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Abstract— 3D vascular structure models are pivotal in
disease diagnosis, surgical planning, and medical educa-
tion. The intricate nature of the vascular system presents
significant challenges in generating accurate vascular
structures. Constrained by the complex connectivity of the
overall vascular structure, existing methods primarily focus
on generating local or individual vessels. In this paper, we
introduce a novel two-stage framework termed VesselDif-
fusion for the generation of detailed vascular structures,
which is more valuable for medical analysis. Given that
training data for specific vascular structure is often limited,
direct generation of 3D data often results in inadequate
detail and insufficient diversity. To this end, we initially
train a 2D vascular generation model utilizing extensively
available generic 2D vascular datasets. Taking the gener-
ated 2D images as input, a conditional diffusion model,
integrating a dual-stream feature extraction (DSFE) module,
is proposed to extrapolate 3D vascular systems. The DSFE
module, comprising a Vision Transformer and a Graph Con-
volutional Network, synergistically captures visual features
of global connection rationality and structural features of
local vascular details, ensuring the authenticity and diver-
sity of the generated 3D data. To the best of our knowledge,
VesselDiffusion is the first model designed for generating
comprehensive and realistic vascular networks with diffu-
sion process. Comparative analyses with other generation
methodologies demonstrate that the proposed framework
achieves superior accuracy and diversity. Our code is avail-
able at: https://github.com/gzq17/VesselDiffusion.

Index Terms— Vascular Structure Generation, Diffusion
Model, Dual-Stream Feature Extraction

I. INTRODUCTION

Vascular structure models are integral to various applica-
tions, such as clinical diagnosis, surgical planning, virtual
interventional vascular surgery, and medical education [1], [2].
The manual extraction of numerous vascular structures for
analysis is labor-intensive, resulting in a scarcity of vascular
data. Recently, many vascular structure generation methods
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have been proposed [2]–[5]. Nevertheless, the inherent vari-
ability in the shape, size, and structure of the vascular system
continues to pose substantial challenges in generating accurate
vascular models.

Traditional vascular generation methods predominantly rely
on the relationship between vessel diameter and blood flow [3],
[6], utilizing a set of fixed rules and vascular dynamics con-
straints to model blood vessels [7]–[9]. While these approaches
introduce some variability in vascular structure generation,
they often fail to capture the full diversity of vascular architec-
tures. Moreover, they typically represent blood vessels using
simplified geometric shapes such as cylinders or truncated
cones (as shown in Fig. 1(a)), which inadequately reflect the
actual complex morphology of blood vessels [6]. Recently,
the development of deep learning algorithms has significantly
advanced the generation of natural images, prompting research
into their application in vessel generation via Generative Ad-
versarial Networks (GANs) [4] and Variational Autoencoders
(VAEs) [5]. However, these efforts primarily focus on the
generation of local or single vessel (Fig. 1(b) and (c)), lacking
the capability to produce detailed vascular structures. This
limitation is likely due to the inherent difficulty in capturing
the detail and global connectivity of the vascular network.

In addition to specialized vascular synthesis techniques,
methods for generating natural images and 3D objects can also
be applied to vascular generation studies. Notably, the recent
surge in popularity of diffusion probabilistic models [10], [11]
has led to significant advancements in the generation of natural
images, videos, and 3D objects [12], [13]. The efficacy of these
models is contingent upon access to vast amounts of training
data. For instance, the classic Stable Diffusion1 was trained
on a dataset comprising 5 billion images. The training of
3D generative models also necessitates extensive data support
[14], [15]. However, the acquisition of medical imaging data
is considerably constrained by ethical and privacy concerns,
making it challenging to amass large datasets. Consequently,
training generative models with the limited available 3D data
poses significant difficulties in ensuring the diversity and
accuracy of the generated vascular structure models.

To address these challenges, we propose a novel two-stage
framework, termed VesselDifussion, for comprehensive 3D
vascular network generation (Fig. 1(d)). We represent vascular
data as surface point clouds to mitigate the complexities inher-
ent 3D space. In comparison to 3D vascular data, some pub-

1https://huggingface.co/runwayml/
stable-diffusion-v1-5
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licly accessible 2D datasets contain larger sample sizes (e.g.,
X-ray dataset [16] consists of over 1,000 images), likely due
to the greater ease of storage and annotation. Furthermore, 3D
vascular structures can be projected from multiple viewpoints
to generate additional 2D representations, further expanding
the accessible dataset size. Given the relative abundance of 2D
vascular data, which captures diverse structural and topological
variations, coupled with the comparative ease of 2D data
generation, we initially train an improved diffusion model
[11] using a large corpus of 2D images, including Maximum
Intensity Projection (MIP) images from 3D volumes and other
publicly accessible datasets. Subsequently, special 3D vascular
data and their corresponding 2D MIP images are employed
to train a 3D point cloud conditional generation model. The
model incorporates a Dual-Stream Feature Extraction (DSFE)
module, consisting of a Vision Transformer (ViT) and a Graph
Convolutional Network (GCN), to effectively extract structural
features of local vascular details and visual features of global
connection rationality from the 2D images and the correspond-
ing graph. The structural features enhance the precision of
critical parameters such as the radius and curvature of local
blood vessels and ensure the consistency of the generated 3D
results with the input 2D images. Simultaneously, the visual
features uphold the global integrity and anatomical rationality
of the vascular constructs, collectively facilitating a thorough
and accurate representation of the vascular system. Further-
more, combining GCN with ViT effectively simulates the
arboriform structural characteristics of blood vessels, thereby
enhancing the network’s capacity to learn comprehensive and
intricate vascular features. Experimental results indicate that
our method surpasses existing models in both qualitative and
quantitative assessments.

The main contributions of our study are as follows:
• We introduce VesselDiffusion for 3D vascular structure

generation, which, to the best of our knowledge, is the
first study to generate detailed and anatomically realistic
vascular networks based on diffusion model.

• To mitigate the limitations posed by the scarcity of 3D
vascular data, we propose a novel training paradigm that
disentangles the process of 3D vascular generation into
the creation of 2D MIP masks and the reconstruction of
3D vascular systems. The usage of extensive 2D data
enhances the diversity of generated MIP images, and the
subsequent transition from 2D to 3D generation maintains
the heterogeneity and detail of vascular structures.

• In proposed point cloud conditional generation model,
we combine a ViT and a GCN to extract both visual and
structural features, thereby ensuring the rationality and
diversity of the generated vascular structures.

II. RELATED WORK

A. Medical Image Generation
Obtaining large-scale medical image datasets poses signif-

icant ethical and privacy challenges, making medical image
generation a persistent area of interest. Traditional approaches
have predominantly employed Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANs) to

(a) Traditional method

(b) GAN-based method

visual structural

GCN/ViT

Point2Voxel
(Optional)

Generation

Generation

(c) VAE-based method (d) Our method

Fig. 1. Vascular structures generated by different methods. (a) the
generated vessels of [3]. (b) the results of [4]. (c) the synthetic vessels
of [5]. (d) the process of our method and the synthetic data.

capture the underlying data distributions [17]. With the recent
success of diffusion models across various domains, their
application to medical image generation has gained traction,
yielding promising outcomes [18], [19]. While the generation
of 2D images has been well explored, efforts to extend
these techniques to 3D images remain limited. The inherent
complexity and high dimensionality of 3D data often result in
a loss of fine-grained detail [20], [21]. This issue is particularly
pronounced in the synthesis of 3D vascular structures, where
the sparse nature of the data and the need for high-fidelity
detail present additional challenges. In our study, we address
this by modeling sparse blood vessels as surface point clouds
and leveraging a 3D diffusion model to synthesize detailed 3D
vascular structures.

B. Vessel Generation

Research on vascular generation can be categorized into
traditional algorithms and learning-based methods. Traditional
techniques primarily involve the iterative growth of blood
vessels based on hemodynamics and predefined rules [2], [3],
[6], [22], [23]. For instance, Hamarneh et al. [3] iteratively
developed vascular structures using a user-defined oxygen
demand map, considering bifurcation locations, branching
properties, and tree hierarchy. However, these methods of-
ten produce blood vessels with limited diversity and overly
idealized structures. Learning-based methods utilize natural
image generation techniques, such as GANs [24] and VAEs
[25], to learn blood vessel distributions from real data [4], [5].
Wolterink et al. [4] proposed a GAN-based model to generate
single coronary vessel, and Feldman et al. [5] employed a
recursive variational neural network to generate the local
vascular structures.

Recent advancements in vascular network modeling have
seen the exploration of implicit neural representations, with
Sinha et al. [26] leveraging diffusion models for vascular
generation. Their study introduced a novel representation
method designed to mitigate storage demands, demonstrating
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Fig. 2. The proposed VesselDiffusion framework for generating 3D vascular systems. (A) depicts the training and inference process of two stages
within our method. (B) provides a detailed overview of the 3D point cloud generation network conditioned on 2D MIP images, where Point-Voxel
Network (PVN) [39] is used as the denoising function of diffusion model.

its efficacy through localized vascular generation tasks. How-
ever, potential representation errors, coupled with the absence
of structural constraints and insufficient utilization of vascular
topology information, may limit its ability to generate anatom-
ically complex vascular networks. The success of discrete
diffusion model-based graph generation [27], [28] in various
domains, such as molecular generation [29] and protein design
[30], has motivated further investigations into its applicability
for vascular structure synthesis. For example, Prabhakar et
al. [31] proposed a simplified graph-based representation of
blood vessels, synthesizing vascular networks by generating
nodes and edges. While effective in constructing connectivity
patterns, the abstraction of vascular structures into discrete
points and lines compromises anatomical realism, potentially
limiting its applicability in biomedical contexts. Despite these
advancements, current learning-based methods are limited
to generating local blood vessel or over-simplified vascular
network. To the best of our knowledge, few studies have
explored the synthesis of comprehensive and anatomically
realistic vascular networks using learning-based techniques.

C. Diffusion Model and 3D Point Generation
The diffusion probabilistic model, inspired by non-

equilibrium thermodynamics, employs Markov chains to trans-
form Gaussian distributions into target data distributions [10],
[11], [32]. This approach facilitates image generation through
learning the perturbation removal, achieving notable success.
The diffusion models have outperformed GANs in text-to-
image generation [33], image editing [34], and video synthesis
[35]. In the realm of 3D point cloud generation, the diffusion
model has also demonstrated impressive results [14], [36],
[37]. For instance, Luo et al. [12] and Zhou et al. [38]
adapted the diffusion model of 2D image generation to 3D
point cloud generation and achieved good results. Subse-
quently, text-to-3D [14] and 2D-to-3D generation [15], [36]

has also made significant strides. However, the success of
the diffusion models is heavily reliant on the availability of
extensive datasets. In contrast, obtaining large datasets for 3D
vascular data is challenging due to ethical and confidentiality
constraints, making it difficult to ensure the structural diversity
and detailed accuracy of results when directly training 3D
vascular surface point cloud generation models. In this paper,
we propose to leverage the abundant available 2D vascular
images to generate diverse MIP images, which are used to
reconstruct corresponding 3D point clouds.

III. METHOD

A. Overview
As depicted in Fig. 2(A), our proposed framework decom-

poses the generation of 3D vascular systems into two distinct
stages. In the initial phase, an improved 2D diffusion model
[11] is trained using MIP images derived from 3D volumes
alongside other publicly available 2D vascular datasets, which
encompass abundant vascular topologies and structural varia-
tions, ensuring the diversity of the generated 2D data.

In the subsequent stage, we leverage specific 3D vessel data
in conjunction with the corresponding MIP masks to train a 3D
point cloud generation network for reconstructing 3D vascular
structures from 2D images, where the 2D vascular structures
serve as guidance and facilitate the model’s acquisition of
structural information. Meanwhile, the 2D-to-3D conversion
also ensures the diversity of the 3D generation by enforcing
the consistency with the 2D vascular structures. During the
inference phase, random Gaussian noise is fed into the 2D
generative model to produce the vascular MIP mask, which is
then utilized by the trained 2D-to-3D reconstruction network
to derive the comprehensive 3D vascular structures. In the
initial stage, our framework is compatible with most existing
2D generation models. Our primary focus, however, lies in the
second stage, as detailed in Fig. 2(B), where we elaborate on
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Fig. 3. The Dual-Stream Feature Extraction (DSFE) module. During
pre-training, the input image x is processed by a Transformer Encoder
to extract features, which are used to predict vessel segmentation
map (ĉv) and image category (b̂v). Subsequently, the vessel graph
integrated with features extracted by ViT is processed by a two-layer
Graph Attention Network (GAT) to predict node classification result (Ŷg)
and graph-level category (ĉg).

the generation of 3D vascular surface point clouds from the
generated 2D MIP images.

B. Problem Formulation
1) Point Cloud and Corresponding MIP Image.: In the initial

stage, using the trained 2D generation model, we generate
a variety of MIP images, where some noise is inevitably
present. Subsequently, we train a 3D generation network
conditioned on these 2D images. For a 3D vascular volume
V ∈ RH×W×D, represented as a binary image with vessel
voxels valued at 1 and background voxels at 0, we extract the
surface point cloud X ∈ RN×3 and employ farthest point
sampling (FPS) to obtain a fixed number of points. If the
sampled points are insufficient, additional points are gener-
ated through interpolation. Concurrently, the corresponding
2D MIP image Im ∈ RH×W is generated, mathematically
expressed as Im(h,w) = max

d=1,2..,D
V (h,w, d). To align it with

the generated 2D data in the first stage, random noise is
introduced to produce Ĩm. This process yields paired 3D point
cloud X and 2D MIP image Ĩm, facilitating the training of the
2D-to-3D generation network.

2) Point Cloud Generation with Conditional Diffusion Model.:
A point cloud X0 ∈ RN×3 is randomly sampled from the
distribution q(X0), and noise is gradually introduced to X0

following the forward process described in [10] until it con-
forms to a Gaussian distribution. The noise addition process
adheres to the Markov chain assumption:

q (X0:T ) = q (X0)

T∏
t=1

q (Xt | Xt−1) , (1)

q (Xt | Xt−1) = N
(√

1− βtXt−1, βtI
)
, (2)

where {βt}Tt=0 are variance schedule hyper-parameters. The
objective is to generate the corresponding 3D point cloud
conditioned on Ĩm. We consider the reverse diffusion process,
which starts from the randomly sampled Gaussian distribution
XT and generates X0 step-by-step conditioned on Ĩm. A

neural network parameterized by θ is employed to predict each
step of the reverse diffusion process pθ(Xt−1 | Xt, Ĩm). The
transition from the Gaussian distribution XT to X0 can be
formulated as:

pθ (X0:T ) = p (XT )

T∏
t=1

pθ

(
Xt−1 | Xt, Ĩm

)
, (3)

pθ

(
Xt−1 | Xt, Ĩm

)
= N

(
µθ

(
Xt, t, Ĩm

)
, σ2

t I
)
. (4)

For effective network training, it is crucial that the noise
predicted in the reverse process aligns with the noise intro-
duced during the forward process. This alignment ensures that
the desired 3D point cloud can be accurately generated from
the standard Gaussian distribution. The loss function can be
derived as:

Lt = EX0∼q(X0)Eϵt∼N (0,I)

∥∥∥ϵt − µθ

(
Xt, t, Ĩm

)∥∥∥2 . (5)

C. DSFE Module and Pretraining
The DSFE structure is shown in Fig. 3. We employ the

ViT architecture to process the input image x and obtain
the image classification result (ĉv) and vessel segmentation
prediction (b̂v). Similar to the approach described in [40],
we utilize GCN to further enhance the extraction of vessel
features. Specifically, we construct a graph from the vessel
label and utilize the intermediate features from ViT as node
features to predict both the graph category (ĉg) and the vessel
membership of each node (Ŷg). Next, we will provide a
detailed introduction to the pretraining module.

1) The Flow of ViT.: The DSFE module is pre-trained
using a diverse collection of 2D vascular data, including
fundus vessels, cerebral vascular projection images, and X-
ray coronary angiography images. From this collection, we
randomly select a set of data (x, b, c), where x ∈ RH×W

represents the grayscale image, b ∈ RH×W the corresponding
binary vascular image, and c ∈ {0, 1, 2} the category label,
indicating the dataset of origin. Subsequently, ViT is employed
to derive structural features sv ∈ RH×W×C and visual features
vv ∈ RC , the latter corresponding to the class token feature.
The structural and visual features are then processed through
convolution and Multi-Layer Perceptron (MLP) to yield the
segmentation prediction (b̂v) and classification result (ĉv). The
loss function is formulated as a linear combination of a Dice
loss and a cross entropy loss:

LViT = Dice(b̂v, b) + α1CE(ĉv, c). (6)

2) Graph Construction and GCN.: The vascular structure is
distinctive in that it occupies a minimal foreground area and
exhibits an arboriform configuration. Previous studies have
demonstrated that graph structures based on images can more
accurately represent blood vessels [40], [41]. Therefore, we
employ GCN in conjunction with ViT to achieve a more
comprehensive representation of vascular structures. Initially,
we randomly select a set of data (x, b, c) from collected
datasets. To maintain consistency with the generated MIP
image, random noise is added to obtain b̃. Inspired by [40],
[42], we construct a graph from the vascular image b̃ to
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model the vascular structure and intuitively characterize vessel
connectivity. Specifically, we partition b̃ into non-overlapping
regions of size h×w (where each region may contain vessels,
bifurcations, or background; in our experiments, h = w = 6).
The center points of these regions serve as graph nodes
V = {vi}Nn

i=1 = {(hi, wi)}Nn
i=1, with the corresponding node

labels Y = {yi}Nn
i=1 = {b(hi, wi)}Nn

i=1, where Nn = ⌈H
h ⌉ ×

⌈W
w ⌉. Subsequently, we compute the geodesic distance d(i, j)

between each point pi and its surrounding point pj based on
b̃. A connection is established between two points (pi, pj)
if d(i, j) is below a specified threshold ddeo (ddeo = 32
in our experiments). The adjacency matrix A records the
connection weights between nodes, and is calculated based
on the geodesic distance, mathematically expressed as:

Aij =

{
ddeo

ddeo+dij
d(i, j) ≤ ddeo,

0 d(i, j) > ddeo.
(7)

The initial features of each node comprise its coordinate values
(hi, wi) and the corresponding structural features sv extracted
by ViT: feai = Concat([hi, wi], sv(hi, wi)), feai ∈ RC+2.

The resulting graph structure is processed through two
layers of Graph Attention Network (GAT), extracting features
for each node. These node features are then organized into
image feature based on their coordinates and upsampled to
produce the structural feature map sg ∈ RH×W×C . Each
node’s features are passed through a MLP head to generate
the classification result for each node Ŷg = {ŷi}Nn

i=1. By
performing Average Pooling (AP) on node features, global
visual features vg and corresponding graph classification result
ĉg are obtained. The loss function of GCN is formulated as:

LGCN =
1

Nn

Nn∑
i=1

CE(ŷi, yi) + α2CE(ĉg, c). (8)

The total loss during pre-training is represented as

Lpre−train = α3LViT + LGCN. (9)

3) Pretraining of DSFE.: During the pre-training phase, we
employ Lpre−train as the loss function to jointly train the ViT
and GCN, enabling the DSFE module to effectively capture
structural information of blood vessels. We utilize a diverse
collection of 2D vascular data for training, which includes
fundus vascular data, cerebral vascular projection data, and
X-ray coronary angiography data. Each dataset is accompa-
nied by corresponding segmentation annotations and category
labels (indicating the source dataset). The extensive datasets
allow the network to perceive a wide range of topological and
structural variations, preserving both visual and structural cues
of blood vessels in the feature space.

D. 3D Point Cloud Generation Based on MIP Image

In the field of medical image generation, the limited avail-
ability of 3D data often results in limited diversity and insuf-
ficient detail in the generated results. However, it is feasible
to construct a comprehensive generic 2D vascular dataset
by leveraging existing 2D vascular data along with multi-
angle projections from 3D vascular data. The inherent vascular

topologies and structural variations contained within these data
can be effectively utilized to generate diverse MIP images.
With strong 2D-to-3D consistency, the diversity inherent in
2D generation results can be effectively transferred to the
synthetic 3D data, thus compensating for the lack of diversity
in directly generating 3D images. Moreover, conditioning the
3D generation on 2D inputs simplifies the complexity of 3D
vascular modeling, ensuring the anatomical plausibility of the
generated details.

In most previous studies [15], [43], [44], the approach of ex-
tracting conditional image features is analogous to the method
used when text serves as a condition. The global visual features
of the input 2D image are directly extracted via a network and
used as conditions for the denoising function (Eq. 3). It ensures
the rationality and diversity of the generated images when
there is a sufficiently large amount of training data. However,
the generated 3D data often exhibit weak consistency with
the input 2D images, limiting the diversity and details of the
results when training data is scarce. Local structural features
were used in the work of [36]; however, directly applying this
approach to vascular structure generation presents challenges
due to significant differences in the acquisition of 2D images
and the potential inadequacy of the extracted features in
capturing the unique structural characteristics of blood vessels.

To ensure the correspondence between the generated 3D
data and the 2D MIP images, we extract both visual features
of global rationality (vv, vg) and structural features of local
details (sv, sg) from the input image Ĩm in the DSFE module.
The visual features ensure the global integrity and rationality
of the generated image, while the structural features, consistent
with the image size, ensure the correctness of the generated
point cloud in local details and the alignment with the input 2D
image. At the t-th step of the diffusion process, the 3D point
cloud is denoted as Xt, which is derived from the input point
cloud X0 according to Eq. 2, with the added noise represented
as ϵt. For each point pi in Xt, the coordinate feature fi is
(hi, wi, di). To fully utilize the extracted image information,
we extend the visual and structural features to fi. The coordi-
nates and local features are processed through the projection
head (shown in Fig. 2) to obtain the corresponding features.
Specifically, the coordinates of point pi are first mapped
to the original 3D image coordinate system (hi, wi, di) →
(h̃i, w̃i, d̃i), and the corresponding local features are extracted
based on the projection coordinates (h̃i, w̃i). The final features
f ′
i ∈ R4C+3 for each point are represented as:

f ′
i = Concat(fi, vv, vg, sv(h̃i, w̃i), sg(h̃i, w̃i)). (10)

Thus, the denoising function µθ takes Xt along with the
corresponding feature F ′ as input to predict the added noise:

ϵ̂t = µθ(Xt, F
′),RN×(4C+3) → RN×3, (11)

followed by computing the loss with Eq. 5.

IV. EXPERIMENTS

A. Experimental Setup
1) 3D Coronary Dataset.: We acquired 3D coronary artery

data from three distinct datasets: 40 CTA volumes from
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ASOCA [45], 72 CTA volumes from orCaScore [46], and 224
CTA volumes from Wuhan Union Hospital of China. ASOCA
datasets include provided annotations, whereas the orCaScore
and in-house datasets were semi-automatically annotated by a
collaborating physician. For our study, we randomly selected
300 volumes for training and 36 for testing.

2) 3D Cerebral Dataset.: A total of 274 3D cerebrovascular
volumes are assembled for further validation of our method,
comprising 109 volumes sourced from the publicly available
dataset TubeTK2 and 165 volumes collected from Xuanwu
Hospital of Capital Medical University, China. Two collab-
orating doctors annotated the Willis vessels for the in-house
data. 250 data were randomly selected for training, while the
remaining 24 data for testing.

3) Dataset for Pretraining.: During pre-training, we utilized
vascular data from three categories: 1) fundus vascular data
[47], [48]; 2) vascular projection images from 3D Cerebral
Dataset; and 3) X-ray coronary data [16]. They comprised
2,046 images to train the dual-stream feature extraction net-
work. Notably, projection images from the 3D Coronary
Dataset were excluded from this analysis due to significant
occlusions present in the coronary data when projected [49].
During pre-training, all images are resized to 336×336 pixels,
and random noise is added. For classification tasks, category
labels 0, 1, and 2 are assigned to represent fundus vascular,
cerebrovascular, and X-ray coronary data, respectively.

4) 2D Vessel Dataset for MIP Image Generation.: Ensuring
the diversity and adequacy of the training set is paramount
for generating varied 2D MIP images. Notably, the training of
MIP vascular image generation network requires segmented
vascular datasets. Our training data are sourced from three
datasets: 1) MIP images obtained by projecting 3D coronary
volumes, augmented through random rotation within a spec-
ified 3D space range, resulting in 1,008 images; 2) coronary
angiography data [16], contributing 1,156 2D coronary images;
and 3) 274 cerebral vascular projection images. The inclusion
of these data ensures that the training set encompasses a
wide range of topological and structural variations, thereby
positively contributing to the learning of MIP image vascular
structures. During the training of 2D generative network, we
initially pretrain it with all the data, followed by fine-tuning
exclusively on specific MIP images. The pretrained model,

2https://public.kitware.com/Wiki/TubeTK/Data

trained on all the datasets, acquires robust representations of
various vascular patterns, including coronary projections, coro-
nary angiography, and cerebral vascular projections. To adapt
the model for specific vessel generation task, we subsequently
fine-tune it using targeted MIP images. This strategic approach
maintains the model’s capacity to generate diverse vascular
structures while specializing its output for particular vascular
types. For instance, in 3D coronary vessel generation tasks,
we specifically fine-tune the model using 2D coronary MIP
data, ensuring optimal performance for the target application.

5) Training Strategy.: As outlined in Sec. III, our proposed
framework composes two distinct stages. In the first stage,
we focus on learning the generation of 2D MIP images.
This is achieved through a comprehensive training approach
where the 2D generative network is initially trained on a
diverse collection of generic vascular data, followed by task-
specific fine-tuning using targeted MIP images (tailored to
different generation tasks). The second stage involves learning
the transformation from 2D MIP images to 3D vascular
structures. Initially, the DSFE module is pretrained using the
dataset described in Sec. IV-A.3. Subsequently, we integrate
the pretrained module with our conditional generation network
to learn the mapping from 2D representations to their corre-
sponding 3D vascular structures.

6) Implementation.: The network is implemented using Py-
Torch on four NVIDIA GeForce GTX 3090 GPUs. In the pre-
training loss function, parameters α1, α2, and α3 are set to 1.0,
0.2, and 0.2, respectively. The extracted feature dimension C
is 32. The settings in stage-I of 2D MIP image generation
are consistent with [11], taking ≈ 2 days for training. In
the 2D-to-3D diffusion model, the learnable denoising func-
tion µθ is implemented using a Point-Voxel Network [39].
This architecture employs a dual-branch design: a point-based
branch that processes point cloud and a voxel-based branch
that hierarchically aggregates local point features. During the
training phase, the point cloud consists of N = 4096 points,
with the diffusion steps (T ) of 1000. The size of input MIP
images is 336 × 336 pixels. The AdamW optimizer [50] is
employed, with β = (0.95, 0.999) and the initial learning rate
of 1×10−3. The batch size is set to 64. The training process for
the second stage requires approximately 22.5 hours, resulting
in a cumulative training time ≈ 3 days when combined with
the first stage.

TABLE I
COMPARISON WITH OTHER METHODS IN TERMS OF DISTRIBUTION STATISTICS (COSINE DISTANCE) AND SCORING INDICATORS ON CORONARY

DATASET, WITH THE BEST PERFORMANCE HIGHLIGHTED IN BOLD. IN THE USER SCORE, THE AVERAGE RESULTS OF ALL RATINGS AND THE BEST

50% ARE CALCULATED RESPECTIVELY.

Category Method
RCA LAD LCX

Ave ∠(Dis) ∠(Err) DIV
User Score

L R T L R T L R T All 50%

One-stage

PDM [12] 0.084 0.963 0.302 0.078 1.001 0.374 0.064 0.999 0.219 0.454 0.176 12.60 0.089 3.97 4.63
PVD [38] 0.044 0.421 0.062 0.106 0.612 0.144 0.077 0.677 0.093 0.248 0.191 13.60 0.125 6.32 6.86

TIGER [37] 0.047 0.542 0.148 0.092 0.638 0.070 0.051 0.792 0.091 0.275 0.223 14.06 0.113 6.71 7.08
TrIND [26] 0.039 0.329 0.066 0.124 0.322 0.085 0.051 0.515 0.097 0.181 0.140 10.70 0.160 8.21 8.73

Two-stage

PSGN [43] 0.911 0.457 0.794 0.754 0.731 0.146 0.782 0.589 0.107 0.586 0.150 8.13 0.075 4.64 6.35
Point-e [15] 0.052 0.125 0.117 0.095 0.216 0.136 0.089 0.206 0.122 0.129 0.142 8.56 0.122 7.13 7.78

PC2 [36] 0.031 0.088 0.045 0.087 0.098 0.052 0.078 0.137 0.056 0.075 0.129 2.64 0.153 8.01 8.31
Ours 0.018 0.033 0.043 0.077 0.087 0.081 0.073 0.044 0.027 0.054 0.097 2.61 0.152 8.48 9.16
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(a) Synthetic (b) Real

Fig. 4. Examples of coronary systems generated by our model and real
data for training.

7) Baselines.: For more complete comparisons, we com-
pare the proposed VesselDiffusion with the two categories
of baseline models: (1) 3D point clouds generation directly
from noise, including PDM [12], PVD [38], TIGER [37],
VGGD [31], and TrIND [26]. Among these, VGGD and
TrIND are specifically designed for vascular generation, while
PDM, PVD, and TIGER are general point cloud generation
methods. (2) models that generate 3D point clouds from
2D images using the same 2D generation method as ours,
specifically models PSGN [43], Point-e [15], and PC2 [36].
All reproduced baseline methods are trained to convergence
following the procedures outlined in their original publications
and publicly available codes, with hyperparameter settings
kept consistent with the reported implementations. Notably,
the VGGD method requires annotation of vascular key points.
Following the original study [31], we conduct comparative
validation exclusively on cerebral dataset.

8) Evaluation for Generation Results.: Given the unique
structure of blood vessels, certain evaluation metrics used for
natural images are not suitable. Consistent with [5], we select
three critical indicators of blood vessels for evaluation: length
(L), average radius (R), and tortuosity (T ) [51], [52]. These
metrics are specifically applied to evaluate the three main coro-
nary arteries: the right coronary artery (RCA), the left anterior
descending artery (LAD) and the left circumflex artery (LCX),

TABLE II
COMPARISON WITH OTHER METHODS IN TERMS OF DISTRIBUTION

STATISTICS AND SCORING INDICATORS ON CEREBRAL DATASET, WITH

THE BEST PERFORMANCE HIGHLIGHTED IN BOLD.

Category Method Ave DIV
User Score
All 50%

One-stage

PDM (2021) [12] 0.227 0.028 4.02 5.13
PVD (2021) [38] 0.152 0.033 6.59 7.18

TIGER (2024) [37] 0.096 0.034 6.89 7.31
VGGD (2024) [31] 0.390 0.067 6.12 6.89
TrIND (2024) [26] 0.157 0.047 8.36 9.04

Two-stage

PSGN (2017) [43] 0.428 0.015 4.33 6.05
Point-e (2021) [15] 0.412 0.038 6.30 6.89

PC2 (2023) [36] 0.138 0.044 8.33 8.79
Ours 0.053 0.045 8.64 9.32

as well as the basilar artery and posterior cerebellar artery
within the cerebrovascular context. For vascular analysis, we
employ an automated approach based on prior anatomical
rules to detect the endpoints, followed by manual refinement.
The path length L measures the vascular path length between
the identified endpoints, while the radius R is defined as
the average vascular radius along this path. Tortuosity T , a
widely adopted metric in vascular analysis, is computed as
the ratio between the actual path length of a convoluted vessel
and the linear distance between its endpoints [52]. To assess
structural similarity, we examine the statistical distribution
histograms of these metrics in both real and generated vessels
(denoted as p,q) and compute the cosine distances between
their distributions:

dcos(p,q) = 1−
∑n

i=1 piqi√∑n
i=1 p

2
i

√∑n
i=1 q

2
i

. (12)

Similarly, we compute the bifurcation angle between LAD
and LCX arteries, following the definition in [53]. We statis-
tically analyze the distribution of bifurcation angles in both
generated and real data, quantifying their similarity using
cosine distance (∠(Dis)). Also, we report the average error
(∠(Err)) of the bifurcation angle between generated and real
data (in degrees). To further assess the diversity of the gener-
ated 3D point clouds, we compute a diversity metric (DIV) by
measuring pairwise distances within the generated data using
the Chamfer Distance, calculating its average value, which is
a metric commonly employed to evaluate statistical diversity
[54]–[56]. Additionally, to assess the anatomical rationality
and detailed accuracy of the synthetic vascular systems, a
cooperating physician scores the generated results and the real
data on a scale of 1 to 10, with higher scores indicating better
results. To ensure fairness, we shuffle the generated data from
various methods with the real data before scoring, and then
calculate the average score for each method as well as the
average score of the top 50% results. The overall and the top
50% average score on real coronary data are 9.98 and 10.0,
respectively, underscoring the reliability of the scores.

9) Evaluation For 2D-3D Reconstruction Results.: To quan-
titatively evaluate the effectiveness of our proposed second-
stage 2D-to-3D transformation, we measure the similarity
between 3D point clouds generated from 2D MIP images
and their corresponding real 3D point clouds in the test
set. Specifically, given a generated point cloud X̂ and its
corresponding real data X , we compute the following metrics:
a) Chamfer Distance (CD), b) Earth Mover’s Distance (EMD),
c) F1 score:

Precision =

∣∣∣{x̂ ∈ X̂ | minx∈X ∥x̂− x∥ < τ
}∣∣∣

|X̂|
, (13)

Recall =

∣∣{x ∈ X | minx̂∈X̂ ∥x− x̂∥ < τ
}∣∣

|X|
, (14)

F1 Score =
2× Precision × Recall

Precision + Recall
, (15)

where τ is the set threshold, which is 0.15 in our experiment
(for normalized point cloud), and d) 95% Hausdorff Distance
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(a) PDM (b) PVD (c) TIGER (e) PSGN (f) Point-e (g) PC2 (h) Ours (i) 2D (Generation)(d) TrIND

Fig. 5. Visual comparison of the results generated by different methods. For the two-stage methods (PSGN, Point-e, PC2, and Ours), the results
obtained using the same 2D input ((i), generated in the first stage) are presented. The orange circles in the figure highlight certain unreasonable
generated details.
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(c) Cosine Distance = 0.043

Fig. 6. The statistical distribution histograms of three vascular properties of the generated and real data on RCA of coronary dataset. L and R are
the voxel distances, and T is a dimensionless number. The cosine distances between the distributions are displayed.

(HD95):
dHD95 = percentile95(dX ∪ dX̂), (16)

where
dX =

{
min
x̂∈X̂

∥x− x̂∥ | x ∈ X

}
, (17)

dX̂ =

{
min
x∈X

∥x̂− x∥ | x̂ ∈ X̂

}
. (18)

B. Generation Result
1) Quantitative Comparisons: Table I and Table II present

the quantitative indicators of results obtained by various
methods applied to two datasets, detailing the distribution
distance between the generated and real data, as well as the

physician’s scoring outcomes. In Table II, only the average
distance performance is reported for the cerebrovascular data.

Overall, our method outperforms the compared methods,
indicating its ability to generate diverse, plausible, and realistic
data. VGGD exhibits greater diversity in generated results
(Table II), likely attributable to the inherent randomness of
discrete node generation. However, it performs significantly
worse than our approach in terms of statistical similarity to
the real distribution and expert evaluations. This limitation is
expected, as VGGD models blood vessels using point and
line representations, leading to substantial deviations from
real data. Furthermore, the TrIND method employs neural
networks to represent vascular structures. Due to the potential
reconstruction errors and insufficient utilization of structural
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Fig. 7. Distribution histograms of different methods on the average radius (R) of RCA.

information, it may lead to anatomical inconsistencies, such
as discrete noise (potentially increasing the DIV metric) and
vascular discontinuities, resulting in suboptimal performance
in both distribution-based statistical evaluations and expert
assessments. Notably, our approach achieves results that are
close to real data in terms of both expert physician ratings and
DIV (DIV results are 0.159 for coronary dataset and 0.050
for cerebral dataset in real data). The quantitative evidence
in DIV, combined with the expert evaluation scores, strongly
indicates that our generated results exhibit comparable levels
of anatomical fidelity and structural diversity to real data.

In contrast to direct 3D point cloud generation methods
(PDM, PVD, and TIGER), the two-stage methods based on
the diffusion model (Point-e, PC2, and Ours) achieve results
more closely aligned with the real distribution. This finding
underscores that the complexity of vascular structures and the
limited amount of training data render direct 3D generation
methods less authentic and diverse. Furthermore, among the
two-stage methods (employing the same 2D image generation
approach), our proposed framework exhibits superior perfor-
mance in both distribution distance and scoring, highlighting
its advantages in 2D feature extraction and structural feature
utilization.

2) Qualitative Comparisons: Fig. 4 presents the generated
coronary systems of our method alongside several real data.
Visually, our method produces blood vessel surface point
clouds that closely resemble the real point clouds. To facilitate
comparison with other methods, all data are displayed as point
clouds. Note that the color of the point is used solely for
visualization purposes.

Fig. 5 presents a comparative analysis of the results obtained
by our method against those from other methods. Consistent
with the conclusions drawn from Table I and Table II, our
method demonstrates superior performance in terms of both
overall plausibility and details. Moreover, the 2D data pro-
duced in the initial phase inevitably exhibit certain inaccu-
racies, such as vascular discontinuities (as illustrated in the
representative cases shown in the top-right corner of Fig. 5 and

the top-left corner of Fig. 10). Our approach to generating 3D
data maintains fidelity to the 2D inputs while effectively cor-
recting the unreasonable aspects present in the 2D conditions,
as evidenced by the corresponding 3D reconstruction results,
which demonstrate anatomically plausible vascular networks
with enhanced structural continuity. This indicates that our
method ensures the 3D results remain consistent with the 2D
input while capturing the overall structural rationality.

C. Distribution Histogram
Fig. 6 illustrates the distribution of our generated data

compared to the real data on RCA. The high similarity be-
tween the histograms indicates that the generated blood vessels
closely resemble the real ones. Fig. 7 presents the statistical
distribution histograms of the average radius (R) on RCA
across real data and the results obtained from various methods.
In contrast, compared methods tend to overestimate the vessel
radius compared to the ground truth. This discrepancy arises
from the sensitivity of radius computation to vascular surface
position deviations in generated results, with most biases
resulting in overestimated values. Our method addresses this
limitation through effective extraction and utilization of local
structural information during the 2D-to-3D generation process.
This enables better preservation of consistency between the 3D
output and 2D input, resulting in minimal position deviations
and accurate radius measurements that closely follow the dis-
tribution of real data. This finding underscores the capability
of our method to accurately capture the statistical properties
of the training distribution, ultimately leading to more realistic
and diverse 3D vessel data.

D. Visualization of 2D MIP Generation Results
In our proposed method, the generation of diverse 3D

vascular structures is predicated on producing 2D MIP images
with rich topological and structural variations in the initial
stage. Since the proposed VesselDiffusion preserves consis-
tency between the resulting 3D data and the input 2D images
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(a) Synthetic (b) Real

Fig. 8. The generated 2D coronary MIP images in the first stage.

during 2D-to-3D generation, the diversity observed in the 2D
outputs is effectively transferred to the resulting 3D structures.
Fig. 8 presents the coronary synthesis outcomes of the first
stage alongside several real images. As demonstrated, the 2D
generation model produces realistic and diverse MIP images,
which are critical for preserving anatomical rationality and
structural diversity in the subsequent 3D generation.

E. 2D-To-3D Comparison

TABLE III
QUANTITATIVE RESULTS BETWEEN 3D DATA GENERATED FROM 2D MIP

IMAGES AND THE CORRESPONDING REAL POINT CLOUDS. THE

METRICS OF HD95, CD, AND EMD ARE COMPUTED USING

NORMALIZED COORDINATES WITHIN THE [-1,1] RANGE AND REPORTED

IN NORMALIZED VOXEL UNITS.

Method HD95(↓) F1(↑) CD(↓) EMD(↓)
PSGN (2017) 0.365 0.635 0.296 1.093
Point-e (2021) 0.394 0.694 0.251 0.394

PC2 (2023) 0.348 0.705 0.256 0.319
Ours 0.331 0.781 0.210 0.275

To quantitatively assess the consistency between the 2D
conditions and the results of 2D-to-3D generation methods, we
compare the differences between the 2D MIP based generated
3D point clouds and their corresponding real 3D point clouds
across test data on Coronary Dataset, as presented in Table III.
Our method leverages a combination of ViT and GCN to more
effectively extract vascular features, fully utilizing the synergy
between visual and structural features during the generation
process. This enables our method to produce results that are
closer to the real 3D data and better maintain consistency
between the generated 3D data and the 2D inputs. This

advantage helps preserve the diversity of the 2D data when
generating 3D structures. Fig. 9 illustrates a representative
example of the generated results. Consistent with the findings
discussed earlier, the results reaffirm that our method surpasses
other two-stage approaches in terms of detail rationality and
alignment with the 2D input.

(a) MIP image (Real) (b) PSGN (c) Point-e

(d) PC2 (e) Ours (f) Ground truth

Fig. 9. The input MIP image, results generated by different 2D-to-3D
methods, and the corresponding real 3D data. The orange circles in the
figure highlight the same location of generated results and ground truth.

F. Ablation Study

1) The Effects of Different Modules.: In Table IV, we as-
sess the impact of various experimental configurations on
the coronary generation outcomes. As anticipated, directly
generating 3D vascular structures (one-stage) poses significant
challenges, leading to poor performance in generating vascular
details and insufficient diversity in results. When only global
visual features are employed (visual only), there is a marked
improvement in structural rationality and detailed accuracy
(as reflected in user scores), indicating that the incorporation
of 2D images alleviates the challenge of learning complex
3D vascular structures. However, the absence of structural
features hinders the generated 3D results from maintaining
consistency with the 2D input, leading to an increased distance
between distributions. The subsequent inclusion of structural
features leads to improvements across all performance indica-
tors, particularly in the similarity between the distributions of
the generated and real data. The integration of both visual and
structural features thus ensures the rationality of details and the
diversity of generated structures. Additionally, a comparison

TABLE IV
THE DISTRIBUTION DISTANCES BETWEEN THE GENERATED AND REAL DATA ON CORONARY DATASET UNDER DIFFERENT EXPERIMENTAL SETTINGS.

Method
Ablation RCA LAD LCX

Ave ∠(Dis) ∠(Err) DIV
User score

V S GCN L R T L R T L R T All 50%
one-stage ✗ ✗ ✗ 0.065 0.064 0.040 0.169 0.125 0.136 0.115 0.121 0.092 0.103 0.182 14.48 0.137 7.64 8.33

visual only ✓ ✗ ✗ 0.271 0.204 0.262 0.359 0.122 0.212 0.301 0.113 0.347 0.243 0.111 8.22 0.143 8.18 8.90
w/o GCN ✓ ✓ ✗ 0.056 0.051 0.032 0.068 0.118 0.090 0.080 0.098 0.030 0.069 0.098 8.57 0.151 8.21 8.98

w/o pretrain ✓ ✓ ✓ 0.045 0.055 0.052 0.151 0.088 0.039 0.140 0.091 0.036 0.077 0.110 2.73 0.139 8.14 8.67
Ours ✓ ✓ ✓ 0.018 0.033 0.043 0.077 0.087 0.081 0.073 0.044 0.027 0.054 0.097 2.61 0.152 8.48 9.16
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between the results obtained without GCN (w/o GCN) and
final results (Ours) demonstrates that the combination of
GCN and ViT allows for the extraction of richer and more
comprehensive image features, thereby enhancing the quality
of the generated results for the complex structure of vessels.

TABLE V
THE EVALUATION RESULTS BETWEEN THE GENERATED POINT CLOUD

AND THE CORRESPONDING REAL ONE ACROSS THE TESTING DATA IN

THE ABLATION EXPERIMENT. THE METRICS OF HD95, CD, AND EMD
ARE COMPUTED USING NORMALIZED COORDINATES WITHIN THE [-1,1]

RANGE AND REPORTED IN NORMALIZED VOXEL UNITS.

Method HD95(↓) F1(↑) CD(↓) EMD(↓)
visual only 0.865 0.239 0.683 0.619
w/o GCN 0.334 0.771 0.221 0.282

w/o pretrain 0.335 0.760 0.223 0.264
Ours 0.331 0.781 0.210 0.275

Furthermore, we evaluate the impact of pre-training on the
performance of our results. Pre-training the DSFE module
on a large dataset allows the network to effectively capture
the vascular structure features of interest, thereby improving
the fidelity of the generated results. These observations are
further supported by the findings in Fig. 10. Table V pro-
vides the evaluation results comparing the outcomes generated
under different experimental settings with the corresponding
real data. The results further substantiate and reinforce the
conclusions drawn from Table IV and Fig. 10.

(c) visual only

(a) Generation 2D

(b) one-stage (e) w/o pretrain

(d) w/o GCN

(f) Ours

Fig. 10. Two examples of ablation study on Coronary Dataset.

2) The Pre-Training Strategy of DSFE Module.: We inves-
tigate the impact of various pre-training strategies for the
DSFE module (on coronary dataset). Our comparative analysis

TABLE VI
ABLATION EXPERIMENT ON PRE-TRAINING STRATEGY OF DSFE

MODULE, WITH THE BEST PERFORMANCE HIGHLIGHTED IN BOLD.

Method Ave ∠(Dis) ∠(Err) DIV
User Score
All 50%

w/o pretrain 0.077 0.110 2.73 0.139 8.14 8.67
Only MIP 0.071 0.095 2.64 0.139 8.36 9.09
Self-Sup 0.065 0.101 2.52 0.156 8.29 9.02
Full-Sup 0.054 0.097 2.61 0.152 8.48 9.16

encompasses two distinct approaches: (1) training exclusively
on coronary projection data (Only MIP), and (2) implementing
self-supervised learning (Self-Sup) through a Masked AutoEn-
coder framework [57] (Table VI). The removal of coronary X-
ray angiography and fundus vascular data (Only MIP) leads
to a decline in both the diversity and statistical similarity
of the generated data. The performance gap occurs because
incorporating additional datasets enhances vascular diversity
and structural variation during training, enabling the DSFE
module to more effectively capture visual and morphological
characteristics across different vessel types. When trained
with self-supervision, the overall performance shows a slight
decrease (compared to supervised model) due to the absence
of categorical and vessel-specific label information and the
removal of GCN, which aligns with expectations. Nonethe-
less, self-supervised training offers greater adaptability for
extending our method to other datasets, mitigating the need
for manual 2D annotations and facilitating the incorporation
of larger-scale data into the pre-training process.

3) The Number of Points.: In our framework, we employ
farthest point sampling to extract a fixed number (N ) of
representative points from the vascular surface point cloud,
with interpolation implemented for cases existing fewer points.
To investigate the effect of different point cloud sizes on
performance, we conduct an analysis summarized in Ta-
ble VII. When using a relatively small number of points
(N = 2048), the representation of the vascular network
exhibits more geometric approximation errors, leading to a
decline in generation performance. While denser point clouds
intuitively provide more accurate reconstructions, they also
impose greater storage and computational demands. Therefore,
selecting an appropriate point cloud resolution is essential to
achieving an optimal balance between resource efficiency and
generation quality.

TABLE VII
ABLATION EXPERIMENT ON THE NUMBER POINTS OF 3D VESSELS.

Method Ave ∠(Dis) ∠(Err) DIV
User Score
All 50%

N = 2048 0.107 0.122 2.59 0.150 7.96 8.83
N = 4096 0.054 0.097 2.61 0.152 8.48 9.16
N = 6144 0.056 0.088 2.43 0.157 8.50 9.28

G. Voxel Visualization and Point2Voxel
In addition to the point cloud visualization of the vascular

system, we provide voxel visualization results on Coronary
Dataset (Fig. 11). These results are derived from the generated
3D point clouds. The process involves several key steps: (1)
transforming the generated point cloud coordinates into the
original 3D coordinate system; (2) filling each point with a
specified radius and refining to obtain the centerline structure;
(3) applying the minimum spanning tree algorithm to extract
all vascular paths; (4) for each point along the path, identifying
the corresponding point on the 2D MIP image to calculate the
radius; and (5) smoothing the radii along the centerline, and
reconstructing the blood vessels based on the centerline and
associated radii.
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Fig. 11. Synthetic point clouds and corresponding voxel visualization.

V. LIMITATION AND FUTURE WORKS

A. Generation Result
A limitation of our approach lies in its reduced applicability

to densely structured vascular networks, such as cerebrovas-
cular systems, where excessive vessel crossings and overlaps
in 2D MIP images introduce challenges. Consequently, our
validation is restricted to the vessels of the Circle of Willis on
Cerebral Dataset. While our method demonstrates improved
capability in generating detailed and realistic vascular struc-
tures compared to existing approaches [3]–[5], [26], [31],
the vascular structures synthesized by VesselDiffusion are
currently limited to specific anatomical regions and scales. Ex-
tending its applicability to larger and more complex vascular
networks remains an important avenue for future research.

B. Framework Design
Our method follows a two-stage process, meaning the qual-

ity of the generated 2D images directly influences the fidelity
of the final 3D vascular reconstructions. The first stage requires
segmented vascular data to train the MIP image generation.
Although incorporating a more extensive set of segmented 2D
vascular images could enhance generation performance, the
manual segmentation process incurs additional labor costs,
imposing constraints on the model’s scalability. While our
proposed VesselDiffusion (trained on 3D point clouds and
MIP images) mitigates some of the deficiencies present in
the generated 2D images (as outlined in Sec. IV-B.2), this
dependency nonetheless constrains the broader utility of the
method. Exploring techniques to reconstruct accurate 3D
vascular structures from real 2D X-ray images remains a
compelling direction for future research.

VI. CONCLUSION

In this study, we introduce VesselDiffusion, a novel method
for generating 3D vascular systems based on diffusion model.
Unlike natural image generation, which benefits from vast
datasets comprising thousands to millions of images, vascular
synthesis is constrained by the relatively limited availability
of 3D training data. To address this challenge and effectively

capture the complexity and diversity of vascular structures, we
propose a two-stage generation framework. In the first stage,
we utilize a large corpus of available generic 2D vascular
data to generate a variety of MIP images. Conditioned on
these 2D images, a 3D point cloud generation network is
employed, where the MIP image guides the formation of
vascular structures, thereby reducing the complexity of 3D
generation. The 3D generation model combines ViT and GCN
to extract comprehensive 2D image features, integrating both
visual features of global rationality and structural features of
local vascular details within the denoising function of the
diffusion model to ensure the consistency of the generated
3D structures with the 2D images. Our proposed method
produces 3D vascular systems characterized by rich diversity
and anatomical accuracy. Extensive experiments on different
datasets demonstrate the effectiveness of our approach.
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