propose a self-calibration framework to deal with the calibration
of spherical rectification, which can be deemed as a kind of relative pose estimation, for a PTZ-stereo sys-
tem. The goal of this calibration is to guarantee high performance of stereo rectification, so that stereo
matching can be achieved more efficiently and accurately. In this framework, we assume two PTZ cam-
eras are fully calibrated, i.e., the focal length and the local camera orientation can be computed by given
pan-tilt-zoom values. This approach, which is based on point matches, aims at finding uniformly distrib-
uted point matches in an iterative way. At each iteration, according to the distribution of previously used
point matches, the system could automatically guide two cameras to move to collect a new match. Point
matching is firstly performed for the lowest zoom setting (widest field of view). Once a candidate match
is chosen, each camera is then controlled to zoom in on corresponding point to get a refined match with
high spatial resolution. The final match will be added into the estimation to update the calibration
parameters. Compared with previous researches, the proposed framework has the following advantages:
(1) Neither manual interaction nor calibration object is needed. Calibration samples (point matches) will
be added and removed in each stage automatically. (2) The distribution of calibration samples is as uni-
form as possible so that biased estimation could be avoided to some extent. (3) The accuracy of calibra-
tion can be controlled and improved when iteration goes on. These advantages make the proposed
framework more practicable in applications. Experimental results illustrate its accuracy.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

and depth map of a large scene, by changing pan-tilt-zoom values
[2]. This depth information could be useful in scene understanding.

In recent years, automatic visual surveillance techniques have
been widely applied in many fields. One trend of the hardware
configuration is to use ‘multiple’ and ‘active’ cameras as a visual
unit. Multi-camera unit could supply multi-viewpoint images
and stereo information, while the active-camera unit could obtain
multi-resolution and multi-view-angle images. In our study, we
use two PTZ (pan-tilt-zoom) cameras to constitute a dual-PTZ-
camera system which is one of the simplest multi-active-camera
systems, so the research on such system is significant and promis-
ing [1].

The significance of stereo vision is well known. PTZ stereo can
be utilized to obtain depth map of local region with high precision
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Standard stereo vision assumes that the stereo system satisfy non-
verged geometry [3], i.e., the epipolar lines are parallel to each
other. However , this assumption does not hold for many stereo
systems. Stereo rectification is a way to make arbitrary stereo
image pairs to become nonverged geometry, which makes the
searching scope of stereo matching to be one dimension [4]. Many
rectification algorithms have been reported in the literature [5-9].
For a PTZ-stereo system, since the camera parameters are alterable,
a feasible way is to build a rectification system based on camera
parameters (such as pan-tilt-zoom values) instead of image con-
tent. There are few literatures on the rectification-related problem
for dual-PTZ-camera system except for our earlier works [10], and
we call it “spherical rectification”. However, the calibration of the
spherical rectification model still needs improvement because of
some flaws. This problem can be seemed as a kind of relative pose
estimation between two PTZ cameras. In this paper, we propose a
self-calibration framework to deal with this problem.

In our study, we assume each PTZ camera is already calibrated,
i.e., the focal length and the local camera orientation can be com-
puted by given pan-tilt-zoom values. Some relevant research
about single PTZ camera calibration can be found in the literature,
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for example [11,12]. The calibration of spherical rectification mod-
el includes epipoles and zero longitudes estimation for two cam-
eras, and this problem can be seemed as one specific application
of motion estimation problem in computer vision [13]. Compared
with estimating relative pose, our problem has one less degree of
freedom, i.e., the distance between two cameras. So we directly
estimate the spherical rectification model, instead of solving a
standard motion estimation problem. However, if the relative pose
of the two PTZ cameras is known, the spherical rectification model
can be directly computed. No matter what kind of problem we re-
gard this estimation to be, two aspects should be considered for a
point-matches based approach: (1) How to control the distribution
of point matches? (2) How to improve the accuracy of point
matches?

In order to compute the spherical rectification model, we have
proposed a two-step calibration approach in [10]: firstly, use the
fundamental matrix to estimate two epipoles by the epipolar con-
straint; secondly, calculate the two zero longitudes by minimizing
the longitude difference of point matches with fixed epipoles.
However, the accuracy of calibration is restricted, because the error
in estimating epipole might become a bottleneck of the whole cal-
ibration. Furthermore, since the calibration is based on point
matches, better performance needs well distributed and accurate
point matches as well, but how to collect such matches is not con-
cerned in this study. Fujiki et al. [14] proposed calibration ap-
proach to deal with central-omnidirectional cameras system
which also uses the spherical stereo model. This approach uses
an iterative way to achieve a more accurate calibration. Compared
with PTZ-stereo system, the main difference is that the calibration
can be accomplished using one single spherical image pair. So, all
point matches have fixed spatial resolution, and there is no need
to consider automatically gathering calibration point matches.

In our study, we proposed a novel self-calibration framework to
deal with this problem. This approach is based on point matches
and works iteratively. These calibration point matches are col-
lected with high spatial resolution by automatically changing PTZ
parameters of two cameras, so this calibration is convenient and
reliable. For simplicity, we define sample as a point match; sam-
pling as collecting samples for calibration. All samples used for cal-
ibration form a sample set. In the proposed framework, the
following three key problems need to solve:

(1) An effective optimization algorithm is needed to estimate
target calibration parameters for a given sample set.

(2) An automatic sample management mechanism is needed, so
that the calibration samples can be dynamically added and
removed.

(3) When adding a new sample, we need a proper camera con-
trol strategy to ensure that a high-spatial-precision sample
is likely to be found.

Compared with previous work [10], this framework has follow-
ing advantages:

(1) The framework works in an iterative way. In each stage, cal-
ibration samples can be automatically added and removed
with neither manual interaction nor calibration object.

(2) New sample is added to make the distribution of samples,
which is determined by current calibration sample set and
current estimated parameters, to be as uniform as possible,
so that biased calibration caused by the non-uniform distri-
bution of samples can be avoided to some extent.

(3) The accuracy of calibration can be controlled. Since the accu-
racy can be improved after adding suitable samples stage by
stage, a desired accuracy can be achieved by controlling the
number of stages.

These advantages will greatly increase the practicability of the
calibration. Experimental results show that the performance of cal-
ibration is much better than the method used in Ref. [10].

The remainder of this paper is organized as follows: in Section
2, the stereo model of dual-PTZ-camera system is depicted. In Sec-
tion 3, we introduce the proposed self-calibration framework.
Experimental results will be shown in Section 4. In Section 5, we
summarize the paper.

2. Dual-PTZ-camera stereo model
2.1. Single PTZ camera model

The pin-hole camera model is used in our study:
Xn = Ko'X = KZ(2)R(p, D)X, (M

where x and X are image coordinates and world coordinates, respec-
tively; symbol ‘~’ means homogeneous coordinates. x, is the nor-
malized image coordinates. p, t, z are the PTZ parameters supplied
by camera. k is a scaling factor. For simplicity, we set pixel aspect
ratio to be 1, and skew be 0; and no radial distortion is considered.

Ko is a 3 x 3 matrix to translate image origin to principal point
(up,vo). We assume that the rotation axes of pan and tilt are
orthogonal and intersect at one point, which is chosen as the origin
of the world coordinate system, and hence no translation factor is
considered.

R(p,t) is a rotation matrix determined by the ‘pan’ and ‘tilt’ an-
gles. Z(z) = diag{f(z),f(z),1} is a scaling matrix determined by
‘zoom’ parameter. We use the approach in [11] to estimate Z at
several discrete zoom levels z, and then choose a proper model
to fit these discrete values. In our study, we use an experiential
function, f(z) = aexp(bz) + cexp(dz) [1], where a, b, c, d are the
parameters need calibration.

In our study, the SONY EVI D70 camera is in use. For the detailed
calibration of single PTZ camera, please refer to Ref. [1].

2.2. Spherical stereo model

In the ideal dual-camera stereo model, two cameras have the
same focal length, and the optical axes are parallel and perpen-
dicular to the baseline. This model is always called the classical
stereo model or nonverged stereo model, as the two optical axes
are parallel [3]. Using this model, stereo matching can be easy
fulfilled efficiently. However, in practice, this model does not al-
ways hold well for real applications, especially when two cameras
have different PTZ parameters. Stereo rectification is a way to
make the verged geometry to be nonverged. Rectification is able
to reduce the searching scope in stereo matching from 2D to
1D, so both performance and efficiency of stereo matching can
be improved. For dual-PTZ-camera system, we adopt the spherical
rectification method which has been proposed in our previous
work [10].

The main idea of the spherical rectification method is to bring in
the longitude-latitude coordinate system, and the goal is to have
the longitude components of corresponding points be the same
after coordinates conversion. Fig. 1 briefly illustrates this method.
The definition of longitude and latitude coordinates are shown in
Fig. 2. The longitude, o, is defined as the elevation angle relative
to the baseline, i.e. the angle from OM to OX'(OM L EE'), and
oy € [-m, m); the latitude, B,, is defined as the angle from Oe to
0X, and p, € [0, «t]. According to this definition, OM has a zero lon-
gitude value, so we call it zero-longitude vector.

We summarize the conversion between original image coordi-
nates and rectified image coordinates in Fig. 3.
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Fig. 2. Definition of longitude (o) and latitude (B,) coordinates.
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Fig. 3. Flow chart of coordinates conversion.

2.3. Calibration of spherical rectification

Calibration of spherical rectification is to construct the longi-
tude-latitude coordinate system for each camera, which is deter-
mined by two epipoles (E;,E;) and zero longitudes (O;M;, where
O;M; L OiE;), where i = 1,2 (see Fig. 1).

The calibration method used in [10] is based on point matches
between two camera coordinate systems. It includes two steps: (1)
use the fundamental (or essential) matrix to estimate epipoles by
the epipolar constraint; (2) choose an arbitrary O;M; L 0,E;, and
find O,M, (L O,E;) by minimizing the longitude difference of corre-
sponding calibration points. A major shortcoming of this method is
that the error in estimation of epipoles will affect the accuracy of
O;M;, i = 1,2. In order to solve this problem, we refer to the meth-
od proposed in [14], which directly estimates all parameters at the
same time.

In order to build a self-calibration framework, besides specific
parameter estimation algorithm, we need to consider how to ob-
tain useful calibration samples as well. This problem is not con-
cerned in [10,14]. In our situation, the following two aspects
should be considered:

(1) Sample management: An evaluation mechanism should be
designed to look for a desired sample which will be the best
for calibration and to determine a sample which should be
removed;

(2) Camera control strategy: There are two requirements: one is
to ensure two cameras have overlapped FOV, and the other
one is to use high zoom level to guarantee the precision of
samples.

3. Automatic self-calibration framework

The flow chart of the proposed framework is shown in Fig. 4. In
this framework, several initial samples and initial parameters are
prepared in initialization module. Then, the procedure works in
an iterative way. In each stage, the system evaluates a distribution
of current calibration samples according to current estimated
parameters, and determines a rough area that could generate a
new sample which will make the distribution be more uniform.
The two cameras are then automatically controlled towards this
area and collect new sample with highest spatial resolution. After
a sample is added into calibration sample set, the target parame-
ters will be refined in the optimization module. Under some cer-
tain conditions, sample removing module will be triggered. Once
a sample is regarded as an outlier, it will be ruled out. The stop
conditions are used to determine when to terminate the procedure.

We first parameterize this calibration problem. Since the esti-
mation target, epipoles (E;, E;) and zero longitudes (O;M;, i = 1,2)
(see Fig. 1) are orthogonal, an orthonormal matrix (R}) can be used
to represent them, where O;E; and O;M; equal the first and second
row of R}, respectively. R is also a rotation matrix which can be
parameterized by three euler angles. However, as the zero longi-
tudes (OM,; and O,M,) only have relative meaning, only five
parameters are needed, and we denote them by
0 = [01,04,03,04,05)". So R! can be determined by 6:

$162 =52 16
Rq(()h()z) = Cq 0 -S51 |, (2)
$1S2 G OS2
and
S3C4 —Sa C3Cy
$3S554 + C3Cs  S5C4 C3S5S4 — S3Cs |, 3)
S3C5S84 — C3S5 C5C4 C3C554 + S3S5

R}(03,04,05) =

where s; = sin6;, ¢;j = cos6;, j=1,2,3,4,5.

In our study, this calibration is based on point matches between
two PTZ cameras. We call these matches samples, and the kth sam-
ple is denoted by {X* X%}, where X¥ is the normalized camera coor-
dinates of camera-i (i.e., [|X| = 1). Assume x¥ is the matched point

(a) Available prior knowledge about
parameters

Initialize
parameters

(b) Use the fundamental matrix based
method to generate initial parameters

4

Calculate sample
distribution

l

Move cameras and
collect a new sample

l

Pre-classify samples
into ‘inlier’ and
‘potential outlier’

!

Use all inliers to
update parameters
(optimization)

Stop condition
matches?

Remove samples from ‘potential
outliers’ according to longitude
residules

A,

Fig. 4. Flow chart of self-calibration framework.
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in camera-i's image, we back project x¥ onto the unit sphere cen-
tered at camera-i's center, and X¥ is the intersection point.

3.1. Initialization

In order to obtain an initial value of 0, we first estimate the
essential matrix between two views from two PTZ cameras,
respectively, and then the epipoles (E;, E;) can be calculated. Final-
ly, the zero longitudes (O;M;) can be computed by the estimated E;
and point matches.

The two views are captured by manually controlling two PTZ
cameras. In order to guarantee a better initial value, it is better that
the two views have larger overlapping visual field. For each view,
we extract SIFT [15] feature points and match them between two
views (http://vision.ucla.edu/vedaldi/). Since the camera is cali-
brated, according to the camera model equation (1), the normal-
ized camera coordinates, X and X%, can be computed from the
kth point match. X* and X¥ satisfy the epipolar constraint:

(xg)Tmef =0, (4)

where H,, is the essential matrix.

We use the five-point algorithm as a hypothesis generator with-
in a RANSAC scheme [16,17] to obtain the essential matrix (Ha;)
and collect inliers among all point matches. For each hypothesis,
the cost is defined as sum of truncated absolute longitude residual
errors of all samples:

cost =~ min {|e", T}, (5)
k

where e is the longitude residual error of the kth sample, and T is
the threshold value (in our experiment T = 0.1). Inliers are defined
as those samples satisfy |e¥| < T.

(1) The key part is to compute e* through a given essential
matrix, H,1: (1) compute E; according to the epipolar constraint
(HunE = E;Hn = 0) by SVD decomposition. The sign of E; is deter-
mined through the latitude values of all samples, ﬁ’x‘v,- (see definition
in Fig. 2). From the definition of epipoles in PTZ-stereo system,
E; = —E;. For ideal case, all the latitude values should satisfy
B < B2, i.e., Z/POE, < /PO;E, in Fig. 1. For the four combinations:
{Ei1,E2}, {—E1,E2}, {E1,—E>} and {—E;,—E,}, we find the one with
most samples satisfy ! < 2 as the solution. If this number is smal-
ler than 60% of total amount of samples, we directly reject this
hypothesis.

(2) O:M; can be chosen after E; and E; are determined. Since
O;M; L O;E;, there is only one degree of freedom in computing
0:M,; and O,M,. Given a arbitrary vector v, let M; = v x E; and
M, = v x E5, then the longitude coordinates, c,; (see definition in
Fig. 2), can be obtained. Considering the five samples used for esti-
mating H,;, the average difference of longitude coordinates is
denoted by Ja; then the final M, is determined by rotating M,
around O,E, by da.

(3) The longitude coordinates of each sample in two camera
system can be calculated. The residual error of the kth sample is:
ek = ok — ok, Then the cost of a given hypothesis can be computed

by Eq. (5).

Finally, we choose the hypothesis with smallest cost. The corre-
sponding E; and M; will be used to construct R}, and then 6 can be
computed through Eq. (2). All the inliers will form the initial cali-
bration sample set, and 6° = 6 will be the initial calibration param-
eter for further optimization.

If we have some prior knowledge about the calibration param-
eters, for example, the two cameras are placed side by side on a
same plane, §° can be directly given. In this case, this framework

can totally work automatically. In our study, we assume no such
prior knowledge is available. Note that, since these samples have
low spatial resolution, when the number of new added samples
with high spatial resolution is large enough, we force these initial
samples to be removed.

3.2. Parameter optimization

In our study, we use point matches (calibration samples) to esti-
mate 0 by minimizing the sum of square difference of longitude
coordinates. In Ref. [14], Fujiki et al. have proposed a similar meth-
od by using the Rodrigues’ formula of rotation matrix to calibrate
the spherical images for central-omnidirectional cameras system.
In this paper, we follow this idea to optimize the five parameters
in each stage.

Parameter optimization module is running after new samples
are added in each stage. In this module, we denote ¢° as the initial
value of 0. In the first stage, ¢° is generated from the initialization
module, and in the later stage, ¢° can be the optimization result in
the previous stage.

Given a point X in the scene, and denote X; as the camera coor-
dinates of camera-i (i =1,2). After spherical rectification, the
spherical coordinates X; = RiX; (R; can be computed from 6, see
Eqgs. (2) and (3)), and the longitude component can be represented
by using the four-quadrant inverse tangent function: o; = atan2
(Xi(3),X;(2)), where X;(m) is the mth component of vector X;.
According to the definition of spherical rectification, the optimiza-
tion target is to minimize

E=Y"(ok - o), (6)
k

where k is the index of calibration samples. Consider one-order Tay-
lor expansion,

SRR )
k

where e = ok — ok; d is the incremental parameter vector of 0;
J= X In order to calculate J¥, let C; = X[(3) and B; = X!(2), then
we have

o _dBi-Ci ®)
AR

where & and & can be easily calculated from Egs. (2) and (3). The
least square method could provide an estimation of the increment:

-1
d=— <Z]k(]k)T> (Z ek]k) , (9)
k k

where J* = J§ — J¥. The estimation of 6 works in an iterative way. In
each iteration we do above operations to update 0: 0 «— 0 +d, and
finally, 0 could be obtained. In our experiment, the stop conditions
of this optimization module include: (i) exceeding maximum itera-
tion number; (ii) ||d|| < thy; and (iii) +3",|e¥| < the. If any one of
above conditions is met, the optimization procedure stops. In our
experiment, the maximum iteration number is set to be 20;
thy = 10"; and th, = 0.0005.

3.3. Sample management

After 0 is estimated, if the stop condition does not match, sam-
ple management module will be triggered to compute the distribu-
tion of current calibration samples, and prepare for collecting a
new sample.
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3.3.1. Add new samples

In 0’s estimation, sufficient samples are very important to guar-
antee the accuracy of estimated 6. On the other hand, the distribu-
tion of samples is also significant, especially when the total
number of samples is not large enough. If all samples have the
same uncertainties, we hope all samples uniformly distribute in
longitude coordinate space.

We define a distribution factor circle, f(c), where -1t < o < T.
f() is determined by all calibration samples ({X},X%}) with their
calibration errors (|e|). Assume the spherical coordinates of
X (i =1,2) are denoted by (&, ), we mark o = (o + o%)/2 and

k — (B + p%)/2. Then f(«) is defined as

fla)y =" sin ([f") exp (—(ek)2/0'3> exp (—(oc - oc")z/ai)‘ (10)
K

Remark 1. The first part, sin(g"), is a factor to determine the
amplitude of the kth sample’s contribution. This term indicates
that, if the average latitude () is more close to m/2, the
contribution of this sample to the distribution circle will be
greater.

Given a point on the unit sphere with longitude-latitude coordi-
nates (o, f8), because of the uncertainties in pan and tilt parameters,
this point may have a displacement error on the unit sphere, Ao,
which is independent with « and . Ap can be decomposed into
longitude and latitude components, and the longitude error
Ao ~ A¢/sin . The larger sin g, the smaller the Aw, and the more
reliable the longitude residual (e*), and so the corresponding sam-
ple will have higher weight. For simplicity, we directly choose the
trigonometric function in Eq. (10).

Remark 2. The second part, exp (—(e")2 / ag) is another factor to

determine the amplitude of the kth sample’s contribution. This
term indicates that, if the calibration error (|e¥|) is smaller, the
contribution of this sample to the distribution circle will be
greater.

This part can be regarded as a kind of weighting strategy
according to corresponding |eX|. A natural idea is to collect more
samples around those samples with larger calibration error. This
strategy will have more obvious effect for larger number of sam-
ples. For simplicity, we choose the Gaussian-like function in Eq.
(10), where o, is an experiential parameter, and in our experiment
we set g, = 1/180.

Remark 3. The third part, exp (—(oc— oc")z/ai), determines the

influence scope of the kth sample on o. This term indicates that,
each sample will have a Gaussian-like effect on the distribution
circle centered at its longitude value, o*. o, is an experiential
parameter, and in our experiment we set g, = /32.

Basic idea: The ideal situation for the distribution circle is that
for all Vo € [—m, ), f{a) is a constant, which can be regarded as a
uniform distribution. The principle of adding new samples is to col-
lect samples whose longitude coordinates component is close to
Omin = arg min,f(«) on the distribution circle.

In order to efficiently calculate oy, we discrete the range of o
into Ny, (e.g., 36 in our experiments) equal bins which are repre-
sented by their central values, o; (i=1,2,...,Npin). Among these
values, we find the one (o;) satisfies f(o;) < f(oi), and omin = 055
The jth bin is called the candidate bin.

Determine camera parameters: In order to collect new samples
with corresponding longitude coordinates close to ¢, we have
to calculate suitable PTZ parameters of two cameras, so that such
a sample will be visible in both views of two cameras.

Step 1. Determine pan and tilt parameters. Since longitude value
alone is not enough to determine the camera orientation, two lat-

itude values for two cameras (; and B,) are also needed. We de-
cide them with the following two considerations:

(1) B, and B, should be close, because we have no idea about
the depth of the scene, if the discrepancy between the orien-
tations of two cameras is large, the common FOV could be
small and so it degrade the chance to find point matches
we need. In our study, we set 8 = f; = 5.

(2) As we mentioned before,  should be close to /2 so that the
longitude uncertainty will be small, see Remark 1.

When (omin, ) is given, it is easy to find the camera coordinates
on the unit sphere, X, and then, according to the camera model, pan
and tilt parameters can be calculated. Considering that this candi-
date bin (associated with o, ) might be selected more than once,
in order to avoid collecting reduplicate samples, before compute
the pan and tilt parameters, we add a small random value on both
omin and B, so that each time when adding new sample, the cam-
eras’ parameters will be different. If the calculated pan and tilt
parameters are out of range, we deem that the sample collection
at amy is failed, and this case will be discussed later.

Step 2. Determine zoom parameter. For both cameras, we use
the lowest zoom level to improve the possibility that two cameras
have larger common FOV. However, spatial resolution will be sac-
rificed, so we design a refining strategy for compensation.

After new PTZ parameters of both cameras are determined, two
cameras will be controlled towards new positions. Feature points
extracting and matching will be performed within two images.
As the two images might have difference in rotation (or even small
difference in scale), SIFT descriptor [15] is utilized. For all point
matches, we use current estimated 6 to calculate their correspond-
ing longitude coordinates, {of,od:j=1,2,...}. Denote of =
(¢4 + od))/2 and & = ¢, — . Those matches whose & does not be-
long to the candidate bin or |é/| is too large will be removed. For the
rest matches, we compute the distribution factor f(¢/), and choose
three matches with smallest f(o) as the candidate samples, see an
example in Fig. 5(a).

As we mentioned before, lower spatial resolution might cause
larger error in points matching, so we design a refining strategy
to solve this problem. We firstly choose one of the candidate sam-
ples, and calculate the corresponding camera coordinates (Xi,X>2)
which will be used to compute new pan and tilt parameters for
both cameras. At this time, it is sure that the two matched points
will be visible for each camera under any zoom level, because after
camera moves to the new PTZ position, if the errors in camera
model and camera controlling are not considered, the matched
points should be in the image centers (principle point) for both
cameras. So we set a high zoom level for both cameras, and move
two cameras to new PTZ position. Then, we again perform feature
point extraction and matching near the image centers of the two
high-spatial-resolution images, and select the point match with
highest matching score. Finally, according to PTZ parameters and
camera model equation (1), compute the normalized camera coor-
dinates of the selected point match as the new sample,
{X?Ew7xgeW}.

For example, in Fig. 5, it is failed finding new sample with the
first candidate sample, so we move on with the second one, and
succeed. The corresponding high-zoom image pair is shown in
Fig. 5(b), and the final selected point match is labeled by ‘P’.

If it is failed to find new matched point pairs, we choose the
next candidate sample and do this procedure again. If all the three
candidate samples are run out, we deem that the sample collection
in this candidate bin (associated with o) is failed.

Failure treatment: If the sample collection at oy, is failed, the
corresponding candidate bin will be forbidden for the next several
stages to improve the efficiency of calibration and avoid endless
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Fig. 5. An example of sample collection. (a) Low-zoom image pair with matched points. Three candidate points are labeled by numbers, ‘1’, ‘2, and ‘3'. (b) High-zoom image

pair with matched points near image center. The finally selected point is labeled by ‘P".

loop. Then we find oy, again from the rest available bins and redo
the same procedure, until a new sample is collected.

In our study, we only add one sample in each stage, because
first, when a new sample is added into calibration, the distribution
circle will change. If we add another sample at the same time, it
will likely aggravate the unbalance of the distribution circle. Sec-
ond, to collect more samples needs more camera movement, and
that will occupy lost of time of the whole calibration.

3.3.2. Remove outlier samples

As all samples are delicately collected by the zoom refining
strategy, false matching will hardly happen because if a false
match is chosen as a candidate sample in low-resolution image
pair, it is likely that no match will be found after two cameras
move toward this match and zoom in. However, we still need to as-
sume the existence of false matches. On the other hand, the cali-
bration samples might have other errors which might be caused
by the mechanical clearance in camera movement, and local point
matching error, etc. In order to improve the accuracy of calibration,
we allow removing outliers from the calibration data set.

When a new sample is collected, only if there are enough sam-
ples (e.g., the total number of samples N > 15), we execute the
sample removing module. We also use the five-point algorithm
as a hypothesis generator within a RANSAC scheme [16,17], which
has already been used in initialization (see Section 3.1), to find in-
lier samples. The rest samples are labeled as ‘potential outliers’
which will not be removed immediately since the longitude resid-
ual computed in RANSAC loop might not be accurate enough. The

inlier samples will be used to optimize 6 using the algorithm in
Section 3.2, so that the longitude residual errors (|e¥|) of all samples
are recomputed according to the estimated 0. Assume
@inlier aNd Oiniier are the mean and standard deviation of residuals
of all the inliers, respectively. For each ‘potential outlier’, if the cor-
responding |e¥| > @intier + 3Tintier» this sample will be removed;
otherwise, we keep it as an inlier without recomputing 0.

3.4. Stop condition

In each stage, we need to check whether the stop condition is
satisfied or not:

(1) The total number of samples N > Npax.

(2) The total number of stages N5 > Ns_max.

(3) The total calibration error ¢ < T, and N > Np,;, which is used
to avoid local optimum.

If one of the above conditions is satisfied, the whole procedure
will stop, and current estimated 0 will be the final result.

4. Experimental results

We utilize two SONY EVI D70 cameras to compose a PTZ-stereo
system. We assume no pre-knowledge for 0 is available, so we use
the method mentioned in initialization module (see Section 3.1) to
generate an initial parameter, ¢°.
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4.1. Experiment on real data

We use the proposed self-calibration framework to calibrate our
PTZ-stereo system. Since it is difficult to measure the groundtruth
of the parameters to estimate, we collect those samples used in
previous calibration as the testing data (150 samples in total).
The average absolute longitude residual (|e¥|) on testing data could
indirectly show a rough trend of the performance along stages.

The left image in Fig. 6 shows the average absolute longitude
residuals on training and testing data in each stage, where the
training data are all current used calibration samples. The right im-
age in Fig. 6 shows the final sample distribution. The broken line
indicates f(a) for each bin (Ny, = 36), which is normalized by
Z?ﬁ’{" (o) = 1. The circle-spoke image indicates the longitude (o)
distribution for all samples in [, 7). Note that in our experiment,
the « distribution only covers about half space in [T, 1), because:
(1) for the used PTZ camera, the range of pan is from —170° to 170°,
and tilt, from —90° to 30°, so some directions are unreachable; (2)
in our system, the two cameras are appended on the top window
frame, and few feature points can be detected in the upper half
space with sky and inner roof whose corresponding rough longi-
tude range is about (—m,0).

We also provide two original high-resolution image pairs from
which two samples are collected, see Fig. 7. Using this calibration
result, we rectify a image pair and show the result in Fig. 8.

4.2. Experiment on simulated data

In order to quantitatively compare the estimated parameters
with groundtruth, we use some simulated data for experiment. As-
sume two cameras have only relative translation on x-coordinate,
and E2 = ES =[1,0,0)"; M® = M} = [0,1,0]". Imitate the real sys-
tem, we set baseline width b=0.75 m. To generate a sample, we
need the spherical coordinates of two cameras, (o, f;), i=1,2. As
the sample adding procedure, when the target o with smallest
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f(a) is given, we set oy = ot = o, By = /2 +n; (ng is a N(0,t/36)
Gaussian noise). Assume the depth of this virtual point is randomly
chosen from [20, 200](m), then B, can be determined. According to
(o, B;), the normalized camera coordinates X; can be computed. Fi-
nally, a 3 x 1 Gaussian noise vector (N(0, ¢)) is added on each X;. In
this experiment, we set ¢ = 0.001 which almost equals the uncer-
tainty of pan and tilt values provided by cameras.

When 0 is estimated, E; and M; can be computed. In order to
compare the calibrated result with groundtruth, we define the fol-
lowing three errors:

(1) €(E;): the angle between 0E; and 04E?, < 04E, 04E >;

(2) €(E,): the angle between O,E, and 0,EJ, < 02E;, 02EJ >;

(3) €(My3): since the zero longitude has only relative meaning,
we first project M; onto the plane perpendicular to O;E?,
and denote it by M}; then €(M1y) =< 0:M}, 01 M} >.

Note that, €(E;) and €(E,) are dominant among the three kind of
errors, only when both of them are very small, €¢(M;2) has
significance.

We generate eight samples with random « values for initializa-
tion. In each stage, the three kind of calibration errors are shown in
Fig. 9.

From this result, we can conclude that: (1) the three errors keep
low in each stage, so that the estimation of 0 is stable. (2) The three
errors are basically descending while the number of stage in-
creases, which testifies that the accuracy of estimated 0 is im-
proved stage by stage. (3) The distribution of calibration samples
is almost uniform, so that the sample collecting strategy is
testified.

4.3. Importance of samples’ distribution

In order to how the distribution of calibration samples affects
the accuracy of calibration, we design an experiment on the simu-
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Normalized
distribution factor f (o)

Longitude
distribution ]

Fig. 6. Experiment on real data. The left image is longitude residuals on training and testing data in each stage. The right image is the final sample distribution: the broken
line indicates f (o) for each bin (Nyi, = 36); the circle-spoke image is « distribution for all samples in [—, ).

Fig. 7. Two samples: high-resolution image pairs with point matches. The point pair with blue circle indicates the collected sample.
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Fig. 8. A rectification result using the calibrated parameters.
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Fig. 9. Experiment on simulated data. The left image shows the difference compared with groundtruth, and the right image shows the final sample distribution.

lated data. This experiment is not perform stage by stage. We di-
vide the o space into two parts: [—m,0) (part I) and [0,7) (part
II). We uniformly generate N; and Ny samples from two parts,
respectively; then, use all samples to estimate the calibration
parameter:

(1) Initialization: we use the initialization method mentioned in
Section 3.1 to generate 0°. In this experiment, we assume all
samples are inlier.

(2) Optimization: we use the iterative optimization algorithm
mentioned in Section 3.2 to estimate the final 0.

This procedure is performed for 500 times independently, and
we compare the mean and standard variance of the three kind of
error mentioned before with given proportion (N; : Ny) of samples
from the two parts. Table 1 shows the result.

From this experiment, we can see that the distribution of sam-
ples could affect the accuracy of calibration. If the distribution is
more uniform, the accuracy will be higher in general.

4.4. Anti-local-noise ability

In order to verify the performance of the integrated-parameters
optimization method used in our study (see Section 3.2) is prior to
that of the ordinal-parameters optimization method based on fun-
damental or essential matrix estimation, which is used in [10](i.e.,

Table 1

Calibration error with different samples’ distribution.

Sample distribution €(Er) €(Ey) €(My2)

(Ny : Nip) (Mean [SD]) (Mean [SD]) (Mean [SD])
40:10 0.0225 [0.0120] 0.0223 [0.0119] 2.07 [1.58] x 1074
10:40 0.0220 [0.0116] 0.0217 [0.0113] 1.97 [1.34] x 1074
25:25 0.0200 [0.0108] 0.0199 [0.0104] 1.64 [1.25] x 104

use the fundamental or essential matrix to estimate E; first, and
then M;) when all calibration samples are given, we compare these
two methods on the simulated data with different ¢ (the standard
variance of Gaussian noise added on X;). This experiment could
also reveal the anti-local-noise ability of both methods.

In [10], E; is computed from the fundamental matrix which is
estimated by eight-point method [18]. In order to improve the per-
formance, we use the five-point algorithm within a RANSAC
scheme [16,17] to generate an initial (Hgl) and also collect inliers.
Since the samples, X* and X¥, are normalized camera coordinates,
we use the algebraic error criteria. Then the iterative algorithm
[13] is applied to estimate H,; by minimizing the algebraic error
subject to rank(H,;) = 2 among all inliers.

We randomly generate 50 samples whose longitude values are
uniformly distributed in [, 7). After the two methods finish esti-
mating, we compute the three kinds of errors with respect to the
groundtruth. For each ¢, we independently run the estimation
for 200 times, and record the mean and standard variance of errors
in Table 2 (‘method 1’ indicates the integrated-parameters optimi-
zation, and ‘method 2’ indicates the ordinal-parameters
optimization).

From this experiment, we can see that the integrated-parame-
ters optimization have better performance than the ordinal-
parameters optimization, especially for larger ¢. When the local
noise is very small, these two methods have similar accuracy. That
is the reason that we use the ordinal-parameters optimization
method in each stage of the proposed framework.

5. Conclusion

In this paper, we have proposed a novel self-calibration frame-
work for spherical rectification model by using dual-PTZ-camera
system. This framework works in an iterative way. In each stage,
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Anti-local-noise abilities.
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€(E2) (Mean [SD])

€(M12) (Mean [SD])

g Optimization method €(E1) (Mean [SD])
0.0001 Method 1 2.01 [1.05] x 1073
Method 2 2.08 [1.10] x 1072
0.001 Method 1 2.03 [1.09] x 1072
Method 2 211 [1.15] x 1072
0.004 Method 1 8.14 [4.02] x 1072
Method 2 9.87 [5.45] x 1072
0.007 Method 1 0.1281 [0.0716]
Method 2 0.2878 [0.1800]
0.01 Method 1 0.1732 [0.1278]
Method 2 0.8462 [0.7122]

2.00 [1.04] x 1073
2.09 [1.07] x 1073

1.96 [1.07] x 1072
2.01 [1.10] x 1072

8.07 [3.99] x 1072
9.82 [5.36] x 1072

0.1232 [0.0725]
0.2843 [0.1817]

0.1707 [0.1286]
0.8432 [0.7313]

1.74 123 x 107
1.79 [1.33] x 107°

1.67 [1.35] x 1074
1.73 [1.37] x 107*

8.00 [6.01] x 1074
8.49 [6.75] x 107*

0.0015 [0.0020]
0.0631 [0.2727]

0.0030 [0.0057]
0.3437 [0.4083]

the system evaluates a distribution of current calibration samples
according to current estimated parameters. In order to make this
distribution to be more uniform, we use the designed camera con-
trol strategy to collect suitable samples, so that the target param-
eters are likely to be refined. We also use a sample removing
mechanism to remove samples which are thought to be outliers.
So the accuracy of estimation can be improved stage by stage.

Since this framework can be performed automatically, it will be
convenient for real application. Furthermore, the sample manage-
ment mechanism and camera control strategy could ensure all cal-
ibration samples are well distributed and have high accuracy, so
the calibration accuracy can be guaranteed. Experimental results
also testify this conclusion.
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