
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014 2983

OSRI: A Rotationally Invariant Binary Descriptor
Xianwei Xu, Lu Tian, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract— Binary descriptors are becoming widely used in
computer vision field because of their high matching efficiency
and low memory requirements. Since conventional approaches,
which first compute a floating-point descriptor then binarize it,
are computationally expensive, some recent efforts have focused
on directly computing binary descriptors from local image
patches. Although these binary descriptors enable a significant
speedup in processing time, their performances usually drop a
lot due to orientation estimation errors and limited description
abilities. To address these issues, we propose a novel binary
descriptor based on the ordinal and spatial information of
regional invariants (OSRIs) over a rotation invariant sampling
pattern. Our main contributions are twofold: 1) each bit in
OSRI is computed based on difference tests of regional invariants
over pairwise sampling-regions instead of difference tests of
pixel intensities commonly used in existing binary descriptors,
which can significantly enhance the discriminative ability and 2)
rotation and illumination changes are handled well by ordering
pixels according to their intensities and gradient orientations,
meanwhile, which is also more reliable than those methods that
resort to a reference orientation for rotation invariance. Besides,
a statistical analysis of discriminative abilities of different parts
in the descriptor is conducted to design a cascade filter which
can reject nonmatching descriptors at early stages by comparing
just a small portion of the whole descriptor, further reducing the
matching time. Extensive experiments on four challenging data
sets (Oxford, 53 Objects, ZuBuD, and Kentucky) show that OSRI
significantly outperforms two state-of-the-art binary descriptors
(FREAK and ORB). The matching performance of OSRI with
only 512 bits is also better than the well-known floating-point
descriptor SIFT (4K bits) and is comparable with the state-of-
the-art floating-point descriptor MROGH (6K bits), while it is
two orders of magnitude faster to match than SIFT and MROGH.

Index Terms— Binary descriptor, rotation invariant, local order
pattern, real-time matching, feature matching.

I. INTRODUCTION

ESTABLISHING visual correspondences based on feature
point descriptors is an essential component of many

computer vision applications, such as image localization [1],
3D reconstruction from photo-collections [2], [3], large-scale
partial-duplicate visual search [4], object recognition [5], [6],

Manuscript received September 7, 2013; revised December 25, 2013 and
March 2, 2014; accepted April 29, 2014. Date of publication May 16,
2014; date of current version June 3, 2014. This work was supported in
part by the National Natural Science Foundation of China under Grant
61225008, Grant 61020106004, and Grant 61373074, in part by the National
Basic Research Program of China under Grant 2014CB349304, in part by
the Ministry of Education of China under Grant 20120002110033, and in
part by the Tsinghua University Initiative Scientific Research Program. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Dimitrios Tzovaras.

The authors are with the Department of Automation, Tsinghua Uni-
versity, Beijing 100084, China (e-mail: xuxw09@mails.tsinghua.edu.cn;
ltian1990@gmail.com; jfeng@tsinghua.edu.cn; jzhou@tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2014.2324824

and panorama stitching [7]. Considering the fast developments
of image acquisition devices and Internet/wireless network,
these applications have to handle explosively increasing data
or run on mobile devices with limited computational capa-
bilities and storage space. This further necessitates that local
descriptors should be discriminative, efficient, and compact.

As is well known to the computer vision community,
the floating-point descriptor SIFT [8] and similar methods
[9]–[12] have been widely accepted as the highest quality
descriptors until now, with high distinctiveness and invariance
to a variety of common image transformations. However, they
still face drawbacks in terms of computation time, memory
usage and matching efficiency, especially for large-scale or
real-time applications. Consequently, there have been many
recent attempts at compacting these floating-point descriptors
to overcome these defects to a certain extent, which can
be grouped into three categories: dimensionality reduction
[9], [13], quantization [14]–[20], binarization [21]–[27]. Even
though these approaches can improve the efficiency of storage
and matching to various degrees, they all need first to compute
the original descriptor then to shorten it, and generally require
a training phase and/or a complex optimization scheme [18],
[24]. The whole process of adopting the above approaches
costs a massive amount of time-consuming computation. Note
that these descriptors are still floating-point in nature even
after being quantized or dimensionally reduced rather than
binarized, and thus cannot be benefited from extremely fast
similarity computation using the Hamming distance. In addi-
tion, all three classes of compacting techniques often result
in matching performance degradation because they are lossy
compression of the original floating-point descriptor.

To address the shortcomings of floating-point descriptors,
recent works have primarily focused on directly computing
binary descriptors from local image patches which require less
storage and enable faster processing. BRIEF [28], ORB [29],
BRISK [30], and FREAK [31] are good examples. Although
these binary descriptors are highly efficient, their matching
performance is still not comparable with best floating point
descriptors. The main reasons can be summarized as:

• Limited distinctiveness. These binary descriptors are usu-
ally built upon a set of pairwise intensity comparisons
where each sample point represents either a single pixel
(e.g. BRIEF, ORB) or a Gaussian blurring of its surround-
ing pixels (e.g. BRISK, FREAK). However, this design
is very sensitive to small disturbance to locations of sam-
ple points. Additionally, pairwise intensity comparisons
capture very limited information of a local image region.

• Unreliable reference orientation. All these binary descrip-
tors rely on a reference orientation estimated from the
local region to achieve rotation invariance. It is very

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2984 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

difficult to estimate the reliable reference orientation,
especially under illumination changes, while the unreli-
able reference orientation is particularly harmful for the
simple sampling schemes used in these binary descriptors
(see Section V-A).

In this paper, a robust binary description framework is
proposed to deal with the aforementioned problems, which has
two essential differences comparing with the existing methods.
Firstly, pairwise irregular subregions, generated by region
division according to the orders of intensity and gradient
orientation of pixels in one or more support regions, are taken
as sampling units. Secondly, binary bits are computed by com-
paring pairwise regional invariants that represent appearance,
shape and spatial geometry properties of subregions. This
framework can capture more discriminative information of a
local image region for feature description. Meanwhile, it is
rotation-invariant without resorting to a reference orientation,
and is also robust to monotonic illumination changes. More-
over, to obtain a compact descriptor, a learning method is used
to select best bits from the raw binary string, leading to the
better matching performance and the lower storage cost. The
selected bits are further organized as a cascade filter so that
non-matching descriptors can be rejected at early stages by
comparing just a small portion of the whole descriptor, further
reducing the matching time.

The proposed binary descriptor is termed as OSRI, namely,
an abbriviatioin of Ordinal and Spatial information of Regional
Invariants. Extensive experiments on four challenging data sets
(Oxford, 53 Objects, ZuBuD, and Kentucky databases) show
that OSRI outperforms the recent binary descriptors (ORB
[29] and FREAK [31]) in terms of matching performance and
efficiency. Compared with the existing state-of-the-art floating-
point descriptors (SIFT [8] and MROGH [12]), OSRI has also
better or comparable matching performance with significantly
lower computational and storage complexity.

The rest of this paper is organized as follows. Section II
gives a brief overview of the related works. Our proposed
descriptor is elaborated in Section III. Analysis of properties of
our descriptor are reported in Section IV. Section V presents
the comparison of our descriptor against the state-of-the-art
methods. Finally, we conclude this paper in Section VI.

II. RELATED WORK

At present, there are two main classes of approaches toward
building a binary descriptor.

A. Binarizing Floating-Point Descriptors

In view of high performance of some floating-point descrip-
tors (e.g. SIFT [8], DAISY [11] and MROGH [12]), many
recent efforts attempted to encode the robust descriptors
into compact binary codes by resorting to hashing tech-
niques. Locality-sensitive hashing (LSH) technique [32] and
its variants [33], [34] are frequently used to find efficient
binary representations of high-dimensional floating-point vec-
tors maintaining their similarity in the new space, such as
[21], [22], [35], [36]. These approaches are realized by first
multiplying description vectors by a projection matrix and then

thresholding the vectors to binary strings. Moreover, Linear
Discriminant Analysis [24], K-means Hashing [25], Random
Forest Hashing [26], Bilinear Projections [27], Nonlinear
Neighborhood Component Analysis [37], Iterative Quantiza-
tion [38], and Hamming Embedding [19] are also used for
binarizing a floating point descriptor. However, the appropriate
choice of hashing function is less well understood, whilst all
these approaches are computationally expensive because the
original floating-point descriptor must be computed before
the hashing can occur, generally accompanying matching
performance degradation due to the limitation of their lossy
compression.

B. Directly Computing Binary Descriptors

As the necessity of first computing the full descriptor before
further binarizing is a bottleneck for many large-scale or
real-time applications, some researchers have paid increasing
attention to directly computing binary descriptors from local
image patches.

Calonder et al. [28] presented a simple method to directly
build a binary descriptor (BRIEF) in which each bit is inde-
pendently obtained by comparing the intensities of a pair of
sample points. Notwithstanding with the lowest requirements
for computation and storage, BRIEF has the notable defect in
lack of rotation invariance. Therefore, Rublee et al. [29] pro-
posed the Oriented Fast and Rotated BRIEF (ORB) descriptor,
which is invariant to rotation changes and robust to noise.
Meanwhile, ORB chooses a good subset of binary tests by
a learning method that reduces correlation among the binary
tests, improving the performance and scalability. Leutenegger
et al. [30] also developed a binary descriptor called BRISK
that is invariant to scale and rotation transformations. It turns
away from the random sampling pattern of BRIEF, instead, and
uses a symmetric sampling pattern in which each sample point
represents a Gaussian blurring of its surrounding pixels. To
gain more compact and robust performance, Alahi et al. [31]
proposed a descriptor inspired by the human visual system
recently, called Fast Retina Keypoint (FREAK). A cascade
of binary strings is computed by efficiently comparing image
intensities over a retinal sampling pattern.

We found that all the binary descriptors are built upon
a set of pairwise intensity comparisons and resort to a
reference orientation for rotation invariance. On one hand,
pairwise intensity comparison is very sensitive to localization
errors of sample points. On the other hand, dependence on
a reference orientation can degrade matching performance
(see Section V-A). As a result, these binary descriptors show
lower description power than their floating-point competitors
(e.g. SIFT, MROGH).

Recently, there are also some works to directly learn a com-
pact descriptor from a local image patch [39]–[41]. However,
the performance of those approaches depends on the training
data sets, whilst those descriptors still require a reference
orientation for rotation invariance.

III. METHOD

Suppose interest/support regions for feature descrip-
tion have been detected based on SIFT detector [8] or

XU et al.: ROTATIONALLY INVARIANT BINARY DESCRIPTOR 2985

Fig. 1. The workflow of constructing OSRI descriptor at the offline learning stage. At the online testing stage, only the compact binary descriptor needs to
be computed.

Hessian/Harris-Affine detector [42]. Since the detected regions
usually have different sizes and shapes, they are normalized
to circular regions of a fixed radius for computing description
vectors (please see [9] for normalizing interest regions).

The workflow of constructing the proposed OSRI descriptor
is shown in Fig. 1, which involves four key steps: 1) rotation
invariant sampling design for dividing a support region into a
set of subregions, 2) binary description based on comparing
high-level invariants in pairwise subregions, 3) learning com-
pact binary codes from the lengthy bit-vector, and 4) cascade
filtering design for speeding up matching. In the rest of this
section, four steps will be described in details.

A. Sampling Pattern Based on Region Division

In the process of building OSRI, the first step is to produce
many regional sampling-units (pairwise irregular subregions)
for computing binary bits. These subregions should not only be
rotation invariant without resorting to a reference orientation,
but also contain rich information of appearance, shape and
spatial geometry. In view of this, we propose an improved
region dividing strategy based on the method in [12] with
two main differences. Firstly, we use two types of information
with complementary properties (intensity orders and gradient
direction orders) for region division, which is more robust to
noise while containing more appearance, shape, and spatial
characteristics than by using either of two types of information
separately (see Fig. 2). Secondly, we utilize circular-shift
operation to group all pixels in different ways, which enables
us to obtain more sampling units in a given support region
for feature description. Moreover, our sampling pattern is also

Fig. 2. The average performance of the proposed OSRI descriptor with
three different methods of region division on the Oxford data set. OSRI-I,
OSRI-GO, and OSRI-I+GO denote the corresponding OSRI with region divi-
sion based on intensity orders, gradient direction orders, and the combination
of the two respectively, in the settings of N = 1, K = 4, ku = kv = 6, and
raw binary bits.

robust to monotonic illumination changes. Fig. 3 provides
an illustration of our region division method in which each
group/subregion is marked with a different color.

Suppose a support region � with all n pixels is denoted by
R = {X1, X2, . . . , Xn}, I (Xi) is the intensity of pixel Xi , and
θ(Xi) is the gradient direction of Xi in a rotation invariant
coordinate system1 [12], where θ(·) is in the range of [0, 2π).

1Let P denote the center of the support region. −−→
P Xi is the y-axis of this

coordinate system.

2986 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

Fig. 3. The illustration of region division based on intensity orders. We utilize
circular-shift operation to group all pixels in different ways, which can yield
a set of pairwise subregions for computing a binary string. The procedure of
region division based on gradient direction orders is similar.

Let K be the number of times that RI (or RG) is partitioned by
circular-shift operation. Our aim is to divide R into ku and kv

subregions according to the intensity orders and the gradient
direction orders of all pixels in each circular-shift operation
respectively. First, all pixels in R are sorted by their intensities
and gradient directions in nondescending order respectively,
and two sets of sorted pixels are obtained as

RI = {X f1, X f2 , . . . , X fn : I (X f1)

≤ I (X f2) ≤ · · · ≤ I (X fn)}, (1)

RG = {Xg1, Xg2 , . . . , Xgn : θ(Xg1)

≤ θ(Xg2) ≤ · · · ≤ θ(Xgn)}, (2)

where f1, f2, . . . , fn and g1, g2, . . . , gn are two different
permutations of 1, 2, . . . , n . Then, we can take (ku + 1) × K
intensities from RI and (kv + 1)× K gradient directions from
RG as follows:

I
s
i = I (X fus

i
) : I

s
0 ≤ I

s
1 ≤ · · · ≤ I

s
ku

, (3)

�t
j = θ(Xgvt

j
) : �t

0 ≤ �t
1 ≤ · · · ≤ �t

kv
, (4)

where

us
i =

⎧
⎨

⎩

⌈
n

ku
i

⌉

+
⌈

n

ku

⌉

× s − 1

K
, i �= 0 ∨ s �= 1,

1, i = 0 ∧ s = 1,

(5)

v t
j =

⎧
⎨

⎩

⌈
n

kv
j

⌉

+
⌈

n

kv

⌉

× t − 1

K
, j �= 0 ∨ t �= 1,

1, j = 0 ∧ t = 1,

(6)

where i = 1, 2, . . . , ku, s = 1, 2, . . . , K , j = 1, 2, . . . , kv ,
t = 1, 2, . . . , K . Finally, RI and RG are respectively

Fig. 4. The workflow of our proposed method in the multiple support regions
framework. Each ellipse corresponds to the boundary of one support region.
Suppose that the detected region is taken as the minimal support region whose
radius is r . The radius of the other support regions are defined as ri = i · r ,
i = 2, 3, . . . , N .

partitioned into ku × K and kv × K groups as

Rs
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{

Xm

∣
∣
∣
∣I

s
i−1 ≤ I (Xm) ≤ I

s
i+1

}

, i = 1, 2, . . . , ku − 1,

RI −
ku−1⋃

k=1

Rs
k, i = ku,

(7)

Rt
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{

Xl

∣
∣
∣
∣�

t
j−1 ≤ θ(Xl) ≤ �t

j+1

}

, j = 1, 2, . . . , kv − 1,

RG −
kv −1⋃

k=1

Rt
k, j = kv .

(8)

It has been shown in [12] and [43] that multiple support
regions of different sizes can provide more discriminative
information to handle the mismatching problem better than a
single support region. Therefore, multiple support regions are
also used for constructing our descriptor to further improve its
discriminative ability (see Fig. 4 for the scheme of using mul-
tiple support regions and Fig. 11 for the matching performance
of different numbers of support regions).

B. Computing Raw Binary Descriptor

After subregion division, the following step is to build
regional invariants and compare them to produce binary bits.
We notice that the corresponding subregions tend to be similar
in appearance, shape and spatial geometry properties between
matching interest regions, while tend to be dissimilar between
non-matching interest regions. Therefore, the built invariants
should be able to not only tolerate detection errors and
monotonic illumination changes, but also capture these local
cues for a rich description. In view of this, we design the
following three types of regional invariants: moment invari-
ants, invariants of spatial distribution of pixels, and spatial
order invariants of the geometric centroids of subregions
(summarized in Table I).

1) Extracting Regional Invariants:
a) Moment invariants: Since moment invariants can cap-

ture appearance and shape characteristics of an image region,
we use two algebraic moment invariants (intensity variance
and gradient magnitude variance) to represent appearance
characteristics of subregions, and utilize several geometric

XU et al.: ROTATIONALLY INVARIANT BINARY DESCRIPTOR 2987

TABLE I

STATISTICAL INVARIANTS USED IN OUR DESCRIPTOR

moment2 invariants (seven Hu moment invariants [44]) to
embody shape information of subregions. The moment invari-
ants are shown in Table I where the normalized central moment
ηpq is defined as

ηpq = μpq

μ
γ
00

, γ = p + q

2
+ 1, (9)

where

μpq =
∫∫

�
(x − x)p(y − y)q I (x, y) d(x − x) d(y − y)

(10)

x = m10/m00, y = m01/m00, (11)

m pq =
∫∫

�
x p yq I (x, y) dx dy, p, q = 0, 1, 2, . . . , (12)

where � is a subregion, I (x, y) is the intensity of pixel in
(x, y). Note that we normalize I (X) (X ∈ {

X
∣
∣I (X f1) ≤

I (X) ≤ I
s
0

∧
X ∈ RI

}
) as I (X)+ I

s
ku −1 − I

s
0 when computing

the intensity variance of Rs
ku

group.
b) The invariants of spatial distribution of pixels: To

capture the spatial distribution information of pixels in each
subregion, we first divide the support region into several
concentric rings of equal space, then build a normalized
histogram based on the spatial distribution of each subregion
in the concentric rings. As shown in Fig. 5, each bin of the
histogram can be computed as

�ij = 1

2 j − 1

∣
∣
{
(x, y) | (x, y) ∈ SubRi & (x, y) ∈ O j

} ∣
∣,

(13)

2The reason for considering geometric invariance is that there is an unknown
rotation between matching regions even after interest-region normalization.

Fig. 5. The normalized histogram based on the spatial distribution of each
subregion in the concentric rings.

where (x, y) is a pixel, | · | is the cardinality of a set, SubRi is
the i th subregion, O j denotes the j th (j = 1, 2, 3.) concentric
ring in a support region.

c) The spatial order invariants of geometric centroids
of subregions: For two matching interest regions, the spatial
geometric relationship of their subregions should be similar;
on the contrary, they should be dissimilar between non-
matching interest regions. So we utilize the spatial order of
regional geometric centroids to reveal the spatial geometric
information.

For each subregion, the geometric centroid can be computed
according to Eq. (14) and (15)

C =
(

m10

m00
,

m01

m00

)

, (14)

where
m pq =

∑

x,y

x p yq . (15)

As shown in Fig. 7, the k centroids are denoted by C(Pi) =
{C1, C2, . . . , Ck}. Let the direction of

−−→
Pi C1 connecting Pi and

C1 be 0◦, θ−−→
Pi Cl

∈ [0, 2π), l = 1, 2, . . . , k, is taken as the

relative direction angle between
−−→
Pi Cl and

−−→
Pi C1 anticlockwise.

For a pair of matching keypoints, θ−−→
Pi Cl

is a discriminative
invariant. However, the geometric centroid is unstable when
the corresponding subregion is approximately centrosymmetric
with respect to the center of support region, such as C4 and
C6 in Fig. 7. To tackle the problem, we compute θ−−→

Pi C ′
l

instead

of θ−−→
Pi Cl

based on the geometric centroids C ′
l of the maximal

connected components in all subregions. As can be seen in
Fig. 7, it is obvious that this improvement is very effective.

2) Computing the Binary String:
Suppose that we have obtained the above different types of

invariants adding up to 11 invariants (as shown in Table I) for
each subregion in every support region. The sets of different
types of invariants are denoted respectively by:

V1 =
{

V 1
11, . . . , V 1

i j , . . . , V 1
nk

}
, (16)

V2 =
{

V 2
11, . . . , V 2

i j , . . . , V 2
km

}
, (17)

V3 =
{

V 3
1 , . . . , V 3

l , . . . , V 3
k

}
, (18)

where V 1
i j is the i th moment invariant computed for the j th

subregion, V 2
i j = �i j , V 3

l = θ−−→
Pi C ′

l
, n = 9, k is the number of

2988 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

Fig. 6. Distributions of Hamming distances of 4 parts of the OSRI for matching interest points (green lines) and for non-matching interest points (red lines).
We extract all ground-truth matching points and equal number of non-matching points from Oxford data set.

Fig. 7. Geometric centroids cl of 6 subregions and Geometric centroids
c′
l of maximal connected components (MCC) in the subregions for two

matching regions. The orderings of c′
l are consistent between the two matching

keypoints, while the orderings of cl are inconsistent.

subregions, m is the number of concentric rings. The sets of
different types of pairwise invariants are as follows:

A1 =
{
(V 1

is , V 1
it)|V 1

is ∈ V1 ∧ V 1
it ∈ V1 ∧ s �= t

}
, (19)

A2 =
{
(V 2

is , V 2
j t)|V 2

is ∈ V2 ∧ V 2
j t ∈ V2 ∧ (i �= j ∨ s �= t)

}
,

(20)

A3 =
{
(V 3

i , V 3
j)|V 3

i ∈ V3 ∧ V 3
j ∈ V3 ∧ i �= j

}
. (21)

We construct our bit-vector descriptor by performing all the
comparisons between pairwise invariants (Vu, Vv) ∈ Am ,
m = 1, 2, 3, such that each bit b corresponds to:

b =
{

1 if ∀(Vu, Vv) ∈ Am, Vu > Vv ,

0 otherwise.
(22)

C. Learning a Compact Binary Descriptor

The raw descriptor is a lengthy bit-vector (21576 = 2256+
7896+10296+1128 bits) generated by comparing all possible
pairwise subregions in a support region. Intuitively, there are
many redundant bits that are not effective to describe the
support region. To reduce correlation among the binary tests,
the authors of ORB [29] and FREAK [31] collect many
descriptors and organize them as a matrix where the row is
viewed as training data and the column as features. Then a
greedy forward feature selection is performed to select the
least correlated columns. This is actually an unsupervised

Fig. 8. The flowchart of our cascade filtering.

learning technique. In this paper, we adopt this algorithm to
select most discriminative d bits from the raw OSRI based on
the PASCAL VOC Challenge 2007 data set.

D. Cascade Filtering for Speeding up Matching

The learned d bits descriptor OSRI are from 4 differ-
ent categories of pairwise invariants (aMI, gMI, pSDI, and
gcSOI) explained in Table I. Formally, we denote by f the
d–dimensional feature vector and by fi , i = 1, ..., 4 the
4 categories, where f = f1 f2 f3 f4. In the learned OSRI
(N = 1, d = 512), | f1| = 186, | f2| = 158, | f3| = 129,
| f4| = 39. The statistical results in Fig. 6 show that all 4 parts
of the OSRI have comparable and high discriminating power.
Considering this fact, we resort to the cascade structure [45]
to speed up the descriptor matching process, which can make
the non-match decision without revealing all the 512 bits.

In Fig. 8 we give the flowchart of the cascade filtering.
At the k-th stage Sk (k = 1, 2, 3, 4), one of fi is revealed,
denoted by Sk : fi . Then we calculate the accumulative
Hamming distance hk up to the k-th stage and compare it
with a threshold Tk . We allow jumping out if hk > Tk .
Intuitively, we should place more discriminant fi at earlier
stages. However we experimentally observe that there is no
distinct differences in the discriminative power among the 4
parts of bits (see Fig. 6). Considering computational efficiency,
we design the order of cascade filtering according to the size
of the 4 parts. The threshold Tk is set by letting all the positive
training examples pass stage Sk (i.e., 0% False Negative Rate,
in this paper, T1 = 30, T2 = 85, T3 = 161, T4 = 203).

IV. ANALYSIS

In this section, we analyze the influence of various para-
meter settings in the OSRI on the matching performance.
Five key parameters (i.e. the number of subregions ku and

XU et al.: ROTATIONALLY INVARIANT BINARY DESCRIPTOR 2989

TABLE II

PARAMETER SETTINGS OF THE DETECTOR AND THE FIVE DESCRIPTORS

TABLE III

PARAMETERS OF THE PROPOSED DESCRIPTORS

kv , the frequency of circular-shift operation K , the number of
support regions N , and the learned dimensions of OSRI d3)
are evaluated to test their influence. For the remaining para-
meters, the empirically determined values are provided in the
text where they first appear.

For each parameter, we conduct image matching exper-
iments with the corresponding setting values as listed in
Table III (other parameters are set as the optimal values) on
the Oxford data set. The evaluation procedure is the same
as that of Section V-B.1. The average recall versus average
1-precision curve is used to show the matching performance.
The matching strategy used here is the nearest neighbor
distance ratio [9]. Note that we evaluate ku (or kv) by merely
using region division based on intensity (or gradient orienta-
tion) orders for feature description.

It can be seen from Fig. 9 that the parameters ku and kv

show the same changing trend in the influence on the match-
ing performance. Intuitively, the larger ku and kv , the more
pairwise sample patches, which can provide more information
for feature description. However, when the sample patches
are too small, the descriptor will be sensitive to the pixel
location errors. This explains why OSRI performs the best
at the parameter setting of ku = 6 and kv = 6 rather than
ku = 8 and kv = 8. In addition, we can observe from Fig. 9
that OSRI is not sensitive to the changes of parameters ku and
kv , especially in high precision region.

Fig. 10 shows the influence on the matching performance
with different setting values of parameter K . Intuitively, the
larger K , the more subregions, which can provide more
sampling units for computing binary bits. However, the

3In the OSRI, N and d are independent. However, d = ⋃N
i=1 di in the

MROGH, where di is the dimensionality in i th support region. In addition, we
denote OSRIN=i (128/256/512/768/1024/2048 bits), ORB (256 bits), FREAK
(512 bits), SIFT (128–D floating point), and MROGHN=i (i × 48–D floating
point) by OSRIN=i –4/8/16/24/32/64, ORB–8, FREAK–16, SIFT–128, and
MROGHN=i –48 × i , respectively, where i = 1, 2, 3, 4.

Fig. 9. The average performance of the proposed descriptor with different
setting values of parameters ku and kv on Oxford data set.

Fig. 10. The average performance comparison under different frequencies
of circular-shift operation on Oxford data set.

larger K , the smaller the difference between two neighboring
subregions, which will add more redundancy. This explains
why OSRI performs the best at K = 4 rather than K = 6.
Meanwhile, similar to ku and kv , OSRI is also not sensitive
to the changes of K , especially in high precision region.

As shown in Fig. 11, OSRI has better performance of build-
ing upon multi-support regions than a single support region
under the same dimensionality. However, we also observe that
there are no significant differences in the discriminative power
at different settings of N = 2, 3, 4, especially for N = 3 and
N = 4. Considering computational efficiency, we can use two
or three support regions to build OSRI for different vision
tasks. While we are also surprised to find that a single support
region similarly shows competitive performance, especially in
high precision region.

2990 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

Fig. 11. The average performance comparison between multisupport regions
and a single support region for OSRI description on Oxford data set.

Fig. 12. The average performance comparison among OSRI with different
dimensions and the state-of-the-art descriptors on Oxford data set.

Finally, we evaluate the influence of different dimensionality
on the matching performance of OSRI, given certain N . The
experimental results in Fig. 12 show that the higher dimension-
ality, the higher distinctiveness. Under the same dimensional-
ity, OSRIN=1–8 and OSRIN=1–16 significantly perform better
than its binary competitors (ORB–8 and FREAK–16) respec-
tively. Meanwhile, OSRIN=1–8 is comparable to SIFT–128
and MROGHN=1–48, however, OSRIN=1–16 evidently out-
performs them. In addition, OSRIN=3–24 is comparable to
MROGHN=4–192, however, OSRIN=3–32 is already better
than it.

V. EXPERIMENTS

To evaluate the proposed descriptor, we design the follow-
ing four groups of experiments, using several state-of-the-art
descriptors (floating-point: SIFT [8] and MROGH [12], binary:
ORB [29] and FREAK [31]) as a baseline:
� Reliability evaluation of rotation invariance. We assess

the reliability of rotation invariance designs of different
methods.

� Image matching. We compare our descriptor with several
competing descriptors in the matching performance.

� Object recognition. We conduct experiments on object
recognition to further show the effectiveness and versa-
tility of the proposed descriptor.

� Computational costs and storage requirements. We com-
pare extraction and matching costs and storage require-
ments of different descriptors.

For the fairness and effectiveness of comparisons, we use
the Hessian-Affine [46] detector which is more robust to
complex image transformations for all descriptors on four
challenging real-world data sets (Oxford, 53 Objects, ZuBuD,
and Kentucky) in our experiments. For the sake of consistency
with results presented in other works, the implementations of
different descriptors are as follows: ORB and FREAK are pro-
vided with the OpenCV library4; two publicly available SIFT
implementations can be used from Rob Hess5 and Andrea
Vedaldi6 (the former is used for our experiment); MROGH7

and Hessian-Affine8 were obtained from the authors. To enable
the replication of our experimental results, the details of
parameter settings are listed in Table II.

A. Reliability Evaluation of Rotation Invariance

To achieve rotation invariance, many floating-point descrip-
tors and binary descriptors (such as BRISK, ORB, and
FREAK) all resort to an estimated orientation to design their
respective sampling patterns. Fan et al. [12], however, have
experimentally proven that the orientation estimation of SIFT
descriptor is an error-prone process, which makes many true
matches missed due to the estimation errors. In this study,
we find that the orientation estimation error9 results in the
matching performance degradation for ORB (the orientation
is estimated using the intensity centroid) and FREAK (several
long-distance pairwise sampling-points with symmetric recep-
tive fields with respect to the center are utilized to estimate an
orientation), based on the Oxford data set shown in Fig. 15.

As shown in Fig. 13, for ORB and FREAK, only 75.62 and
71.84 percent of corresponding points (ground-truth matching
points can be determined by the given homography H between
two images) have orientation estimation errors in the range
of [−20◦, 20◦] (defined as ≤ 20◦ in this paper) respectively.
In other words, 24.38 and 28.16 percent of ground-truth
matching points may not be recalled by comparing their
descriptors, mainly due to their large orientation estimation
errors out of the range of [−20◦, 20◦] (defined as > 20◦ in this
paper). In conclusion, the designs that resort to an estimated
orientation for rotation invariance are unreliable and may result
in matching performance degradation for a descriptor.

4http://sourceforge.net/projects/opencvlibrary/
5http://blogs.oregonstate.edu/hess/
6http://www.vlfeat.org/˜vedaldi/code/siftpp.html [47]
7http://vision.ia.ac.cn/Students/bfan/index.htm
8http://www.robots.ox.ac.uk/˜vgg/research/affine/
9For a pair of matching points (x, y, θ) and (x ′, y′, θ ′), the orientation

estimation error εθ = θ ′ − �(θ; H) where �(θ; H) is the ground-truth
orientation of θ by warping the first image to the second image according
to the homography H between the two images.

XU et al.: ROTATIONALLY INVARIANT BINARY DESCRIPTOR 2991

Fig. 13. Distributions of the orientation estimation errors among feature correspondences. FREAK:(a) and ORB:(a) are the distributions among all ground-
truth corresponding points based on FREAK and ORB descriptors respectively. FREAK:(b) and ORB:(b) are the distributions among true matching points by
comparing their descriptors respectively (for each interest point, we take its nearest neighbor as the matching point).

Fig. 14. Matching results of two types of true corresponding points which have orientation estimation errors (≤ 20◦) and (> 20◦) by the orientation estimation
methods of ORB (a1 and a2) and FREAK (b1 and b2) respectively.

Compared with ORB and FREAK (see Fig. 14), the
proposed descriptor (OSRI) can recall more effectively the
missing true matches whose orientation estimation errors are
greater than 20◦ by the orientation estimation method of either
ORB or FREAK. Meanwhile, OSRI has also an excellent
performance in recalling the correct correspondences whose
orientation estimation errors are less than 20◦.

B. Image Matching

1) Data Sets: To ensure the compatibility of our work
with existing analyses, we conduct image matching exper-
iments on the Oxford data set8 which is widely used for
evaluating the matching performance of local descriptors
[8], [9], [12], [30], [31], [48]. This data set contains a set of
benchmark image sequences depicted in Fig. 15 with different
geometric and photometric transformations of structured and
textured scenes, which are viewpoint changes (Graffiti and
Wall), zoom+rotation changes (Bark and Boat), image blur
(Bikes and Trees), illumination changes (Leuven) and JPEG
compression (Ubc). The first image in each category is treated
as the model image, and the others are the correspond-
ing warped images. Moreover, the ground-truth homography
matrix between the model image and each warped image is
also given.

2) Evaluation Criterion: We follow the evaluation proce-
dure in [9] to plot the recall versus 1-precision curves. The
definitions of recall and 1-precision are as follows:

recall = #correct matches

#correspondences
,

1 − precision = # f alse matches

putative matches

Fig. 15. Image sequences in the Oxford dataset used in our experiments.
Each sequence contains six images that are sorted in ascending difficulty,
corresponding index of 1 to 6. Hence we consider five image pairs per
sequence by matching the first one against the other images. See text for
details.

where the number of correct matches and correspondences
(ground-truth matches) is determined with the overlap error
[46] (i.e. ζs = 1 − (A ∩ H T B H)/(A ∪ H T B H), where

2992 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

Fig. 16. Experimental results under various image transformations in the Oxford data set for Hessian-Affine detector.

A and B are the detected/interest regions and H is the
homography between the images). A match is correct if the
overlap error is less than 50%. A putative match is defined
as a single pair of keypoints/interest-regions whose descrip-

tors meet the matching measure, and a keypoint cannot be
matched to more than one keypoint. The set of correct matches
is the intersection of putative matches and ground-truth
matches.

XU et al.: ROTATIONALLY INVARIANT BINARY DESCRIPTOR 2993

Fig. 17. Some example images of 53 objects, ZuBuD, and Kentucky data
sets. More details in the text.

3) Results and Analysis: As shown in Fig. 16, OSRIN=3–
32 performs the best in all types of image deformations,
meanwhile, OSRIN=3–32 and OSRIN=3–16 all shows a clear
advantage comparing with its binary competitors and SIFT.
It is also worth noting that OSRIN=3–32 has an outstanding
performance in both high precision region and high recall
region. For instance, 91.6% of tested images rank OSRI as
the best descriptor at precisions (≥ 0.95), while all test images
rank OSRI as the best in the high recall region.

C. Object Recognition

1) Data Sets: We also conduct object recognition exper-
iments on three publicly available real-world data sets for
different descriptors: i) 53 Objects10, which contains 53
objects with five images taken from different viewpoints for
each object; ii) ZuBuD10, which has 1005 images of 201
buildings of historical or architectural interest in Zurich (five
different images were taken for each building from different
viewpoints); iii) Kentucky11, which contains 10200 images
of 2550 objects (CDs, flowers, household objects, keyboards,
etc.) where each object has exactly four images. For the sake
of fair comparison with [12], we also select the first 4,000
images (1,000 objects) from the Kentucky in our experiments.
Please see Fig. 17 for some example images of each data set.

2) Evaluation Criterion: Suppose that IQ is query image
and IF is reference image. Let { f Q

1 , f Q
2 , . . . , f Q

m } and

10http://www.vision.ee.ethz.ch/datasets/
11http://www.vis.uky.edu/˜stewe/ukbench/

TABLE IV

OBJECT RECOGNITION RESULTS ON THE THREE DATASETS (DA∗) WITH

DIFFERENT LOCAL DESCRIPTORS (DE∗)

{ f F
1 , f F

2 , . . . , f F
n } be two sets of feature descriptors extracted

from IQ and IF respectively. Similar to [12], the similarity
between IQ and IF is defined as

Sim
(
IQ , IF

) =
∑

i, j �(f Q
i , f F

j)

m × n
, (23)

where

�(f Q
i , f F

j) =
{

1 if dist
(

f Q
i , f F

j

)
≤ T

0 otherwise,
(24)

in which dist
(

f Q
i , f F

j

)
is the Euclidean distance of f Q

i and

f F
j , and T is a threshold which is set to provide the best result

for each evaluated descriptor. The evaluation criterion depends
merely on the the distinctiveness of the local descriptor.

3) Results and Analysis: For each image, we calculate its
similarities to the remaining images in the corresponding data
set, and return either the top four images (for 53 Objects
and ZuBuD) or the top three ones (for Kentucky) with the
largest similarities. We define the number of correctly returned
images/the total number of returned images as the recognition
accuracy. Table IV shows the recognition results. Compared
with SIFT–128, ORB–8 and FREAK–16, OSRIN=1–16 and
OSRIN=4–16 all impressively outperform them a lot in recog-
nition accuracy, especially OSRIN=4–16. Meanwhile, they
also outperform MROGHN=1–48 and MROGHN=4–192 on
two (ZuBuD and Kentucky) of the three data sets respectively.

D. Computational Costs and Storage Requirements

A descriptor should not only exhibit the best possible match-
ing performance but also be as efficient in computation and
storage as possible when computational and storage resources
are paid much attention in practice. Table V gives timing
results measured on an Intel Core2 CPU/2.40GHz using a
single core and storage requirements for different descriptors.
Although OSRI is slower than ORB and FREAK in the
description phase, it is comparable to SIFT and MROGH.
The comparison of matching times shows a clear advantage
of OSRI over all the other four descriptors. Meanwhile, all
binary descriptors have lower storage requirements than SIFT
and MROGH.

2994 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

TABLE V

COMPUTATION COSTS AND STORAGE REQUIREMENTS OF DIFFERENT

DESCRIPTORS. WE RANDOMLY SELECT 100 PAIRWISE IMAGES FROM

ZuBuD DATA SET TO ESTIMATE THE MEAN TIME COST OF DESCRIBING

AND MATCHING A SINGLE DESCRIPTOR. FOR EACH DESCRIPTION

METHOD, A TOTAL OF 106,055 DESCRIPTION VECTORS ARE BUILT, AND

28,051,457 MATCHING OPERATIONS ARE CONDUCTED. STORAGE

REQUIREMENT CORRESPONDS TO THE MEMORY FOOTPRINT

OF A SINGLE DESCRIPTOR.

VI. CONCLUSION

In this paper, we present a novel method of directly comput-
ing a binary descriptor. The key idea is to utilize the ordinal
and spatial information of regional invariants to provide more
discriminative description over a rotation invariant sampling
pattern. The important properties of our method include:

• Our binary descriptor is computed by comparing discrim-
inative regional invariants over rotation invariant sample
patches, rather than by comparing smoothed intensities at
sample points which is a popular method used in existing
binary descriptors.

• We develop a novel sampling pattern to extract a set of
pairwise sample patches for pooling our binary descrip-
tor, which is inherently rotation invariant without resort-
ing to a reference orientation for rotation invariance,
while being robust to monotonic illumination changes.

• We utilize a learning method to select the best bits for
building a compact descriptor. Moreover, we design an
effective cascade filter to reject non-matching descriptors
at early stages by comparing just a small portion of the
whole descriptor.

Our method (OSRI) gains good results by pooling the
spatial, shape and appearance properties of subregions over
a rotation invariant sampling pattern. Extensive experiments
on the challenging data sets show that OSRI achieves better
matching performance than state-of-the-art binary descriptors
(ORB and FREAK), whilst performing similarly to the best
floating-point descriptor MROGH at a fraction of the matching
time (two orders of magnitude faster than MROGH) and mem-
ory footprint (64 bytes vs. 768 bytes). It is worth mentioning
that ORSI is also three times faster to match than ORB and
FREAK in the same dimensionality due to its cascade filtering
design.

REFERENCES

[1] A. R. Zamir and M. Shah, “Accurate image localization based on
Google maps street view,” in Proc. Eur. Conf. Comput. Vis., 2010,
pp. 255–268.

[2] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism:
Exploring photo collections in 3D,” ACM Trans. Graph., vol. 25, no. 3,
pp. 835–846, 2006.

[3] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building Rome in a day,” in Proc. 12th IEEE Int. Conf. Comput. Vis.,
Sep./Oct. 2009, pp. 72–79.

[4] S. Zhang, Q. Tian, K. Lu, Q. Huang, and W. Gao, “Edge-SIFT:
Discriminative binary descriptor for scalable partial-duplicate mobile
search,” IEEE Trans. Image Process., vol. 18, no. 8, pp. 799–813,
Jul. 2013.

[5] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. CVPR, Jul. 2006, pp. 2161–2168.

[6] G. Takacs et al., “Outdoors augmented reality on mobile phone
using loxel-based visual feature organization,” in Proc. ACM Int. Conf.
Multimedia Inform. Retr., Oct. 2008, pp. 427–434.

[7] M. Brown and D. G. Lowe, “Automatic panoramic image stitching
using invariant features,” Int. J. Comput. Vis., vol. 74, no. 1, pp. 59–73,
2007.

[8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[9] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[11] E. Tola, V. Lepetit, and P. Fua, “DAISY: An Efficient dense descriptor
applied to wide-baseline stereo,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 5, pp. 815–830, May 2010.

[12] B. Fan, F. Wu, and Z. Hu, “Rotationally invariant descriptors using
intensity order pooling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 10, pp. 2031–2045, Oct. 2012.

[13] G. Hua, M. Brown, and S. Winder, “Discriminant embedding for
local image descriptors,” in Proc. 11th IEEE Int. Conf. Comput. Vis.,
Oct. 2007, pp. 1–8.

[14] T. Tuytelaars and C. Schmid, “Vector quantizing feature space with a
regular lattice,” in Proc. 11th IEEE Int. Conf. Comput. Vis., Oct. 2007,
pp. 1–8.

[15] S. Winder, G. Hua, and M. Brown, “Picking the best DAISY,” in Proc.
IEEE Conf. CVPR, Jun. 2009, pp. 178–185.

[16] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk,
and B. Girod, “CHoG: Compressed histogram of gradients a low
bit-rate feature descriptor,” in Proc. IEEE Conf. CVPR, Jun. 2009,
pp. 2504–2511.

[17] H. Jegou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in Proc. IEEE Conf.
CVPR, Jun. 2010, pp. 3304–3311.

[18] M. Brown, G. Hua, and S. Winder, “Discriminative learning of local
image descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 1, pp. 43–57, Jan. 2011.

[19] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[20] J. He et al., “Mobile product search with bag of hash bits
and boundary reranking,” in Proc. IEEE Conf. CVPR, Jun. 2012,
pp. 3005–3012.

[21] G. Shakhnarovich, “Learning task-specific similarity,” Ph.D. dissertation,
Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol.,
Cambridge, MA, USA, 2005.

[22] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in Proc. IEEE Conf. CVPR, Jun. 2008,
pp. 1–8.

[23] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-features
for large scale image search,” Int. J. Comput. Vis., vol. 87, no. 3,
pp. 316–336, 2010.

[24] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua, “LDAHash:
Improved matching with smaller descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 1, pp. 66–78, Jan. 2012.

[25] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc. IEEE
Conf. CVPR, Jun. 2013, pp. 2938–2945.

[26] X. Li, C. Shen, A. Dick, and A. van den Hengel, “Learning compact
binary codes for visual tracking,” in Proc. IEEE Conf. CVPR, Jun. 2013,
pp. 2419–2426.

[27] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik, “Learning binary
codes for high-dimensional data using bilinear projections,” in Proc.
IEEE Conf. CVPR, Jun. 2013, pp. 484–491.

[28] M. Calonder, V. Lepetit, M. Özuysal, T. Trzcinski, C. Strecha, and
P. Fua, “BRIEF: Computing a local binary descriptor very fast,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1281–1298,
Jul. 2012.

XU et al.: ROTATIONALLY INVARIANT BINARY DESCRIPTOR 2995

[29] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 2564–2571.

[30] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 2548–2555.

[31] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina
keypoint,” in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 510–517.

[32] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. Int. Conf. VLDB, Sep. 1999,
pp. 518–529.

[33] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: Self-tuning indexes
for similarity search,” in Proc. 14th Int. Conf. WWW, May 2005,
pp. 651–660.

[34] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, pp. 117–122, 2008.

[35] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Proc. Adv. NIPS, 2009, pp. 1509–1517.

[36] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. Adv. NIPS, 2009, pp. 1042–1050.

[37] R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear embedding
by preserving class neighbourhood structure,” in Proc. Int. Conf. Artif.
Intell. Statist., 2007, pp. 412–419.

[38] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Proc. IEEE Conf. CVPR,
Jun. 2011, pp. 817–824.

[39] T. Trzcinski and V. Lepetit, “Efficient discriminative projections for
compact binary descriptors,” in Proc. Eur. Conf. Comput. Vis., 2012,
pp. 228–242.

[40] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua, “Learning
image descriptors with the boosting-trick,” in Proc. Adv. NIPS, 2012,
pp. 278–286.

[41] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, “Boosting
binary keypoint descriptors,” in Proc. IEEE Conf. CVPR, Jun. 2013,
pp. 2874–2881.

[42] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” Int. J. Comput. Vis., vol. 60, no. 1, pp. 63–86, 2004.

[43] H. Cheng, Z. Liu, N. Zheng, and J. Yang, “A deformable local image
descriptor,” in Proc. IEEE Conf. CVPR, 2008, pp. 1–8.

[44] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans.
Inform. Theory, vol. 8, no. 2, pp. 179–187, Feb. 1962.

[45] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. CVPR, Dec. 2001, pp. 511–518.

[46] K. Mikolajczyk et al., “A comparison of affine region detectors,” Int. J.
Comput. Vis., vol. 65, nos. 1–2, pp. 43–72, 2005.

[47] A. Vedaldi, “An open implementation of the SIFT detector and
descriptor,” Dept. Comput. Sci., UCLA, Los Angeles, CA, USA, Tech.
Rep. 070012, 2007.

[48] J. Heinly, E. Dunn, and J. M. Frahm, “Comparative evaluation of binary
features,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 759–773.

Xianwei Xu received the M.S. degree from the
School of Naval Architecture and Ocean Engineer-
ing, Huazhong University of Science and Tech-
nology, Wuhan, China, in 2008. He is currently
pursuing the Ph.D. degree with the Department of
Automation, Tsinghua University, Beijing, China.
His research interests include image processing,
image matching, and feature description.

Lu Tian received the B.S. degree from the Depart-
ment of Automation, Tsinghua University, Beijing,
China, in 2012, where he is currently pursuing the
M.S. degree with the Department of Automation. His
research interests are in computer vision and pattern
recognition.

Jianjiang Feng (M’10) is an Associate Professor
with the Department of Automation, Tsinghua Uni-
versity, Beijing, China. He received the B.S. and
Ph.D. degrees from the School of Telecommunica-
tion Engineering, Beijing University of Posts and
Telecommunications, Beijing, in 2000 and 2007,
respectively. From 2008 to 2009, he was a Post-
Doctoral Researcher with the Pattern Recognition
and Image Processing Laboratory, Michigan State
University, East Lansing, MI, USA. His research
interests include fingerprint recognition, palmprint

recognition, and structural matching.

Jie Zhou (M’01–SM’04) was born in 1968. He
received the B.S. and M.S. degrees from the Depart-
ment of Mathematics, Nankai University, Tianjin,
China, in 1990 and 1992, respectively, and the Ph.D.
degree from the Institute of Pattern Recognition and
Artificial Intelligence, Huazhong University of Sci-
ence and Technology, Wuhan, China, in 1995. From
1995 to 1997, he served as a Post-Doctoral Fellow
with the Department of Automation, Tsinghua Uni-
versity, Beijing, China, where he has been a Full
Professor with the Department of Automation since

2003. His research area includes computer vision, pattern recognition, and
image processing. He has authored more than 100 papers in peer-reviewed
journals and conferences. Among them, more than 30 papers have been
published in top journals and conferences such as the IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, the IEEE TRANS-
ACTIONS ON IMAGE PROCESSING, and the IEEE Conference on Computer
Vision and Pattern Recognition. He is an Associate Editor of International
Journal of Robotics and Automation, Acta Automatica, and two other journals.
He was a recipient of the National Outstanding Youth Foundation of China.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

