
FineType: Fine-grained Tapping Gesture Recognition for Text
Entry

Chentao Li
lict23@mails.tsinghua.edu.cn

Department of Automation, BNRist, Tsinghua University
Beijing, China

Ziheng Xi
xizh21@mails.tsinghua.edu.cn

Department of Automation, BNRist, Tsinghua University
Beijing, China

Jianjiang Feng∗
jfeng@tsinghua.edu.cn

Department of Automation, BNRist, Tsinghua University
Beijing, China

Jie Zhou
jzhou@tsinghua.edu.cn

Department of Automation, BNRist, Tsinghua University
Beijing, China

a b c

d

< 90°

≈ 90°

> 90°

Figure 1: Diagram of the core concept of FineType. (a) A user wears the wristband device and can perform eyes-free text input
while using AR glasses or working on a regular computer by tapping their fingers on a flat surface (desk, arm). The tapping
gestures are primarily composed of (b) different finger combinations and (c) three types of tapping finger postures. FineType
allows for versatile text input, mapping tapping gestures to letters, numbers, and symbols, as shown in (d).

ABSTRACT
With the rise of mixed reality (MR) and augmented reality (AR)
applications, efficient text input in AR/MR environments remains

∗Corresponding author

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
CHI ’25, April 26-May 1, 2025, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3714278

challenging. We propose FineType, a text entry system using tap-
ping gestures with finger combinations and postures on any flat
surface. Using a wristband with an IMU and an infrared camera, we
detect tapping events and employ a multi-task convolutional neural
network to predict these gestures, enabling nearly full keyboard
mapping (including letters, symbols, numbers, etc.) with one hand.
We collected gestures from participants (N=28) with 10 finger com-
binations and 3 finger postures for training. Cross-user validation
showed accuracies of 98.26% for combinations, 95.53% for postures,
and 94.19% for all categories. For 8 newly defined finger combina-
tions and their postures, classification accuracies were 91.27% and
93.86%. Using user-adaptive few-shot learning, we improved the

https://orcid.org/1234-5678-9012
https://orcid.org/0009-0008-7007-8803
https://orcid.org/0000-0003-4971-6707
https://orcid.org/0000-0001-7701-234X
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3706598.3714278

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

finger combination accuracy to 97.05%. The results demonstrate
our potential to map tapping gestures composed of all finger com-
binations and three postures. Our user study (N=10) demonstrated
an average typing speed of 35.1 WPM with a character error rate
of 5.1% after two hours of practice.

CCS CONCEPTS
• Human-centered computing→ Keyboards; Text input.

KEYWORDS
text entry; deep nerual network; finger posture; finger combination;
interaction techniques

ACM Reference Format:
Chentao Li, Ziheng Xi, Jianjiang Feng, and Jie Zhou. 2025. FineType: Fine-
grained Tapping Gesture Recognition for Text Entry. In CHI Conference
on Human Factors in Computing Systems (CHI ’25), April 26-May 1, 2025,
Yokohama, Japan. ACM, New York, NY, USA, 20 pages. https://doi.org/10.
1145/3706598.3714278

1 INTRODUCTION
With the rise of mixed and augmented reality (MR, AR) head-
mounted devices (HMDs), such as Meta Quest, Apple Vision Pro,
and Microsoft HoloLens, the realization of spatial computing is
becoming possible, paving the way for modern computing and
more advanced human-computer interaction [10, 21]. Text entry,
as a primary method of interacting with computing devices, is a
basic need when interacting with HMDs. While physical keyboards
have been the standard in the PC era due to their high typing effi-
ciency, their lack of portability makes them impractical for mobile
computing. In contrast, touchscreen keyboards on mobile devices
like smartphones, tablets, and smartwatches provide convenient
typing but come with trade-offs, such as reduced accuracy, smaller
size, and limited comfort [16, 28, 69, 72]. Touchscreen text entry
method relies on visual feedback, requiring frequent gaze shifts
between the text area and keyboard while still occupying screen
space despite its compact design [59, 60, 84]. As we move into the
era of spatial computing and become increasingly detached from
PCs and mobile devices, the need for text entry will arise in various
scenarios. However, there is currently no dominant solution for
text input in spatial computing environments [79, 82]. Existing
options either have slow input speeds, which reduce user efficiency
in activities like messaging and note-taking [17]; require mid-air
typing [12, 30, 50] without tactile feedback, leading to fatigue and
inefficiency [11, 27, 35]; or depend on visual feedback with complex
multi-sensor setups and computing resources to track hand tapping
positions [13], making eyes-free operation impossible. Although
voice input is a viable option, it can pose privacy risks and attract
unwanted attention in quiet environments [14, 30, 39].

Revisiting the physical keyboard, it has always been the pre-
ferred choice for prolonged use and heavy text input. One of its key
advantages is its well-organized layout, which distributes a large
number of keys across multiple rows. This allows users to easily
and comfortably reach keys with minimal finger movement and
almost no wrist movement, enabling fast typing [9, 15]. Another
benefit is its tactile feedback, combined with a flat surface for key
presses, which supports prolonged use [27, 62]. We noticed that

when typing on a physical keyboard, users mainly rely on different
fingers and specific finger movements to press the keys. If we ab-
stract these fingers and movements into discrete gestures, then the
keyboard can be seen as defining each key through a combination
of ten fingers and specific finger postures. This insight inspires
us to explore defining different keys based on the gesture of the
tapping finger.

In this paper, we present FineType, a one-handed typing sys-
tem that enables users to type on arbitrary flat surfaces, mapping
nearly all keyboard keys, including letters, symbols, and numbers.
To achieve this, we were inspired by the multi-row layout of physi-
cal keyboards and defined three postures for finger tapping on a
surface (see Fig. 1): middle fingertip touch, front fingertip touch,
and fingernail touch, where the corresponding angles between
the first finger joint and the surface are < 90◦, ≈ 90◦, and > 90◦,
respectively. Meanwhile, FineType used individual fingers and com-
binations of different fingers to represent the letters on each row
of the keyboard. We primarily focus on one-handed input, as it
provides superior portability and flexibility in spatial computing
environments. This approach allows users to keep one hand free,
making it well-suited for a broader range of interaction scenarios.
Moreover, related work has shown that using fingers [54, 83] or fin-
gernail [32] to touch surfaces can effectively increase the efficiency
of touch interaction. Further studies, which use finger orientation
[25, 41, 51, 70, 75] to modify touch input, demonstrates the rationale
for expanding the tapping gesture space using finger posture. By
combining three finger postures with various finger combinations
to create multiple finger tapping gestures, we can nearly achieve
a complete mapping of all keys on a full-sized keyboard. Utilizing
a wristband equipped with an IMU and an infrared camera below
the wrist, FineType detects finger taps and captured the infrared
images of finger tapping gestures in real-time. Subsequently, Fine-
Type employs a detection model based on convolutional neural
networks for recognizing finger postures and combinations. In con-
trast to TapXR [34, 58] device, which consider only different finger
combinations, FineType further takes finger postures into account,
analogous to a keyboard, expanding the input space threefold and
greatly enhancing the variety of command set. Furthermore, while
TapXR’s technical details and raw sensor data are closed off due to
its commercial use, we present the technical details of the hardware
platform and recognition algorithm.

Recent studies on text input through finger tapping on flat sur-
faces have gained significant attention. TapID [52] and TapType
[62] use wrist-mounted IMUs to detect finger taps, while TypeAny-
where [82] utilizes TapStrap [33]. Although these methods adopt
the QWERTY layout for easier user transition, they map ten fin-
gers to 26 letters, lacking a one-to-one mapping. Consequently,
they require complex language models to decode typing sequences,
which struggle with out-of-vocabulary (OOV) words or necessitate
additional gestures for selection [62], ultimately reducing text input
speed. In contrast, FineType encodes input based solely on the index
of the tapping finger and its posture, without relying on spatial
position. This enables a single hand to map up to (25 − 1) × 3 = 93
symbols, allowing one-handed text input with nearly as many keys
as a full-sized keyboard, regardless of device type or touch area.

We designed a multi-task convolutional neural network to detect
fine-grained tapping gestures. The model consists of three branches:

https://doi.org/10.1145/3706598.3714278
https://doi.org/10.1145/3706598.3714278

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

predicting finger postures, detectingmulti-label finger-tapping com-
binations, and regressing fingertip heatmaps. Cross-user validation
(N=28) demonstrated an accuracy of 98.26%, 95.53%, and 94.19% for
10 finger combinations, 3 finger postures, and all 30 fine-grained
gestures, respectively. Furthermore, we proposed a user few-shot
learning method to improve the accuracy of gestures not present
in the training set. Additionally, ablation studies further confirmed
the advantages and rationality of our model design.

In an online text entry study (N=10), after 2 hours of practice,
participants using Finetype achieved an average of 35.1 WPM and
5.1% character error rate on transcription tasks containing only
English letters, which is 93% of the one-handed touchscreen input
speed. For a more comprehensive phrase set containing letters,
numbers, and symbols, they achieved 15.0 WPM and 7.5% character
error rate. FineType outperformed TapXR in text entry speed and
demonstrated lower error rates on complex symbol sets. Subjective
user feedback and quantitative analysis also confirmed the comfort
and typing performance of FineType.

In summary, our paper makes the following core contribution:
• We present a one-handed text input system using wearable wrist
sensors to detect fine-grained tapping gestures on flat surfaces,
combining three distinct finger-tapping postures with finger com-
binations. This approach enables one-handed mapping of letters,
numbers, and symbols, providing functionality comparable to a
full-sized keyboard.

• We propose a convolutional neural network architecture capable
of recognizing up to 93 fine-grained tapping gestures by decoding
finger combinations and tapping postures. Offline cross-user
validation and ablation studies confirmed the effectiveness of our
network design.

• We conducted a text entry user study (N=10) to evaluate text
input performance on the MacKenzie and Soukoreff’s phrase set
[47] and a more comprehensive character set.

2 RELATEDWORK
This work mainly focuses on hand-based text input, so we reviewed
hand-based text input techniques proposed or potentially usable
for XR systems. Table 1 summarizes some representative methods
and their performance.

2.1 Hand-worn Devices
Another forms of wearable input are hand-worn devices equipped
with various sensors. KITTY [40] and DigiTouch [73] utilize elec-
tronic contacts or partially conductive fabric strips on gloves to
detect finger touch events, achieving typing speeds of 1.8–5 WPM
and 16 WPM, respectively. PrinType [45] uses different finger re-
gions as a virtual keyboard in HMD VR and achieves 34.22 WPM
with a Bayesian decoder, but its use of fingerprint sensors may be
affected by surface conditions like finger moisture. PrinType also
requires a time-consuming fingerprint registration process and can
only be used by the registered user. QwertyRing [23] utilizes an IMU
to detect typing movements with the index finger on a flat surface,
estimating characters based on finger direction. TapStrap [33] is a
commercial typing accessory that attaches an inertial sensor ring
to each finger to detect character input on flat surfaces. Typeany-
where [82], based on TapStrap, has designed a language model that

decodes typing sequences based on finger tapping sequences. An-
other similar device, Telemetring [64] detects finger tapping events
using a telemetry sensing method and uses chords for text input.
It achieved a recognition rate of 89.7% for 31 finger combinations,
but it only evaluated one person and did not report typing speed.
Lian et al. [42] proposed an arc-shaped keyboard layout with large
angular differences between adjacent keys, using motion-sensing
rings on each hand to detect inputs. This design maps up to 15 keys
per hand but requires precise positioning and has not been tested in
typing experiments. Furthermore, using all ten fingers with decoder
methods [62, 82], although mimicking traditional keyboard typing
habits, does not achieve precise mapping to specific letters, making
it difficult for users to type non-word characters (like passwords
and phone numbers). FineType addresses this issue by introducing
three finger postures combined with different finger combinations,
providing three precise encodings for each finger combination. This
maximizes distinguishable finger tapping gestures and significantly
expands the mappable character set.

2.2 Wrist-worn Devices
Wearing a wristband device offers a portable text input method that
does not hinder hand interactions. PalmType [71] uses the palm
as a virtual display for smart glasses, achieving a typing speed of
7.7 WPM. DigiTap [55] employs a wristband with a camera and
accelerometer to detect thumb-to-finger tapping, reaching 10 WPM.
Similar to DigiTap’s hardware, our setup replaces the LED flash
with an infrared camera, enabling input without visible light, mak-
ing it better suited for privacy-sensitive scenarios. However, such
methods often result in low typing speeds, limiting their practi-
cality. WrisText [19] uses wrist movements, detected by infrared
sensors in a wristband, to mimic joystick controls, achieving 9.9
WPM. ViFin [6] utilizes wrist-worn IMUs to detect vibrations from
mid-air finger writing, while TapID [52] detects touch events on
passive surfaces using an accelerometer, aiding VR input. TapType
[62] enhances TapID’s accuracy by eliminating VR dependencies
with a Bayesian classifier. TapXR [58] uses a visual sensor to predict
finger combinations but does not fully leverage visual analysis for
advanced hand feature detection. Niikura et al. [53] used a wrist-
mounted camera and contact microphone to distinguish light and
heavy taps, achieving ~77% accuracy for 36 gestures under desk
conditions, but requiring ambient noise calibration and lacking a
text entry study. Chen et al. [7] used IMUs to detect finger taps on
the back of the hand, mapping a numeric keypad and symbols with
93.89% accuracy across 12 positions, but without reporting typing
speed. This approach requires precise tapping force and accuracy,
limiting its ease of use. Additionally, ShadowTouch [43] uses light
sources beneath the wrist to illuminate finger shadows, enabling
the inference of the touch state of each finger.

2.3 Mid-air Typing Based on Head-worn
Camera

Another emerging approach in text input technology is HMD-based
mid-air typing. Yu et al. [78] utilized an HMD’s directional tracking
to enable gesture typing based on head orientation, achieving an
average typing speed of 24.7 WPM. The VISAR keyboard, designed
for HMD-AR scenarios, employed a statistical decoder to reach 17.75

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

Table 1: Hand-based text input methods and sensing technologies proposed or potentially usable in XR scenarios, along with
their words per minute (WPM) and error rate (%). (‘*’ in the performance indicates that the method relies on a decoder for
input. ‘-’ indicates that the method does not report the performance.) The table also includes the number of supported keys or
gestures, whether eyes-free typing is possible, and whether out-of-vocabulary (OOV) words are supported.

Category Study Year Sensor Number of
Keys / Gestures Eyes-free Support

OOV words Speed(WPM) Error(%)

Head-worn

Yu et al. [78] 2017 VR HMD 26 ✗ ✗ 24.73* 0.57*/2.46*/1.13*
VISAR [12] 2018 AR HMD 27 ✗ ✗ 17.8* 0.6*

Adhikary and Vertanen [2] 2021 VR HMD + LeapMotion 28 ✗ ✔ 16/15 1
ThumbAir [18] 2023 VR HMD 8 ✗ ✗ 13.73* 1.2*
Fu et al. [17] 2024 AR HMD 27 ✗ ✔ 40 9

Hand-worn

DigiTouch [73] 2017 Touch gloves 28 ✔ ✔ 16 0.85
QwertyRing [23] 2020 IMU 26 ✔ ✗ 13.74-20.59* 1.17*
TelemetRing [64] 2020 Telemetry 31 ✔ ✔ - 10.3
PrinType [45] 2022 Fingerprint sensor up to 65 ✔ ✔ 29.56*/32.38*/34.22* 8.78

TypeAnywhere [82] 2022 TapStrap (10 IMUs) 14 ✔ ✗ 70.6* 1.50

Wrist-worn

DigiTap [55] 2014 IMU+Camera 12 ✔ ✗ 10 6.3
PalmType [71] 2015 IR sensor 28 ✔ ✔ 10.01 1.58
WristText [19] 2018 IR sensor 6 ✔ ✗ 9.9* 5.92*

ViFin [6] 2021 IMU 36 ✔ ✔ 16 13.5
TapType [62] 2022 IMU 12 ✔ ✔ 19* 0.6*
Chen et al. [7] 2023 IMU 12 ✔ ✗ - 6.11/6.01/5.60

Ours - IR Camera + IMU up to 93 ✔ ✔ 35.1 5.1

WPM [12]. MRTouch [76] leveraged infrared and depth cameras
in AR to track hand postures, enabling precise clicks with reduced
positional errors. Fu et al. [17] predicted key presses from user-
perspective video streams captured by AR headsets, achieving 40
WPM. ThumbAir [18] demonstrated a mid-air typing method using
thumb movements, averaging 13.7 WPM with a 1.2% error rate,
while STAR [37] introduced a virtual QWERTY keyboard overlaid
on the skin, achieving 21.9 WPM. However, these methods often
rely on AR/VR cameras requiring full hand visibility, making them
unsuitable in cases of occlusion. While mid-air text input methods
offer promise, prolonged use can lead to discomfort [27, 35]. Recent
advancements using head-mounted displays include StegoType
[56], achieving 42.4 WPMwith unmarked egocentric hand tracking,
and TouchInsight [63], reaching 37 WPM with uncertainty-aware
touch detection on physical surfaces.

2.4 Text Entry Based on External Camera
Some methods leverage body-worn or external cameras to recog-
nize hand movements or gestures for text input. Markussen [49, 50]
introduced the Vulture mid-air gesture keyboard, which uses a
marker-based system to track hands, achieving 21 WPM. TypeNet
[48] relies on an RGB camera placed on a flat surface to train neural
networks for capturing typing video frames and letters, achieving
93.5% character-level accuracy. However, it requires precise cam-
era placement, struggles in low-light conditions, and incurs high
power consumption due to continuous operation. Richardson et al.
[57] employed OptiTrack cameras to capture hand movements and
trained temporal convolutional networks to decode these into text.
ATK [77] and studies by Adhikary and Vertanen [2] utilized Leap
Motion sensors to detect 3D hand postures and enable mid-air typ-
ing on QWERTY keyboards. However, the lack of tactile feedback in
these systems often leads to fatigue during prolonged use [35]. Pres-
sureVision++ [20] estimated fingertip pressure intensity with RGB
cameras, offering tactile feedback through physical surface touch
and achieving 25.8 WPM, which is 78% faster than gesture-based

mid-air keyboards. These external camera-based methods often
face challenges with obstruction, precise sensor placement, and
limited adaptability to different environments. In contrast, FineType
uses an infrared camera beneath the wrist to capture finger tapping
and contact postures, tripling the character set while adapting to
various lighting conditions. Combined with an IMU sensor, the
camera activates only when fingers move, significantly reducing
power consumption.

3 FINETYPE OVERVIEW
We briefly introduce the set of finger gestures used to train our
model, the design of our hardware prototype, and a high-level
overview of the system.

3.1 Training Gesture Set
We have defined three finger postures and ten finger combinations,
and included a category for non-tap images with the surface. Fig. 2
displays the gesture set used for training, along with real images
captured by our wristband device under each category. We trained
themodel using only ten tapping finger combinations, butwe expect
that training with just these combinations will enable the model to
distinguish all possible tapping combinations (i.e. 25 − 1 = 31). This
design leads to two questions: Q1: Why were these three postures
selected? Q2: Why were these finger combinations chosen?

To answerQ1, physical keyboards have amulti-row layout which
has proven to enable prolonged use for efficient text input [27], in-
dicating that users can tolerate fingers bending to different degrees
with low fatigue. Additionally, users are highly sensitive to the
perception of their hands and can identify them without visual
attention [45]. We defined three finger contact postures with the
surface: mid-fingertip contact, front-fingertip contact, and nail con-
tact. These three gestures are easy for users to distinguish and
operate. Each finger posture we defined is not a discrete set but a
continuous range, described by the angle between the fingertip and

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

10 Finger Combinations

5 single-finger 5 multi-finger

3 Finger
Poses

1 Non-Tap

• • •

1

2

3

Figure 2: Training gesture set. A total of 31 categories, including 30 tapping gestures composed of 10 finger combinations and 3
finger postures, plus 1 non-tap gesture. Image samples corresponding to different finger combinations from various users are
displayed as well.

the surface, corresponding to < 90◦, ≈ 90◦, and > 90◦, respectively.
Choosing fewer postures (e.g. N=1,2) would significantly reduce the
number of gesture sets, and more postures would complicate the
divisions in the fingertip area, confusing users and leading to errors.
Based on these considerations, we chose these three postures.

To answer Q2, our goal is for the model to recognize all finger
combinations. A straightforward approach would involve collect-
ing data for all 31 combinations, but this would require substantial
resources in terms of data collection, participant recruitment, and
model training. To address this, we adopt a strategy of using a
limited subset of gestures to learn general finger movement repre-
sentations and infer the distribution of the full gesture set. For other
potential finger combinations, we propose a user-adaptive few-shot
learning approach to enhance accuracy. This method requires min-
imal resources, making it a highly efficient solution. This subset
of gestures was chosen based on learning theories and ergonomic
considerations. Single-finger tapping provides single-label data, of-
fering clear supervisory signals that enhance the model’s ability
to effectively learn distinguishing features between categories [5].
Finger tapping efficiency and comfort are significantly influenced
by the anatomical and neurological connections between fingers.
Adjacent finger pairs, such as index-middle or middle-ring, are more
ergonomic due to shared tendons and synchronized muscle control,
which facilitate coordinated movements. In contrast, non-adjacent
pairs like index-ring or middle-little involve reduced motor coordi-
nation and higher muscle strain. Studies by Hager-Ross et al. [24]
highlight the limited independence of the ring finger, which is prone
to involuntary movement, while research by Francis and Kinoshita
[3] shows that non-adjacent finger combinations result in slower
tapping cadence and greater fatigue. Additionally, Loehr et al. [46]
emphasize biomechanical constraints, where the movement of one
finger often influences others, particularly less independent ones
like the ring finger. Based on this, we chose ten gestures, including

five simple single-finger gestures and five multi-finger gestures
where the tapping fingers are adjacent.

3.2 Hardware Prototype
One of the key challenges faced by vision-based sensing modalities
is interference from ambient light. To mitigate this issue, we use
an infrared camera equipped with infrared LEDs. Additionally, a
motion sensor (i.e. IMU) capture wrist vibration signals to detect
tapping events. Our wristband, as shown in Fig. 3a, features a cir-
cular design comprising a Velcro strap, an IMU, an infrared camera,
and an array of infrared LEDs. The infrared camera (OV2710) is
equipped with a 3.5mm lens, providing a 100-degree field of view.
It captures 1920×1080 resolution infrared images at 30 fps, trans-
mitted via USB. Surrounding the camera is an array of 10 infrared
LEDs operating at a wavelength of 850nm. The LEDs activate si-
multaneously with the camera. The ICM-42688-P 6-axis MEMS is
integrated into the PCB and powered by an independent lithium
battery. Sensor signals are upsampled to a frequency of 100 Hz
and transmitted to the host computer via UART. Fig. 3b shows the
wristband’s form factor: the IMU is mounted on a 3 cm square PCB
attached to the strap via Velcro, while the infrared camera is fixed
perpendicularly to the wrist using an acrylic mount, positioned 2
cm below the wrist. This design ensures that the infrared LED array
illuminates the finger area rather than the palm. During tapping,
users can rest their elbow or forearm muscles on the table, natu-
rally raising the wrist for typing. The entire device weighs 36.93 g
(excluding cables), lighter than the Apple Watch Series 9 (42.3 g).

Why Fusion Sensors? Although technologies [7, 52, 62] can
use one or more IMUs on the wrist to detect specific finger taps,
they struggle to exceed 10 gestures while maintaining a high ac-
curacy. Considering our gesture set, which involves not only com-
binations of fingers but also their postures, IMU signals cannot
achieve such fine-grained distinctions. Digits [36] employs an IR

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

IR Camera

IR LED Array

IMU

(a) Hardware Prototype

Wristband

Touch points Arm ContactCamera

BA

A = 2 cm
B = 3.6 cm

PCB

C
C = 3 cm

90°

(b) Wristband’s form factor

Figure 3: FineType’s hardware prototype includes a wristband
with an IMU fixed above it and an infrared camera with IR
LEDs positioned under the wrist.

camera mounted below the wrist, paired with an IR laser projec-
tor, to estimate the hand’s 3D pose, showcasing the potential of
gesture regression from this camera setup. Therefore, capturing
images during tapping moments using the camera was chosen as
input for the model. Nevertheless, keeping the camera active at all
times and performing inference on every frame to determine the
tapping gesture would result in high power consumption, making
it impractical for user applications. In contrast, using an IMU to
detect tapping events offers robust, low-latency, and low-power
contact detection compared to using optical sensors [22]. Hence,
we decided to integrate both IMUs and cameras into our system.

3.3 System Overview
Fig. 4 illustrates the overall system flow of FineType. We use an
IMU sensor to detect the distinct wrist vibrations caused by finger
taps. When detected immediately, we activate the camera to cap-
ture images at the moment of tapping. We have developed a set of
algorithms for fine-grained finger gesture recognition, employing
a multi-task CNN to determine the combinations and postures of
fingers tapping the surface. This process already supports user in-
teractions such as text entry and mapping function keys. For users
who wish to further enhance their accuracy with specific finger
combinations, we have designed a user-adaptive transfer learn-
ing method, capable of mapping all finger combinations. FineType
utilizes standard commercial sensors, making it suitable for integra-
tion into existing wristband devices or as a standalone wearable for
daily life and XR applications in text input and command control.

4 FINETYPE MODEL
4.1 Tap Image Capture
When a user taps the surface, the vibrations from the finger loca-
tions propagate through the hand and are precisely captured by the
3-axis accelerometer at the wrist, defined as the acceleration vector
𝑎(𝑡) = [𝑎𝑥 (𝑡), 𝑎𝑦 (𝑡), 𝑎𝑧 (𝑡)]. Based on our observations, a tapping
event typically causes a noticeable change in the accelerometer
signal lasting approximately 200-400 ms, during which the finger
remains in contact with the surface for about 3-5 frames. We need
to detect the tap event as the finger contacts the surface and then
activate the camera to capture the frame. The finger tap causes a
strong, short-duration change in the accelerometer, characterized
by a significant spike in the acceleration magnitude ∥𝑎(𝑡)∥2. Due
to sensor noise and numerical errors, We use a moving average
filter to smooth the signal, with a window size of 𝑁 = 20, defining

the average energy at a given moment as

𝐸 (𝑡) = 1
𝑁

𝑁−1∑︁
𝑖=0

[𝑎𝑥 (𝑡 − 𝑖)2 + 𝑎𝑦 (𝑡 − 𝑖)2 + 𝑎𝑧 (𝑡 − 𝑖)2], (1)

and we take the first-order difference of 𝐸 (𝑡) yields the abrupt
signal 𝐼 (𝑡) = 𝐸 (𝑡) −𝐸 (𝑡 − 1). We then traverse the data to find local
maximum, which indicate the moment just a finger taps the surface.
Let 𝑡𝑙 and 𝑡𝑟 represent the local minima of the signal 𝐼 on the left
and right sides of time 𝑡 , respectively. The prominence of the signal
𝐼 (𝑡) is defined as:

𝑃 (𝑡) = 𝐼 (𝑡) −min{𝐼 (𝑡𝑙), 𝐼 (𝑡𝑟)}. (2)

To prevent sensor drift errors from repeatedly triggering tap events,
we consider a tap event valid only when the prominence 𝑃 ≥ 0.06.
Furthermore, after detecting a valid peak, a 200 ms detection pause
is introduced, allowing up to 300 input events to be detected per
minute. Since the signal is collected in real time, if the current time
𝑡 is a tapping moment, it takes approximately 3–5 additional ac-
celerometer data points to compute the prominence. Once a valid
peak is detected, the camera is triggered to capture the frame. Fig. 5
illustrates the signal variations observed while inputting the string
“finetype” using tapping gestures. We also tested the tap detection
method from TapID [52] and found it typically detects taps 50~100
ms earlier than our method, often capturing the finger before it
touches the surface. This is likely because TapID captures moments
of rapid acceleration signal changes, which do not necessarily indi-
cate contact with the surface. In contrast, our method detects the
inflection point of the average energy, which only occurs when the
finger tap is impeded by the surface, causing a sudden energy drop.

First-order difference

500 1000 1500 2000 2500 3000 3500 4000

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

f i n e t y p e

Figure 5: Tap detection diagram. Our algorithm captures the
moment with the highest energy change from a 3-axis ac-
celerometer to trigger the camera and capture the tapping
moment image. The dashed lines and red cross mark the
tapping timestamps.

4.2 Data Collection
4.2.1 Participants and Apparatus. We recruited 28 volunteers (24
males, 4 females), aged 18–33 years (Mean = 23.6, SD = 3.2), all right-
handed. Each participant spent ~30 minutes on data collection and
received a $15 reward. Our hardware setup (Fig. 6a) consisted of
an IMU transmitting data to a laptop at 100 Hz via UART and an

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

PreProcess

IMU to detect
wrist vibration

Turn on

Camera

Capture finger
Tapping image

Fine-grained Gesture Recognition

Multi-task Deep Learning Model

···

···

Gesture Task

auxiliary task

User-adaptive
Transfer Learning

Feature
Extractor

base

new

ABC

Gesture Interaction

Text Entry

Function Keys···

Figure 4: System overview of FineType, consisting of four main modules: Tap event preprocessing, Fine-grained gesture
recognition, User-adaptive transfer learning for gestures (optional), and Interaction with tapping gestures.

infrared camera connected via USB. Upon detecting a valid tap
(Section 4.1), the camera captured 8 consecutive frames at 30 Hz.

4.2.2 Gesture Data. To clearly define the gesture set for users, we
provided printed diagrams of finger pressing areas (Fig. 6b). Dur-
ing typing, the wrist and palm remained stationary, allowing free
movement of the fingers. Users were instructed to press within 3
predefined finger areas (Rows 1, 2, and 3) using 3 postures and 10
finger combinations to ensure clarity. After sufficient practice and
confirmation of user understanding, formal gesture collection be-
gan. Each finger combination and posture (Section 3.1) was repeated
four times, resulting in 4 × 30 = 120 taps. The gesture collection
interface (Fig. 6c) displayed the required finger combination and
posture in red, alongside real-time IMU signals and tap images
captured by the camera. Before each tap, the interface highlighted
the upcoming gesture; upon tap detection and image capture com-
pletion, it automatically advanced to the next gesture. To minimize
order effects, gestures were arranged using a Latin-square design.

We accounted for varying lighting conditions during data col-
lection, with 13 participants recorded under indoor night lighting,
8 outdoors in dim evening light, and 7 in well-lit daytime settings.
The dataset also includes instances of motion blur caused by rapid
tapping, low light intensity, partial finger occlusions, and slight
image rotations, ensuring coverage of diverse real-world scenarios.

4.2.3 Non-tap Data. In real-world scenarios, various movements,
such as finger pinching or wrist shaking, can produce signals simi-
lar to faint finger taps, making them difficult to differentiate using
only an IMU. To address this, our system analyzes images to verify
whether wrist vibrations result from finger taps. During gesture
data collection, we captured eight frames starting from the tap, in-
cluding many instances where no surface contact occurred. Instead
of collecting additional non-tap data, we extracted non-contact
instances from the last frame of the eight-frame sequences. We
randomly selected the last frame from 300 gestures in the dataset as
Non-Tap data. Since these gestures do not involve surface contact,
finger postures are unrestricted and not further categorized.

4.2.4 Annotation. Our program automatically annotates images
collected during data acquisition, requiring only manual annota-
tion of fingertip positions. Common finger keypoint detection al-
gorithms and devices (e.g., MediaPipe1 and LeapMotion2) often

1https://mediapipe-studio.webapps.google.com/demo/hand_landmarker
2https://www.ultraleap.com/

(a) Data Collection Setup

Row 3

Row 2
Rowl 1

Wrist

Palm

Finger Tap Area

(b) Finger Pressing Areas

(c) Capture Demo

Figure 6: Training gesture collection diagram. Users are
instructed to perform actions as indicated by the capture
program (the red square indicates the finger gesture to be
pressed). Then the program automatically records IMU and
image data at the moment of tapping and annotates it.

exhibit inaccuracies or fail under our camera setup. To ensure pre-
cision, we manually annotated the five fingertip positions in each
image. Incorrect tap samples were excluded, resulting in a final
dataset of 3,541 images.

4.3 Model Development
4.3.1 Multi-Task Network. Multitask Learning (MTL) leverages
shared information across related tasks to improve neural network
generalization, enhancing performance, efficiency, memory usage,
and convergence speed [67]. The primary task of our model is to
recognize finger postures during surface taps and identify simulta-
neously pressed fingers. Given the significant variation in fingertip
regions with different postures—where more bent fingers make
fingertips more prominent—we incorporate a secondary task to
predict fingertip heatmaps. This secondary task widely used in
keypoint detection is designed to help the model focus on finger
contact features, reducing the likelihood of overfitting to irrelevant
environmental details.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

Encoder

Co
nv

 +
 B

N

Re
sB

lo
ck

 1

Re
sB

lo
ck

 4

CA
 B

lo
ck

Pose Classification

Av
er

ag
e

Po
ol

in
g

Fl
at

te
n

Hidden
Feature Map

FC
, 3

2
+

RE
LU

FC
,

3

Fingertip Heatmap

Finger Pose
Prob

[0.9, 0.1, 0]Decoderi

Up Block 1

Up Block 2

Up Block 3

Conv Block

C

Fingeri Classification

Co
nv

 +
 B

N

Co
nv

 +
 B

N
 +

 R
EL

U

FC
,

 1

FC
,

32

Input Image

Finger Prob

[0.9, 0.2, 0.1, 0.1, 0] C
Concatenate

Fingeri
Embedding

Pose
Embedding

Re
sB

lo
ck

 2

Re
sB

lo
ck

 3

F! F" F#

F$

𝑋

F#

𝐹𝑖𝑛𝑔𝑒𝑟	𝑖 𝑖 = 2

𝑖 = 5

…

𝑖 = 1

𝑌%!

𝑌%"

𝑌%#

……

User-adaptive

…

Finger
Embeddings

1 2 5

N
ew

 G
es

tu
re

Pr
ed

ic
tio

n
He

ad

Create for
Each User

FC, 32

FC, N+1

Figure 7: A multi-task multi-label CNN for fine-grained tapping gesture recognition; along with an optional user-defined
gesture classification network.

4.3.2 Multi-label Finger Representation. To enable themodel to pre-
dict all possible finger combinations, rather than just the predefined
ones in 3.1, we reframed the problem as a multi-label classification.
Each finger is treated as a separate label, marked as 1 if tapped
and 0 if not. This approach allows the model to learn the unique
characteristics of each finger when pressed, enabling recognition
of all finger combinations.

4.3.3 Model Architecture. We developed an encoder-decoder net-
work architecture, as shown in Fig. 7. The encoder starts with
initial feature extraction using 64 convolutional kernels (3×3) com-
bined with Batch Normalization (BN), followed by four residual
convolutional blocks from the ResNet18 [26] backbone, each us-
ing 3×3 kernels. The number of kernels increases from 64 to 128,
256, and 512, yielding feature maps 𝐹1, 𝐹2, 𝐹3, 𝐹4. We utilized pre-
trained ResNet18 weights from the ImageNet dataset [8] to accel-
erate training convergence. Following convolution, a Coordinate
Attention (CA) module [29] captures spatial location information,
enhancing the network’s understanding of spatial relationships
and inter-channel dependencies. The feature map 𝐹5 output by
the CA module undergoes global average pooling and is flattened
into a 512-dimensional latent vector 𝑋 , which is then processed
by two MLP layers for posture classification. For the heatmaps of
each finger, we constructed five identical decoder modules. Each
decoder contains three upsampling convolution layers, doubling
the feature map dimensions, with channel counts of 128, 64, and
32, followed by a convolution layer to output a 56×56 regression
heatmap. During upsampling, each input feature is concatenated
with the corresponding encoder feature map 𝐹𝑖 (for 𝑖 = 1, 2, 3, 4, 5),
resulting in output feature maps 𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3, 𝑌𝑖4.

To improve the network’s focus on fingertip positions when
predicting tapping finger combinations, we combined deep feature
information from both the image and the fingertip heatmap regres-
sion. For the 𝑖th finger, we concatenated 𝐹3 with 𝑌𝑖2 and passed it
through a two-layer convolutional module with 3×3 kernels (16

and 4 filters, respectively) and BN. This was followed by an MLP
classification head that outputs the sigmoid value for that finger.

4.3.4 User-adaptive New Gesture Recognition. While our multi-
label tagging approach enables the model to recognize all finger
combinations, the absence of unseen combinations in the train-
ing set may lead to misclassification of new gestures as existing
categories. However, our network, trained on extensive gesture
data, has developed robust general finger representation features.
We propose a user-adaptive few-shot method aimed at leveraging
these general features to quickly adapt to new gesture categories.
With just a few simple registrations of new gestures, users can
achieve accuracy that surpasses the original performance. In this
approach, we freeze the feature extraction layers trained on the
original gesture set and introduce a new lightweight classification
head for each user, as shown in the right block diagram of Fig. 7.
By training only this fully connected prediction head while keep-
ing the feature extractor weights fixed, the method eliminates the
need for backpropagation through the entire network, significantly
reducing memory usage and achieving training speeds over two
orders of magnitude faster than conventional fine-tuning methods,
as shown in Table 5. This process also removes the requirement
for annotated finger heatmaps, making it more suitable for com-
mercial deployment. By leveraging a small number of samples for
new gestures, this method extends the network’s adaptability with-
out necessitating complete retraining, providing a practical and
efficient solution. For implementation details, refer to Appendix A.

4.4 Model Training
4.4.1 Data Augmentation. Our analysis of the training data reveals
that users exhibit slight variations in wrist tilt, either left or right,
when performing gestures, and their wrist heights relative to the
desk also differ. Some users keep their wrists close to the desk
for comfort, while others raise them to facilitate finger movement,
which impacts both the camera angle and the infrared light path.

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Additionally, user habits lead to significant differences in image
brightness and contrast, even for the same gestures. Images cap-
tured in daylight often display lower hand contrast and higher
background brightness. The wristband’s positioning also varies,
with some users wearing it closer to the hand, making it more visi-
ble in the images, while others wear it further away, capturing more
of the hand. To address these variations and prevent overfitting,
we propose five data augmentation techniques: 1) image flipping to
account for both hands, 2) brightness adjustment using a scaling
factor drawn from a uniform distribution 𝑆bright ∼ 𝑈 (𝑠min, 𝑠max),
with 𝑠min = 0.5 and 𝑠max = 1.5; 3) contrast adjustment using a
similar scaling factor 𝑆contrast ∼ 𝑈 (𝑠min, 𝑠max); 4) random cropping
of a 200×200 block from the input image followed by resizing to the
original resolution to simulate variations in camera position and
angle; and 5) random rotation within a range of -10 to 10 degrees
to model slight wrist tilts.

4.4.2 Loss Function. Our multi-task network mainly includes three
tasks: multi-label finger classification, finger posture classification,
and fingertip position heatmap regression. For the multi-label fin-
ger classification, the loss Lfinger is calculated by determining the
binary cross-entropy loss L (𝑖)

BCE for each finger 𝑖 , as follows:

Lfinger =
1
5

5∑︁
𝑖=0

L (𝑖)
BCE . (3)

For the finger posture classification lossLpose, we use cross-entropy
loss. However, for non-tap images that do not make contact, posture
information cannot be determined. Thus, we define the posture loss
as:

Lpose =
1

𝑁 − 𝑁non

𝑁∑︁
𝑖=0
I(𝑖) · 𝐿CE (𝑝, 𝑝), (4)

where𝑁 represents the total number of data points,𝑁non represents
the number of non-tap data points, I(𝑖) is 0 if the 𝑖th data point is
non-tap and 1 otherwise, and 𝑝, 𝑝 represent the softmax output of
the probability prediction and the true label of the finger posture,
respectively. For fingertip heatmap regression, we use the MSE loss
function, defined as Lreg = LMSE (�̃� , 𝑌), where �̃� , 𝑌 represent the
predicted and actual values of the fingertip heatmap regression,
respectively. Thus, our overall loss function can be expressed as:

L = 𝛼fingerLfinger + 𝛼poseLpose + 𝛼regLreg, (5)

where the weights 𝛼finger, 𝛼pose, 𝛼reg are used to balance the impor-
tance of these three tasks. We expect that the fingertip regression
task helps the model focus better on the finger tapping details
within the image, and this task is as important as the other tasks.
Therefore, we use dynamic weight adjustment, selecting the re-
ciprocals of the respective loss functions for 𝛼finger, 𝛼pose, 𝛼reg in
each iteration, ensuring that the importance of the three tasks is
consistent during each backpropagation.

4.4.3 Training Settings. To evaluate model performance and mit-
igate overfitting, we utilize leave-one-out cross-user validation.
Images are resized from 1920×1080 to 224×224 to match the net-
work input requirements. The heatmaps are computed by applying
a Gaussian distribution N(𝜇, 𝜎2) centered at the annotated finger-
tip coordinates, with 𝜎 = 5. Training is performed using the Adam

optimizer with an initial learning rate of 0.001, which is dynami-
cally adjusted via the ReduceLROnPlateau strategy over 200 epochs.
All experiments are conducted on an NVIDIA GeForce RTX 3090
GPU with 24GB VRAM.

5 EVALUATION
We will validate our model’s recognition capabilities on both the
predefined gesture set and a new set of gestures to demonstrate
its generalizability. Additionally, we conducted ablation studys to
prove the advantages of our method.

5.1 Predefined Gestures Detection
5.1.1 Cross-user Validation. We utilized a leave-one-out cross-user
validation to evaluate our model. The dataset from 𝑁 users, de-
scribed in Section 4.2, was divided into 𝑁 folds [𝑃1, 𝑃2, . . . , 𝑃𝑁],
with each fold using data from (𝑁 − 1) users for training and
the remaining user for testing. This cross-user validation method,
through iterative training and testing, provides a more accurate
assessment of the model’s generalizability while minimizing over-
fitting risks. The model’s performance will be evaluated from two
key perspectives:

• Gesture-Level: We evaluate the model’s performance from a
gesture classification perspective, assessing its ability to recog-
nize finger combinations (11 categories: 10 finger combinations
+ 1 non-tap), finger postures (3 categories), and fine-grained ges-
tures (31 categories: 30 gestures + 1 non-tap). For each evaluation
mode, we compute the average accuracy and Macro-F1 score
across all categories. Additionally, for finger combination and all
fine-grained gestures, we calculate the false positive rate for the
non-tap category.

• Finger-Level: We examined the model’s classification perfor-
mance for individual fingers. For each finger, we computed the
accuracy and false positive rate for binary labels, to assess the
model’s ability to recognize different fingers.

The final evaluation metric is the average of all users’ validation
results (accuracy, F1 score, and false positive rate). For any valida-
tion metric 𝐸, given user evaluations [𝐸1, 𝐸2, . . . , 𝐸𝑁] (𝑁 = 28), the
result is calculated as 𝐸 = 1

𝑁

∑𝑁
𝑖=1 𝐸𝑖 .

5.1.2 Ablation Study. We remove data augmentation method (Sec-
tion 4.4.1) and the fingertip regression auxiliary task (Section 4.3.1)
individually to evaluate their respective contributions to the results.

5.1.3 Results. Table 2 summarizes the evaluation metrics for ges-
ture and finger recognition from two ablation studies, compared to
our baseline method. Our approach achieved accuracies of 98.26%,
95.53%, and 94.19% for finger combinations, posture classification,
and overall gesture recognition, respectively, with corresponding
F1-scores of 98.45%, 95.53%, and 93.84%. These results demonstrate
significant improvements over methods without data augmenta-
tion or the auxiliary task. Moreover, our method reduced the false
positive rate (FP Rate) for non-tap gestures to 1.09%, compared to
2.48% without data augmentation and 2.66% without the auxiliary
task. At the finger level, our method consistently outperformed
others for the index, middle, ring, and little fingers. These find-
ings confirm that our approach effectively reduces false positives

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

Table 2: The average accuracy (%), F1-score (%), and FP Rate (%) at the Gesture-Level and Finger-Level for various ablation
experiments and our method.

Gesture-Level Finger-Level

Metric Method Combination Posture Overall Thumb Index Middle Ring Little

Acc
w/o Augmentation 97.58 93.17 91.24 99.74 99.62 98.95 99.01 99.15
w/o Auxiliary Task 98.18 94.58 93.04 99.70 99.55 99.12 99.23 99.65
Ours 98.26 95.53 94.19 99.66 99.66 99.17 99.71 99.77

F1-score
w/o Augmentation 98.09 93.16 90.59 99.33 99.58 98.88 98.72 97.88
w/o Auxiliary Task 98.39 94.57 92.31 99.26 99.52 99.08 98.95 99.03
Ours 98.45 95.53 93.84 99.09 99.63 99.11 99.62 99.33

FP Rate
w/o Augmentation 2.48 - 2.48 0.26 0.26 0.80 0.75 0.61
w/o Auxiliary Task 2.66 - 2.66 0.30 0.21 0.45 0.38 0.10
Ours 1.09 - 1.09 0.29 0.35 0.49 0.24 0.03

Group
0

Group
1

Group
2

Group
3

Group
4

Group
5

Group
6

Group
7

Group
8

Group
9

Tr
ue

 L
ab

el

Tr
ue

 L
ab

el

Predicted Label Predicted Label

Predicted Label

Tr
ue

 L
ab

el

Figure 8: Gesture recognition confusion matrix: From left to right, the figures represent three finger postures, 10 finger tapping
combinations plus 1 non-tap, and all fine-grained gesture categories, with average accuracies of 98.26%, 95.53%, and 94.19%,
respectively.

while enhancing the accuracy and reliability of gesture and finger
recognition.

The three confusion matrices in Fig. 8 illustrate the results of
finger pose classification, finger combination classification, and
fine-grained gesture classification. From the finger pose classifica-
tion results (left), the model performs exceptionally well across the
three pose categories: Pose 1 (middle fingertip touch) achieves an
accuracy of 0.982, Pose 2 (front fingertip touch) an accuracy of 0.944,
and Pose 3 (fingernail touch) an accuracy of 0.939. However, the
confusion rate between Pose 2 and Pose 3 reaches 0.058, indicating
a certain degree of ambiguity between these two poses. In the fin-
ger combination classification results (middle), all labels achieve an
accuracy greater than 0.97, except for label 2 (0.95). The results of
fine-grained gesture classification (right) further demonstrate that
confusion primarily occurs between different finger poses within
the same finger combination. Overall, the model performs well in
finger combination classification, but as task complexity increases

with the introduction of finer-grained poses, the classification accu-
racy decreases. This is particularly evident in the confusion between
different finger poses within the same gesture, especially between
Pose 2 and Pose 3.

5.2 Newly Defined Gestures Detection
5.2.1 New Tapping Gesture Set. We introduced 24 new gestures,
consisting of 8 finger combinations paired with 3 finger postures, as
illustrated in Fig. 9. These gestures were not included in the train-
ing data and were designed to evaluate the model’s generalization
capability, specifically its ability to recognize unseen finger com-
binations. The gestures encompass four categories of multi-finger
combinations, ranging from two- to five-finger taps, prioritizing
the flexibility of the thumb and index finger (6 and 5 instances,
respectively) while reducing reliance on the ring and pinky fingers
(4 and 3 instances, respectively) to improve tapping comfort [3].

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

2-finger

1 2 3 4 5 6 7 8

3-finger 4-finger 5-finger

Figure 9: Newly defined gesture set not present in the train-
ing data, composed of 8 new finger combinations and their
corresponding 3 finger postures.

5.2.2 Data Collection. Eight new volunteers (6 males, 2 females,
Age = 23.1 ± 2.7) participated in our data collection study, including
one left-handed individual. Using the program described in Sec-
tion 4.2, we adjusted the gestures being collected. Each participant
performed each gesture 6 times, resulting in 18 gestures per finger
combination (3 postures × 6 repetitions) and a total of 144 gestures
(8 categories × 18 samples). The collection followed a Latin square
order, ensuring that each gesture appeared only once in each set of
24 collections, minimizing order effects. In total, 1152 test samples
were collected (8 participants × 144 samples).

5.2.3 Model Performance. The new gesture set was used exclu-
sively as the test set, without any labeling or data augmentation.
Training data from Section 4.2 were randomly split into training and
validation sets at a 9:1 ratio, ensuring diverse user data and char-
acteristics. The model achieving the highest gesture recognition
accuracy on the validation set was selected for testing on the new
dataset, which was not included in training. We conducted ablation
experiments following the setup in Section 5.1.2 and evaluated the
new gestures under 3-shot and 6-shot settings using the method
from Section 4.3.4. Since few-shot learning requires half of the new
gesture set for training and validation, the remaining half was used
for testing. Table 3 summarizes the average accuracy across vari-
ous finger combinations and postures under different settings. Our
method achieved an average accuracy of 91.27% across the 8 new fin-
ger combinations, significantly outperforming results without data
augmentation (82.64%) and without auxiliary tasks (14.88%). This
highlights the impact of auxiliary tasks in directing the model’s
attention to finger regions, improving accuracy for both finger
combinations and postures by focusing on finger-related features.
Additionally, the 3-shot and 6-shot methods improved accuracy
from 89.06% to 92.71% and 97.05%, respectively, demonstrating the
model’s ability to recognize all potential finger-tapping combina-
tions with minimal user registration. As users provide more gesture
registrations within the same category, classification performance
further improves, reinforcing the adaptability and scalability of our
method.

Table 3: Average accuracy (%) of ablation experiments, few-
shot methods, and our method across 8 new finger combina-
tions and 3 finger postures. “Aug” represents data augmenta-
tion, and “Aux” represents auxiliary tasks.

Condition w/o Aug w/o Aux Ours Ours∗ 3-shot∗ 6-shot∗

Combination 82.64 14.88 91.27 89.06 92.71 97.05
Posture 86.61 91.27 93.86 94.44 94.44 94.44
∗ indicates the method is tested on remaining set (i.e. 50% of new set).

6 TEXT ENTRY USER STUDY
6.1 Study Design
6.1.1 Participants. We recruited 10 participants for our user ex-
periment through social media, with ages ranging from 18 to 29
years (Mean = 23.9, SD = 3.3). The group included 7 males and 3
females, all of whom had experience using QWERTY keyboards
(Mean = 10.8, SD = 4.4). All participants were right-handed. Each
participant received a base stipend of $30. Additionally, participants
who achieved a character error rate of less than 5% and a typing
speed above 35 WPM were given an extra tip as an incentive.

6.1.2 Apparatus. Participants were instructed to wear the FineType
wristband comfortably and sit in front of a monitor. The wristband
device transmitted IMU signals and images to a backend PC via
UART and USB, respectively, similar to the data collection setup.
The gesture recognition model, implemented in PyTorch, was de-
ployed on a MacBook M2 Pro (16GB memory) connected to a power
source. Using the finger tapping detection method described in Sec-
tion 4.1, the system detects tapping gestures to trigger the camera
and immediately performs inference with the recognition model.
The model achieved an average inference speed of 27 ms over 1,000
runs. The testing program was designed based on the TextTest++
[80] platform, logging inference results with timestamps as local
files to enable subsequent analysis.

6.1.3 Task. We assessed the text entry performance of the FineType
system through two within-subject tasks:
• Task 1: Normal Phrase Set. This task evaluates the model’s
ability to input text consisting of the 26 English letters. All target
phrases are randomly selected from MacKenzie and Soukoreff’s
phrase set [47]. We compare our method with TapXR [34], which
requires users to memorize distinct finger combinations for char-
acter input. Additionally, we record typing performance using
a standard keyboard and one-handed input on a smartphone
touchscreen for comparison.

• Task 2: Amore comprehensive character set. This task exam-
ines the performance differences between FineType and TapXR
on a broader set of phrases (letters, numbers, and symbols). We
randomly selected 7 strings from the Enron Email Set [38, 68],
which consists of real-world email content, and 8 strings from
CodeSearchNet [31], a dataset of code snippets in various pro-
gramming languages, forming a total of 15 strings. The average
string length is 11.2, with letters, numbers, and symbols account-
ing for 41.2%, 18.1%, and 40.7% of the characters, respectively. All
symbols shown in Fig. 10b are included in the test set.

6.1.4 Keyboard Layout. Our gesture system allows flexible map-
ping to any letters, enabling users to customize layouts based on
their preferences and comfort. For the user study, we provided a
single keyboard layout, as shown in Fig. 10a. Using tapping ges-
tures with ‘◦ • • • •’, we assigned ‘Delete,’ ‘Enter,’ and ‘Shift’ to the
three postures, respectively. The layout prioritizes the comfort of
single-finger taps by mapping the most frequently used letters to
five single-finger gestures across three postures. Remaining letters
were assigned to two- and three-finger gestures, arranged by letter
frequency [74] from high to low. Vowels (‘a, e, i, o, u’) were posi-
tioned on the keyboard’s outermost layer, reflecting their unique

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

linguistic importance. Fig. 10b demonstrates the use of 8 new ges-
tures across 3 postures to map numbers and symbols (excluding
letters) in Task 2. Unlike TapXR, our system eliminates the need
for multiple taps or numeric keyboard switching.

Why Differs from QWERTY Layout? Our typing system
relies solely on one hand. For right-handed users, the QWERTY
layout assigns only about 11 letters to the right hand, leaving 15
letters that require learning multi-finger gesture mappings3. On
the other hand, based on English typing frequency [74], our layout
achieves an average finger-tap count4 of 1.12, compared to 1.93 for
the QWERTY layout. This indicates that, during long-term text in-
put, our layout requires about 42% fewer finger taps than QWERTY,
offering a more relaxed and comfortable typing experience. Given
that the QWERTY layout still requires learning and involves more
finger taps, we opted to use our proposed keyboard mapping for
each participant in the user study.

L

C
M

W

N

S
H

R

T D

G
Y

B

V

J

X

E

I
O

U

A

P K

F

Q

[

Z

(a)

0
3
6

1
4
7

2
5
8

.
?
9

(
)
:

[
]
"

*
_

+

/
=
,

(b)

Figure 10: FineType keyboard layout. (a) Letter mapping:
Dashed lines indicate that the character requires simulta-
neous pressing of multiple fingers connected by the dashed
lines. (b) Non-letter characters mapping.

6.2 Procedure
The user study was conducted for all participants at a pre-arranged
time in a quiet conference room. None of the participants had prior
experience with FineType gestures or TapXR.

Task 1 involved 4 text input test sessions: FineType, TapXR, phys-
ical keyboard, and single-hand touchscreen typing. The testing
was split into 2 phases, spaced 7 days apart, to minimize the in-
fluence of memorizing different gesture-to-letter mappings. Phase
1 tested FineType, the physical keyboard, and single-hand touch-
screen typing, while Phase 2 tested TapXR. Each session consisted
of 5 text input blocks, with each block containing 5 randomly se-
lected phrases from the MacKenzie and Soukoreff’s phrase set [47].
The same phrases was used for all participants but was randomly re-
ordered for each individual. Phrases did not repeat within a session
and were consistent across sessions.

Participants underwent a structured training process to famil-
iarize themselves with FineType. Training began with a 10-minute
explanation of the gesture mapping to ensure a clear understanding
of the gestures. Subsequently, participants practiced one-handed
input using FineType with phrases randomly selected from the

3Single-finger gestures map to columns starting with ‘y, u, i, o, p,’ while multi-finger
gestures map to columns starting with ‘q, w, e, r, t.’
4Calculated by multiplying the letter frequency by the number of fingers required for
the corresponding gesture and summing the results.

remaining MacKenzie and Soukoreff phrase set. During practice,
a reference mapping of gestures to keyboard characters was dis-
played, and participants were allowed up to two hours to practice.
The testing phase began once participants confirmed that they
had fully memorized the gesture-to-character mappings. Partici-
pants were instructed to type as quickly and accurately as possible
without pausing during a session. If a pause occurred during tran-
scription, the phrase had to be retyped from the start. Additionally,
the keyboard layout will be clearly displayed to assist participants
in typing more efficiently. They were allowed to take up to 2 min-
utes of rest between phrases and up to 5 minutes between blocks.
Testing also included baseline comparisons with keyboard typing
and single-hand touchscreen typing. In the second phase, TapXR
was evaluated following the same procedure. Participants were in-
formed that the system would start timing once the first letter was
entered. Therefore, they could memorize the target phrase before
starting to type if they wished. Four months after Task 1, the same
participants were invited to participate in Task 2. Task 2 included
two text entry testing sessions comparing FineType and TapXR,
each consisting of 3 blocks with 5 strings per block. All participants
received the same set of strings, with the order randomized within
each block. Unlike Task 1, a 6-shot learning approach was applied
before the practice phase to train a classification head for the 8 new
finger combinations with 3 postures, which operated alongside the
original model. Participants practiced for up to two hours before
beginning the test sessions. All other testing settings remained
consistent with Task 1.

6.3 Results
We evaluated text entry speed using Words Per Minute (WPM)
[4], calculated as the time elapsed between entering the first and
last characters of the transcribed text. Error rates were assessed
with three metrics from TextTest++ [61, 81]: uncorrected error
rate (UER), corrected error rate (CER), and total error rate (TER).
Additionally, we calculated the overall character error rate (ChER5),
defined as the Levenshtein distance between the transcribed and
reference texts, divided by the length of the reference text [62, 69].
ChER is similar to UER but disregards corrections in its calculation.

6.3.1 Text Entry Performance. We evaluated typing performance
across two tasks, measuring typing speed in WPM and error rates
(UER, CER, TER, and ChER), as shown in Fig. 11. In Task 1, partic-
ipants achieved an average of 74.4 WPM on a physical keyboard,
with a ChER of 0.3%, UER of 0.3%, CER of 2.9%, and TER of 3.2%.
One-handed touchscreen typing averaged 37.6 WPM, with an av-
erage ChER of 0.7%, UER of 0.5%, CER of 4.7%, and TER of 5.2%.
FineType reached an average of 35.1 WPM with a ChER of 5.1%,
UER of 4.6%, CER of 5.3%, and TER of 9.9%. TapXR achieved an
average of 29.5WPMwith a ChER of 3.5%, UER of 3.2%, CER of 3.6%,
and TER of 6.8%. FineType reached 93% of the speed of one-handed
touchscreen typing. In Task 2, FineType achieved an average of 15.0
WPM with a ChER of 7.5%, UER of 6.9%, CER of 5.8%, and TER of
12.7%, while TapXR reached 9.9 WPMwith a ChER of 22.9%, UER of
16.6%, CER of 7.5%, and TER of 24.1%. Participants were instructed

5Following TouchInsight [63], we abbreviate character error rate as ChER to distinguish
it from corrected error rate (CER).

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Table 4: The means and standard errors of WPM, UER (%), CER (%), and TER (%) for different blocks in Task 1 and Task 2 across
method (FineType, TapXR). ‘↑’ indicates higher is better, while ‘↓’ indicates lower is better.

Task 1 Task 2
Metric Method Block 1 Block 2 Block 3 Block 4 Block 5 Block1 Block2 Block3

WPM ↑
TapXR 30.6 (1.7) 28.4 (1.0) 30.5 (1.9) 28.2 (1.3) 29.6 (1.4) 9.8 (0.5) 11.3 (0.5) 8.7 (0.4)
FineType 34.6 (2.5) 34.5 (1.9) 35.2 (2.3) 34.9 (2.1) 36.2 (1.8) 14.6 (1.3) 14.8 (1.2) 15.7 (0.9)

UER (%) ↓
TapXR 3.9 (1.1) 2.9 (0.8) 4.1 (1.0) 2.0 (1.5) 2.9 (1.2) 11.1 (2.2) 18.1 (1.6) 20.6 (2.9)
FineType 5.7 (1.4) 6.1 (1.2) 5.1 (1.9) 3.5 (1.6) 2.8 (1.2) 9.3 (1.0) 6.5 (1.0) 4.8 (0.9)

CER (%) ↓
TapXR 4.9 (1.1) 3.4 (0.9) 4.8 (1.2) 1.5 (1.0) 3.6 (1.1) 6.3 (0.4) 6.9 (0.2) 9.3 (0.3)
FineType 6.9 (1.3) 6.4 (1.1) 4.6 (1.6) 3.6 (1.2) 4.9 (1.5) 6.9 (0.3) 5.7 (0.7) 4.9 (0.7)

TER (%) ↓
TapXR 8.8 (1.8) 6.3 (1.7) 8.9 (2.1) 3.6 (2.5) 6.5 (2.2) 17.4 (2.3) 25.1 (1.6) 29.9 (2.9)
FineType 12.6 (2.7) 12.5 (2.2) 9.7 (3.5) 7.1 (2.6) 7.7 (2.5) 16.2 (1.2) 12.3 (1.6) 9.7 (1.7)

to type as quickly as possible, leaving some errors uncorrected to
avoid impacting typing speed [81, 82].

Figure 11: Boxplot of the mean WPM and error rates (ChER,
UER, CER, TER) across participants in Task 1 and Task 2.

Table 4 presents the average performance across participants
for all methods and blocks. To assess differences in various metrics
between FineType and TapXR, we conducted a two-factor Aligned
Rank Transform (ART) ANOVA for Task 1 UER, CER, TER, and
Task 2 UER, TER (as the data did not meet normality assumptions).
For Task 1/2 WPM and Task 2 CER (𝑝 > .05 in the Shapiro-Wilk
test), standard two-way RM-ANOVA was applied. In Task 1, a sig-
nificant difference was found between FineType and TapXR inWPM
(𝐹1,9 = 5.46, 𝑝 < .05), but no significant differences were observed
in UER, CER, or TER (𝐹1,90 = 1.58, 3.84, 1.87, all 𝑝 > .05). In Task
2, significant differences were found between FineType and TapXR
in WPM (𝐹1,9 = 17.94, 𝑝 < .01), UER (𝐹1,54 = 58.52, 𝑝 < .001), CER
(𝐹1,9 = 13.03, 𝑝 < .01), and TER (𝐹1,54 = 65.94, 𝑝 < .001). The effect
of blocks on all metrics was not significant, likely due to higher

variability in TapXR’s performance across blocks, whereas FineType
showed more stable performance.

To further investigate whether different metrics for each method
vary across blocks, we used Friedman tests for non-normally
distributed metrics and one-way RM-ANOVA with Greenhouse-
Geisser correction for normally distributed metrics. Post-hoc com-
parisons were performed using paired sample t-tests with Bon-
ferroni correction. In Task 1, no significant effects were found
across blocks for any metric in either method (𝑝 > .1). In Task 2,
FineType showed significant effects of blocks for UER (𝑝 = .014)
and TER (𝑝 = .033). TapXR exhibited significant block effects
across several metrics: WPM (𝐹1.55,13.9 = 14.3, 𝑝 < .001), UER
(𝐹1.33,12 = 4.59, 𝑝 < .05), CER (𝐹1.97,17.71 = 25.3, 𝑝 < .001), and
TER (𝐹1.3,11.67 = 6.79, 𝑝 < .05). Post-hoc tests indicated significant
differences between Block 1 and Block 3 (𝑝 < .05). This is probably
because Block 3 contains more symbols compared to Block 1, as
shown in Appednix Table 6, requiring more frequent tapping in
TapXR.

6.3.2 Subjective Feedback and workload. After completing the user
tests, we collected user ratings on a 7-point Likert scale in three
areas: 1) Usability (ease of use), 2) Preference (liking for the gesture
mapping method), and 3) General experience (overall satisfaction
with the method). The results, shown in Fig. 12c, indicate that users
preferred our keyboard mapping method over TapXR’s finger com-
bination tapping and had a generally better experience. Then, we
conducted a Wilcoxon signed-rank test on the NASA-TLX [1] ques-
tionnaire for Tasks 1 and 2. For Task 1, significant differences were
found in performance (𝑝 < .01), effort (𝑝 < .05), and frustration
(𝑝 < .05), but not in mental demand, physical demand, or temporal
demand. For Task 2, significant effects were observed across all the
metrics. The NASA-TLX results for both tasks are shown in Fig. 12a
and 12b. We also conducted a 5-point Likert scale survey to assess
users’ usability and preferences at both the finger and gesture levels
during tapping, as shown in Appendix Fig. 17. The results show
that users prefer gestures involving the thumb, index finger, and
middle finger, as well as adjacent finger gestures.

6.4 Discussion
In Tasks 1 and 2, after up to two hours of user practice, our method
achieved average typing speeds of 35.1 and 15.0 WPM, respectively,
outperforming TapXR’s 29.5 and 9.9 WPM. While no significant
difference in error rates (UER, CER, TER, ChER) was found in Task

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

(a) Task 1 NASA-TLX (b) Task 2 NASA-TLX (c) 7-Point Likert Scale.

Figure 12: (a-b) NASA-TLX questionnaire results for Task 1 and Task 2, respectively. (c) Subjective ratings using 7-point Likert
scale (higher is better). Error bars represent the standard error.

1, our method exhibited significantly lower error rates than TapXR
in Task 2. Task 2 involved more complex character mappings, re-
quiring users to memorize additional symbols, resulting in a notable
drop in typing speed (approximately 57% for FineType and 66% for
TapXR) compared to Task 1. Moreover, TapXR relies on multiple
sequential taps for non-letter symbol identification, and errors in
sequence result in multiple incorrect characters. The performance
differences between FineType and TapXR can be attributed to the
following factors:
1) Comfort of Key Design. Our keyboard maps 15 letters using five

single fingers, whereas TapXR can only map 5 letters with a
single finger, requiring more finger presses overall. Addition-
ally, our method uses adjacent finger combinations for tapping,
which is more comfortable, while TapXR involves pressing with
non-adjacent finger combinations. Users commonly reported dis-
comfort with gestures corresponding to letters like V (• • ◦ • •),
W (• ◦ • ◦ •), and J (• • • ◦ •) in TapXR.

2) Diversity Keys of Gesture Sets. Our method can support up to 93
gestures, while TapXR can onlymap using 31 finger combinations.
As a result, TapXR requires double or triple taps of the same
gesture within a short time to map a single symbol. In contrast,
our method can map more symbols with just a single tap using
three different finger postures for a specific gesture.
We conducted a more quantitative analysis by calculating the

normalized character frequencies across the entirety of 3 datasets:
MacKenzie and Soukoreff’s phrase set, the Enron Email Dataset,
and CodeSearchNet. For each dataset 𝐷 = {𝐷1, 𝐷2, 𝐷3}, we then
computed the average number of tapping fingers per character
𝐸 (𝑇) and the average use of non-adjacent gestures 𝐸 (𝑁). These
were calculated as follows:

𝐸𝑖 (𝑇) =
∑︁
𝑐∈𝐷𝑖

𝑝𝑖 (𝑐)𝑇 (𝑐), 𝐸𝑖 (𝑁) =
∑︁
𝑐∈𝐷𝑖

𝑝𝑖 (𝑐)𝑁 (𝑐), 𝑖 = 1, 2, 3

Here, 𝑝𝑖 (𝑐) represents the probability of character 𝑐 in dataset 𝐷𝑖 ,
𝑇 (𝑐) is the number of fingers (1-5) required to tap for 𝑐 , and 𝑁 (𝑐)
indicates whether 𝑐 uses a non-adjacent gesture (1 if used, 0 for all
other gestures). The results are shown in Appendix Fig. 18, where it
is evident that FineType requires fewer tapping fingers on average
and uses fewer non-adjacent gestures. This suggests that FineType
holds great potential for prolonged use and complex symbol input,
aligning with the subjective feedback from users.

The results from the NASA-TLX questionnaire further demon-
strate the advantages of our method in practical use. Our method

performed better in both tasks with higher performance, less ef-
fort, and less frustration. According to user feedback, our gestures
also outperformed in terms of usability, preference, and overall
experience. One user (male, 23 years old) mentioned, “I feel less
fatigued when using fewer fingers or gestures involving the thumb.”
Another user (female, 24 years old) said, “It’s too difficult for me to
lift the ring finger while pressing down the middle and little fingers.”
Another user (male, 26 years old, and a skilled pianist) noted, “I’m
proficient at the piano, so these gestures aren’t too difficult, but the
downside is the lack of rebound feedback similar to typing on a key-
board.” These experiences indicate that the gestures used for letter
mapping in our method are more user-friendly for beginners, while
those who are accustomed to using finger combinations (such as
piano enthusiasts) find these gestures manageable. Additionally, we
developed an n-gram decoder based on finger posture soft decoding
(see supplementary materials). By offline correction of transcribed
text, the FineType character error rate in Task 1 was reduced to
1.6%.

7 APPLICATION SCENARIOS
FineType, by combining finger combinations with 3 different finger
postures, can support up to 93 unique single-tap gestures. Based on
this extensive set of gestures, we applied it to a variety of scenarios.

Text Entry on Mobile Devices. FineType enables text input by tap-
ping on any flat surface, allowing users to place mobile devices
(e.g., smartphones or tablets) on a desk and perform accurate in-
put through desk tapping. This method supports a wide range of
gestures for mapping various characters, offering two key benefits:
(1) it allows smart devices to hide the on-screen keyboard, freeing
up valuable screen space; and (2) it enables simultaneous inter-
action, allowing one hand to perform touch gestures (e.g., cursor
positioning, scrolling) while the other inputs text, improving text
editing efficiency. We demonstrated a simple mobile typing setup
by transmitting recognition results from the PC to a smartphone
in real-time via a TCP connection (Fig. 13a). Additionally, we de-
veloped a method for controlling cursor movement using the wrist
IMU and provided a pre-trained 5-gram decoder for efficient text
input and error correction (see in Supplementary Material).

XR Text Input. FineType operates without relying on visual feed-
back or hand tracking from head-mounted displays, making it ver-
satile for XR applications. Using Unity, we developed an AR envi-
ronment and transmitted FineType’s typing results in real-time to
Microsoft HoloLens 2 via TCP (Fig. 13b). In this setup, the keyboard

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

(a) Phone Demo (b) AR Demo

Touchscreen
KeyBoard

Shortcuts

(c) Command Demo

Figure 13: FineType supports diverse application scenarios, including: (a) single-handed smartphone text input with a hidden
keyboard; (b) text input in AR environments with on-screen prompts for text boxes and keyboard layouts; and (c) replacing
shortcut key commands with tapping gestures during text editing.

is rendered in real-time, allowing users to position it freely in the
real world using gestures. FineType detects text input even beyond
the headset’s field of view, enabling users to focus on the graphical
user interface areas. Additionally, it supports using the arm’s sur-
face as an input area, allowing users to type by tapping one hand
on the other arm, eliminating the need for a desk. This capabil-
ity enables flexible text input in spatial computing environments,
anytime and anywhere.

Additional Command Set. FineType supports an extensive set of
commands alongside text input, enabling additional control instruc-
tion (Fig. 13c). In various applications, gestures can define different
shortcuts, allowing the other hand to operate the application seam-
lessly without interruption.

8 LIMITATIONS AND FUTUREWORK
FineType is worthy of further exploration, as there are still some
limitations in applying our current implementation in real-world
applications.

Portability. Currently, our device requires a USB connection to a
PC for inference, limiting its standalone functionality. The current
design is relatively simple, using only two sensors without built-in
computational support. In the future, we aim to make the device
wireless and compact, ideally integrating it with a smartwatch. Ad-
ditionally, we plan to employ techniques like model pruning and
compression to adapt our method for small, standalone wearable de-
vices with limited computing resources. The current camera design
protrudes outward. In the future, we plan to develop a camera that
can be embedded into a smartwatch band and discreetly concealed
when not in use.

Scenario Diversity. While our method demonstrates reliable
recognition performance in cross-user experiments across vari-
ous scenarios and lighting conditions, it has not yet been tested
on a wider range of contact surfaces due to the limited dataset. In
the future, we plan to expand data collection to include diverse
real-world lighting conditions and contact surfaces, enhancing the
model’s recognition capabilities. This effort aims to optimize text
input solutions for ubiquitous environments in future spatial com-
puting applications.

Classification Accuracy. While our method has achieved reliable
recognition on predefined finger combinations, it still has shortcom-
ings in predicting finger postures. This may be because different
users have different understandings of finger postures. On the other
hand, for newly defined gestures, although we can recognize them
using the original model, the performance is still inferior compared
to the user-adaptive method. Moreover, the user-adaptive method
also requires a simple user registration process. To improve the
recognition capability, a practical method is to expand the scope
of data collection (including more users’ finger postures and all
possible finger combinations).

Memorizing Text Entry. In this study, FineTypewas validated with
single-hand input, requiring users to memorize letter mappings
across multiple fingers and postures, which may pose a barrier
to widespread adoption. Tap Systems Inc. reported that based on
over 5,000 demos, users could learn how to tap 9 letters within
an average of 3 minutes. Moreover, most users could achieve 35
WPM within 21 days by practicing for just 10 minutes per day [65].
This demonstrates the potential of the tapping-based input method.
In the future, incorporating two wristband devices could facilitate
a typing experience closer to the QWERTY layout of a physical
keyboard, significantly reducing the learning curve [82].

9 CONCLUSION
We present FineType, a text entry system that enables near-complete
mapping of an entire physical keyboard (including letters, symbols,
and numbers) using various finger combinations and three distinct
postures. FineType uses a wristband equipped with an IMU and an
infrared camera positioned beneath the wrist to enable text entry
on any flat surface. We collected data for 10 common finger combi-
nations and 3 finger postures and trained a multi-task, multi-label
network to detect these gestures. Cross-user validation demon-
strated accuracies of 98.26%, 95.53%, and 94.19% for the 10 finger
combinations, 3 postures, and all 30 gesture categories, respectively.
Additionally, our model achieved prediction accuracies of 91.27%
and 93.86% for 8 previously unseen finger combinations and their
corresponding postures. By employing a user-adaptive few-shot
learning approach, we improved the average accuracy for these
8 unknown combinations to 97.05% across different users. These

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

results showcase FineType’s potential to recognize all possible fin-
ger combinations and three postures (i.e. 31 × 3 = 93). Our user
study (N=10) showed that participants achieved an average typing
speed of 35.1 WPMwith a CER of 5.1%, reaching 93% of the speed of
single-hand touchscreen typing. Additionally, we further compared
the typing efficiency of numbers, symbols and letters with TapXR.
Using FineType, participants generally completed the study with a
lower physical burden and at a faster speed. Users generally found
our keyboard mapping method simpler and preferred using our
system.

ACKNOWLEDGMENTS
We sincerely appreciate the valuable comments and suggestions
from the anonymous reviewers, which have significantly improved
the quality of this paper. We also extend our gratitude to all partici-
pants who engaged in our user study or contributed data, as their
involvement played a crucial role in our research. This work was
supported in part by the National Natural Science Foundation of
China under Grants 62376132 and 62321005.

REFERENCES
[1] [n.d.]. NASA task load Index (NASA-TLX). https://humansystems.arc.nasa.gov/

groups/tlx/downloads/TLXScale.pdf.
[2] Jiban Adhikary and Keith Vertanen. 2021. Typing on Midair Virtual Keyboards:

Exploring Visual Designs and Interaction Styles. In Human-Computer Interaction–
INTERACT 2021: 18th IFIP TC 13 International Conference, Bari, Italy, August
30–September 3, 2021, Proceedings, Part IV 18. Springer, 132–151.

[3] Tomoko Aoki, Peter R Francis, and Hiroshi Kinoshita. 2003. Differences in the
abilities of individual fingers during the performance of fast, repetitive tapping
movements. Experimental Brain Research 152 (2003), 270–280.

[4] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2009. Analysis of text entry
performance metrics. In 2009 IEEE Toronto International Conference Science and
Technology for Humanity (TIC-STH). IEEE, 100–105.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35, 8 (2013), 1798–1828.

[6] Wenqiang Chen, Lin Chen, Meiyi Ma, Farshid Salemi Parizi, Shwetak Patel, and
John Stankovic. 2021. ViFin: Harness Passive Vibration to Continuous Micro
Finger Writing with a Commodity Smartwatch. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 1 (2021), 1–25.

[7] Wenqiang Chen, Ziqi Wang, Pengrui Quan, Zhencan Peng, Shupei Lin, Mani Sri-
vastava, Wojciech Matusik, and John Stankovic. 2023. Robust Finger Interactions
with COTS Smartwatches via Unsupervised Siamese Adaptation. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology.
1–14.

[8] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 248–255.

[9] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018.
Observations on Typing from 136 Million Keystrokes. In Proceedings of the 2018
CHI conference on Human Factors in Computing Systems. 1–12.

[10] Yuqiang Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, ZhengyangWang, Haowen
Liang, and Shin-Tson Wu. 2023. Waveguide-based augmented reality displays:
perspectives and challenges. eLight 3, 1 (2023), 24.

[11] John Dudley, Hrvoje Benko, Daniel Wigdor, and Per Ola Kristensson. 2019. Per-
formance Envelopes of Virtual Keyboard Text Input Strategies in Virtual Reality.
In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 289–300.

[12] John J Dudley, Keith Vertanen, and Per Ola Kristensson. 2018. Fast and Precise
Touch-Based Text Entry for Head-Mounted Augmented Reality with Variable
Occlusion. ACM Transactions on Computer-Human Interaction (TOCHI) 25, 6
(2018), 1–40.

[13] John J Dudley, Jingyao Zheng, Aakar Gupta, Hrvoje Benko, Matt Longest, Robert
Wang, and Per Ola Kristensson. 2023. Evaluating the Performance of Hand-Based
Probabilistic Text Input Methods on a Mid-Air Virtual Qwerty Keyboard. IEEE
Transactions on Visualization and Computer Graphics (2023).

[14] Aarthi Easwara Moorthy and Kim-Phuong L Vu. 2015. Privacy Concerns for Use
of Voice Activated Personal Assistant in the Public Space. International Journal
of Human-Computer Interaction 31, 4 (2015), 307–335.

[15] AnnaMaria Feit, DarylWeir, and Antti Oulasvirta. 2016. Howwe type: Movement
strategies and performance in everyday typing. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. 4262–4273.

[16] Leah Findlater, Jacob O Wobbrock, and Daniel Wigdor. 2011. Typing on flat glass:
examining ten-finger expert typing patterns on touch surfaces. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 2453–2462.

[17] Xingyu Fu and Mingze Xi. 2024. Typing on Any Surface: Real-Time Keystroke
Detection in Augmented Reality. In 2024 IEEE International Conference on Artificial
Intelligence and eXtended and Virtual Reality (AIxVR). IEEE, 350–354.

[18] Hyunjae Gil and Ian Oakley. 2023. ThumbAir: In-Air Typing for Head Mounted
Displays. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 6, 4 (2023), 1–30.

[19] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang’Anthony’ Chen, Xiaojun Bi,
and Xing-Dong Yang. 2018. WrisText: One-handed Text Entry on Smartwatch
using Wrist Gestures. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–14.

[20] Patrick Grady, Jeremy A Collins, Chengcheng Tang, Christopher D Twigg, Kunal
Aneja, James Hays, and Charles C Kemp. 2024. PressureVision++: Estimating
Fingertip Pressure from Diverse RGB Images. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 8698–8708.

[21] Simon Greenwold. 2003. Spatial computing. Massachusetts Institute of Technology,
Master (2003).

[22] Yizheng Gu, Chun Yu, Zhipeng Li, Weiqi Li, Shuchang Xu, Xiaoying Wei, and
Yuanchun Shi. 2019. Accurate and Low-Latency Sensing of Touch Contact on
Any Surface with Finger-Worn IMU Sensor. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology. 1059–1070.

[23] Yizheng Gu, Chun Yu, Zhipeng Li, Zhaoheng Li, XiaoyingWei, and Yuanchun Shi.
2020. QwertyRing: Text Entry on Physical Surfaces Using a Ring. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 4 (2020),
1–29.

[24] Charlotte Häger-Ross and Marc H Schieber. 2000. Quantifying the indepen-
dence of human finger movements: comparisons of digits, hands, and movement
frequencies. Journal of Neuroscience 20, 22 (2000), 8542–8550.

[25] Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, and Jie Zhou. 2024. TrackPose:
Towards Stable and User Adaptive Finger Pose Estimation on Capacitive Touch-
screens. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 7, 4 (2024), 1–22.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778.

[27] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang
Irani. 2014. Consumed endurance: a metric to quantify arm fatigue of mid-
air interactions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1063–1072.

[28] Jonggi Hong, Seongkook Heo, Poika Isokoski, and Geehyuk Lee. 2015. SplitBoard:
A Simple Split Soft Keyboard for Wristwatch-sized Touch Screens. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
1233–1236.

[29] QibinHou, Daquan Zhou, and Jiashi Feng. 2021. Coordinate Attention for Efficient
Mobile Network Design. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 13713–13722.

[30] Yi-Ta Hsieh, Antti Jylhä, Valeria Orso, Luciano Gamberini, and Giulio Jacucci.
2016. Designing a Willing-to-Use-in-Public Hand Gestural Interaction Technique
for Smart Glasses. In Proceedings of the 2016 CHI conference on Human Factors in
Computing Systems. 4203–4215.

[31] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2020. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. arXiv:1909.09436 [cs.LG] https://arxiv.org/abs/1909.09436

[32] Kaori Ikematsu and Shota Yamanaka. 2020. ScraTouch: Extending Interaction
Technique Using Fingernail on Unmodified Capacitive Touch Surfaces. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 3
(2020), 1–19.

[33] Tap Systems Inc. 2021. Tap Strap 2. https://www.tapwithus.com/product/tap-
strap-2/

[34] Tap Systems Inc. 2023. Introducing TapXR. https://www.tapwithus.com
[35] Sujin Jang, Wolfgang Stuerzlinger, Satyajit Ambike, and Karthik Ramani. 2017.

Modeling Cumulative Arm Fatigue in Mid-Air Interaction based on Perceived
Exertion and Kinetics of Arm Motion. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. 3328–3339.

[36] David Kim, Otmar Hilliges, Shahram Izadi, Alex D Butler, Jiawen Chen, Iason
Oikonomidis, and Patrick Olivier. 2012. Digits: freehand 3D interactions any-
where using a wrist-worn gloveless sensor. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology. 167–176.

[37] Taejun Kim, Amy Karlson, Aakar Gupta, Tovi Grossman, Jason Wu, Parastoo
Abtahi, Christopher Collins, Michael Glueck, and Hemant Bhaskar Surale. 2023.
STAR: Smartphone-analogous Typing in Augmented Reality. In Proceedings of the
36th Annual ACM Symposium on User Interface Software and Technology. 1–13.

https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://www.tapwithus.com/product/tap-strap-2/
https://www.tapwithus.com/product/tap-strap-2/
https://www.tapwithus.com

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

[38] Bryan Klimt and Yiming Yang. 2004. The Enron Corpus: A New Dataset for Email
Classification Research. In European Conference on Machine Learning. Springer,
217–226.

[39] Marion Koelle, Matthias Kranz, and Andreas Möller. 2015. Don’t look at me that
way! Understanding user attitudes towards data glasses usage. In Proceedings of
the 17th International Conference on Human-Computer Interaction with Mobile
Devices and Service. 362–372.

[40] Falko Kuester, Michelle Chen, Mark E Phair, and Carsten Mehring. 2005. Towards
keyboard independent touch typing in VR. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology. 86–95.

[41] Chentao Li, Jinyang Yu, Ke He, Jianjiang Feng, and Jie Zhou. 2024. SwivelTouch:
Boosting Touchscreen Input with 3D Finger Rotation Gesture. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, 2 (2024),
1–30.

[42] Chao Lian, Xianshou Ren, Yuliang Zhao, Xueliang Zhang, Ruoyu Chen, Shuyu
Wang, Xiaopeng Sha, and Wen J Li. 2020. Towards a Virtual Keyboard Scheme
Based on Wearing One Motion Sensor Ring on Each Hand. IEEE Sensors Journal
21, 3 (2020), 3379–3387.

[43] Chen Liang, Xutong Wang, Zisu Li, Chi Hsia, Mingming Fan, Chun Yu, and
Yuanchun Shi. 2023. ShadowTouch: Enabling Free-Form Touch-Based Hand-to-
Surface Interaction with Wrist-Mounted Illuminant by Shadow Projection. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology. 1–14.

[44] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision. 2980–2988.

[45] Zongjian Liu, Jieling He, Jianjiang Feng, and Jie Zhou. 2023. PrinType: Text
Entry via Fingerprint Recognition. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 6, 4 (2023), 1–31.

[46] Janeen D Loehr and Caroline Palmer. 2007. Cognitive and biomechanical influ-
ences in pianists’ finger tapping. Experimental brain research 178 (2007), 518–528.

[47] I Scott MacKenzie and R William Soukoreff. 2003. Phrase sets for evaluating text
entry techniques. In CHI ’03 Extended Abstracts on Human Factors in Computing
Systems. 754–755.

[48] Ben Maman and Amit Bermano. 2022. TypeNet: Towards Camera Enabled Touch
Typing on Flat Surfaces through Self-Refinement. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 1140–1149.

[49] Anders Markussen, Mikkel R Jakobsen, and Kasper Hornbæk. 2013. Selection-
Based Mid-Air Text Entry on Large Displays. In Human-Computer Interaction–
INTERACT 2013: 14th IFIP TC 13 International Conference, Cape Town, South Africa,
September 2-6, 2013, Proceedings, Part I 14. Springer, 401–418.

[50] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk. 2014. Vulture:
a mid-air word-gesture keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 1073–1082.

[51] Sven Mayer, Huy Viet Le, and Niels Henze. 2017. Estimating the Finger Orien-
tation on Capacitive Touchscreens Using Convolutional Neural Networks. In
Proceedings of the 2017 ACM International Conference on Interactive Surfaces and
Spaces. 220–229.

[52] Manuel Meier, Paul Streli, Andreas Fender, and Christian Holz. 2021. TapID:
Rapid Touch Interaction in Virtual Reality using Wearable Sensing. In 2021 IEEE
Virtual Reality and 3D User Interfaces (VR). IEEE, 519–528.

[53] Takehiro Niikura, Yoshihiro Watanabe, and Masatoshi Ishikawa. 2014. Anywhere
surface touch: utilizing any surface as an input area. In Proceedings of the 5th
Augmented Human International Conference. 1–8.

[54] Ju Young Oh, Ji-Hyung Park, and Jung-Min Park. 2020. FingerTouch: Touch
Interaction Using a Fingernail-Mounted Sensor on a Head-Mounted Display for
Augmented Reality. IEEE Access 8 (2020), 101192–101208.

[55] Manuel Prätorius, Dimitar Valkov, Ulrich Burgbacher, and Klaus Hinrichs. 2014.
DigiTap: an eyes-free VR/AR symbolic input device. In Proceedings of the 20th
ACM Symposium on Virtual Reality Software and Technology. 9–18.

[56] Mark Richardson, Fadi Botros, Yangyang Shi, Pinhao Guo, Bradford J Snow,
Linguang Zhang, Jingming Dong, Keith Vertanen, Shugao Ma, and Robert Wang.
2024. StegoType: Surface Typing from Egocentric Cameras. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology. 1–14.

[57] Mark Richardson,Matt Durasoff, and RobertWang. 2020. Decoding Surface Touch
Typing from Hand-Tracking. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. 686–696.

[58] David B Schick and Liron Ilouz. 2023. Wearable finger tap detection system with
low power mode. US Patent 11,797,086.

[59] Weinan Shi, Chun Yu, Shuyi Fan, Feng Wang, TongWang, Xin Yi, Xiaojun Bi, and
Yuanchun Shi. 2019. VIPBoard: Improving Screen-Reader Keyboard for Visually
Impaired People with Character-Level Auto Correction. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[60] Weinan Shi, Chun Yu, Xin Yi, Zhen Li, and Yuanchun Shi. 2018. TOAST: Ten-
Finger Eyes-Free Typing on Touchable Surfaces. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1 (2018), 1–23.

[61] R William Soukoreff and I Scott MacKenzie. 2003. Metrics for text entry research:
An evaluation of MSD and KSPC, and a new unified error metric. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. 113–120.
[62] Paul Streli, Jiaxi Jiang, Andreas Rene Fender, Manuel Meier, Hugo Romat, and

Christian Holz. 2022. TapType: Ten-finger text entry on everyday surfaces via
Bayesian inference. In Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems. 1–16.

[63] Paul Streli, Mark Richardson, Fadi Botros, ShugaoMa, RobertWang, and Christian
Holz. 2024. TouchInsight: Uncertainty-aware Rapid Touch and Text Input for
Mixed Reality from Egocentric Vision. In Proceedings of the 37th Annual ACM
Symposium on User Interface Software and Technology. 1–16.

[64] Ryo Takahashi, Masaaki Fukumoto, Changyo Han, Takuya Sasatani, Yoshiaki
Narusue, and Yoshihiro Kawahara. 2020. TelemetRing: A Batteryless andWireless
Ring-shaped Keyboard using Passive Inductive Telemetry. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 1161–
1168.

[65] Inc. Tap Systems. 2025. Invest in Tap Systems, Inc.: Command AI Powered Devices
With A Pinch Tap Or Swipe. https://wefunder.com/tapwithus/ Backup available
at https://archive.ph/YcPZu.

[66] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 11 (2008).

[67] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proes-
mans, Dengxin Dai, and Luc Van Gool. 2021. Multi-Task Learning for Dense
Prediction Tasks: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence 44, 7 (2021), 3614–3633.

[68] Keith Vertanen and Per Ola Kristensson. 2011. A versatile dataset for text entry
evaluations based on genuine mobile emails. In Proceedings of the 13th Interna-
tional Conference on Human Computer Interaction with Mobile Devices and Services.
295–298.

[69] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-
tensson. 2015. VelociTap: Investigating fast mobile text entry using sentence-
based decoding of touchscreen keyboard input. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems. 659–668.

[70] Jonas Vogelsang, Francisco Kiss, and Sven Mayer. 2021. A Design Space for User
Interface Elements using Finger Orientation Input. In Proceedings of Mensch und
Computer 2021. 1–10.

[71] Cheng-Yao Wang, Wei-Chen Chu, Po-Tsung Chiu, Min-Chieh Hsiu, Yih-Harn
Chiang, and Mike Y Chen. 2015. PalmType: Using Palms as Keyboards for Smart
Glasses. In Proceedings of the 17th International Conference on Human-Computer
Interaction with Mobile Devices and Services. 153–160.

[72] DarylWeir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola Kristensson.
2014. Uncertain text entry on mobile devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2307–2316.

[73] Eric Whitmire, Mohit Jain, Divye Jain, Greg Nelson, Ravi Karkar, Shwetak Patel,
and Mayank Goel. 2017. DigiTouch: Reconfigurable Thumb-to-Finger Input and
Text Entry on Head-mounted Displays. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 1–21.

[74] Wikipedia. 2024. Letter frequency. https://en.wikipedia.org/wiki/Letter_
frequency

[75] Robert Xiao, Julia Schwarz, and Chris Harrison. 2015. Estimating 3d finger angle
on commodity touchscreens. In Proceedings of the 2015 International Conference
on Interactive Tabletops & Surfaces. 47–50.

[76] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D Wilson, and Hrvoje Benko.
2018. MRTouch: Adding Touch Input to Head-Mounted Mixed Reality. IEEE
Transactions on Visualization and Computer Graphics 24, 4 (2018), 1653–1660.

[77] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun, and Yuanchun Shi. 2015. ATK:
Enabling Ten-Finger Freehand Typing in Air Based on 3D Hand Tracking Data.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. 539–548.

[78] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and Yuanchun Shi.
2017. Tap, Dwell or Gesture? Exploring Head-Based Text Entry Techniques for
HMDs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. 4479–4488.

[79] Shumin Zhai, Per-Ola Kristensson, and Barton A Smith. 2005. In search of
effective text input interfaces for off the desktop computing. Interacting with
Computers 17, 3 (2005), 229–250.

[80] Mingrui Ray Zhang and Jacob O Wobbrock. 2019. Beyond the Input Stream:
Making Text Entry Evaluations More Flexible with Transcription Sequences. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 831–842.

[81] Mingrui Ray Zhang, Shumin Zhai, and Jacob O Wobbrock. 2019. Text Entry
Throughput: Towards Unifying Speed and Accuracy in a Single Performance
Metric. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–13.

[82] Mingrui Ray Zhang, Shumin Zhai, and Jacob O Wobbrock. 2022. TypeAnywhere:
A QWERTY-Based Text Entry Solution for Ubiquitous Computing. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–16.

[83] Jingjie Zheng, Blaine Lewis, Jeff Avery, and Daniel Vogel. 2018. FingerArc and
FingerChord: Supporting Novice to Expert Transitions with Guided Finger-Aware
Shortcuts. In Proceedings of the 31st Annual ACM Symposium on User Interface

https://wefunder.com/tapwithus/
https://archive.ph/YcPZu
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

Software and Technology. 347–363.
[84] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an

Invisible Keyboard. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–13.

A USER-ADAPTIVE NEW GESTURE
RECOGNITION

In Section 5.2, we verified that our model achieved an accuracy
of 85.32% on the new gesture set, where the recognition rate is
primarily limited by the inaccurate recognition of finger combina-
tions. We expect to achieve higher recognition accuracy for users
with new gestures, ideally without needing to collect excessive data
and by simply performing a few registrations, thus enhancing the
user experience. We will now introduce our user-adaptive gesture
recognition framework.

A.1 Model Architecture
In Section 5.1, we validated that our model performs well on the
original gesture set. We aim to transfer the model’s feature extrac-
tion capabilities to a new set of gestures and design an additional
lightweight prediction head for classifying new gestures. When
users introduce new gestures, the finger postures are predefined
categories, and only the new finger combinations are the newly
defined elements that primarily affect the model’s recognition per-
formance. Therefore, ourmodel primarily uses transfer learning and
few-shot learning methods to enhance recognition performance for
new finger combinations. We freeze the feature extraction layers
trained on the original gesture set and add a new classification head
for each new user, as shown in Fig. 14. Our approach customizes
an additional classification head for each user to classify new fin-
ger combinations, with 21 possible new combinations available
(i.e., 25 - 10 predefined gestures - 1 non-tap). We use a lightweight
two-layer fully connected network to predict the new finger com-
binations added by users. The first layer is a linear layer with 32
nodes, equipped with a ReLU activation function and a dropout
layer (𝑝 = 0.8) to reduce overfitting; the second layer is a linear
layer with N+1 nodes (where N represents the number of new ges-
tures the user needs to add, plus 1 for previously defined gestures)
connected to a softmax function to predict the probability of each
category. Since our model freezes the weights of the feature extrac-
tor and only trains a lightweight fully connected prediction head,
it does not require backpropagation across all model parameters,
uses minimal VRAM, and the training process is very quick.

We used the 2D t-SNE [66] method to plot the embeddings of
11 old finger tapping combinations collected in Section 3.1 and 8
new tapping combinations from two new users collected in Section
5.2.1 after feature extraction. Observation showed that the old 11
gestures formed distinct clusters, demonstrating the performance
of the model’s feature extractor and the separability of the origi-
nal gestures in the hidden space. Additionally, each of the newly
defined 8 gestures also formed clear clusters with distinct decision
boundaries from other gesture categories. These findings support
our approach of customizing a new prediction head for tapping
fingers for each new user.

Note that in practical applications, the existing model’s predic-
tion branches work as usual. If the new network prediction branch

identifies an old gesture, it uses the results from the existing fin-
ger combination prediction branch; if it predicts a new gesture, it
uses the results from the new gesture prediction. Throughout this
process, the branch predicting finger postures remains unchanged.

A.2 Model Training
A.2.1 Dataset Splitting. For each user, we added 8 gestures from
Section 5.2.2 as new finger combinations, making the fully con-
nected network’s final output 9 (i.e., 8 new gestures plus 1 category
for old gestures). For a new user, there are 8 new finger combina-
tions, with 18 gestures collected for each combination (6 each for
Pose 1, Pose 2, and Pose 3). We split the data for each pose into
training, validation, and test sets in a 2:1:3 ratio. Thus, each user
has 48 training samples, 24 validation samples, and 72 test samples.
A 3-shot setup means each pose for every finger combination ap-
pears only once, resulting in 1 × 3 × 8 = 24 training samples. In
contrast, a 6-shot setup means each pose appears twice, using all
2× 3× 8 = 48 training samples. For the old gesture data, we divided
the data collected in Section 4.2 into training, validation, and test
sets in a 4:1:5 ratio.

A.2.2 Few-shot Learning. We used a few-shot learning method,
training the model with a small amount of new registration data
from users. Due to the scarcity of training data for new gestures,
the model is likely to overfit. To address this, we employed data aug-
mentation techniques. We used the five data augmentation methods
from Section 4.4.1, randomly combining them in 25 − 1 different
ways to significantly expand the data pool for new diversity ges-
ture samples. Additionally, to better focus on features of categories
with fewer samples, we adopted the Focal loss [44] function during
training to enhance the model’s recognition performance for new
gestures, setting parameters 𝛾 = 2 and 𝛼 = 0.9.

A.3 Model Performance
For each user, we selected the model with the highest F1 score
on the validation set for testing. We evaluated the performance of
models using the original prediction, 3-shot, and 6-shot methods, as
shown in Fig. 16a. It can be observed that customizing the model to
adapt to each user improves the recognition of new gestures to some
extent. Moreover, as we increase the number of gestures registered
by the user, the model’s performance significantly improves, with
accuracy increasing from 92.71% (3-shots) to 97.05% (6-shots). Fig.
16b displays the confusion matrix for the overall classification of
the test set samples using the 6-shot learning model. This proves
that our model, while recognizing new gestures, also maintains
compatibility with old gestures.

A.4 Method Comparison
We compared two approaches using the same training, validation,
and test datasets from Section A.2.1: fine-tuning only the finger
combination classification components of the network (Ft-Part)
and fine-tuning the entire network (Ft-Full). Both methods yielded
similar test accuracy results, as summarized in Table 5. We also
evaluated the training speed by conducting a single epoch of train-
ing on a dataset containing 3,000 samples with a batch size of 300,
using an NVIDIA GeForce RTX 3090 GPU. Our method, which
requires no annotations, achieves training speeds two orders of

FineType: Fine-grained Tapping Gesture Recognition for Text Entry CHI ’25, April 26-May 1, 2025, Yokohama, Japan

+

Encoder

Decoder

Inp
ut

Feature Embedding Extraction Embedding Finger Classification

FC
, 3

2

FC
, F

in
ge

rs

new Gesture
Prediction Head

Create for
Each User

FC
, 3

2

FC
, N

+1

Figure 14: User-adaptive new gesture network structure
diagram. We extract the embeddings before the finger
combination classifier in the original network structure
and create a new classifier for new gesture recognition.

Figure 15: 2-D t-SNE visualization of feature embeddings
corresponding to different finger combination gestures.
Label 0 represents the 11 old finger combination gestures.
Labels 1-8 correspond to the new 8 gesture categories. The
new gesture samples are from two users, while the old
gesture data is from the original training dataset. The
feature extractor is trained on the old gesture set.

(a)

New Gesture

(b)

Figure 16: Performance of the User-Adaptive Model: (a) box plot of average accuracy for recognizing new finger combinations
under different shots. The red dot represents the average accuracy, and the pink shaded curve indicates the standard deviation.
(b) 8 new gesture recognition confusion matrix.

magnitude faster and involves three orders of magnitude fewer
trainable parameters compared to other fine-tuning-based methods.
Despite these advantages, its accuracy closely approaches that of
fully fine-tuning the network with manually annotated fingertip
heatmaps.

Table 5: Comparison of our method with Ft-Part and FT-Full
in terms of fingertip annotation , Training Time (s), Trainable
Parameters (M), and test Accuracy (%).

Method w/o fingertip annotation Training time Training Params Accuracy

Ours ✔ 0.015 0.03 97.05
Ft-Part ✔ 7.96 28.72 96.18
Ft-Full ✗ 11.23 29.19 97.4

CHI ’25, April 26-May 1, 2025, Yokohama, Japan Li et al.

Table 6: Task 2 phrase set: percentage (%) of letters, numbers,
and symbols across different blocks.

Block Letter Digit Symbol

1 49.3 17.9 32.8
2 33.3 25.4 41.3
3 40.4 9.6 50

Figure 17: A stacked bar chart showing usability and prefer-
ence ratings (5-point Likert scale) across fingers and gestures.

Figure 18: A comparison between FineType and TapXR at
the tapping level: the x-axis represents the average num-
ber of fingers used per tap, and the y-axis represents the
average number of non-contiguous gestures. D1, D2, and D3
correspond to the MacKenzie and Soukoreff’s phrase set, the
Enron Email Dataset, and CodeSearchNet, respectively.

Table 7: The average accuracy (%) for various ablation exper-
iments and our original method across 8 new finger com-
binations, 3 finger postures, and all 24 categories. (Here, ‘•’
indicates the finger is pressed down, and ‘◦’ indicates the
finger is lifted. For example, “• • • ◦ ◦” means the thumb,
index finger, and middle finger are pressed, while the ring
finger and little finger are not pressed.)

Finger Combination Posture Overall
Method • ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ • ◦ ◦ • • • • ◦ ◦ • • • • ◦ • • • • •
w/o Augmentation 80.16 96.03 96.83 52.39 88.89 82.54 79.37 84.92 86.61 70.93
w/o Auxiliary Task 0 19.84 16.67 3.17 77.78 0 1.59 0 91.27 12.30
Ours 86.51 97.62 98.41 90.48 92.86 88.10 83.33 92.86 93.86 85.32

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hand-worn Devices
	2.2 Wrist-worn Devices
	2.3 Mid-air Typing Based on Head-worn Camera
	2.4 Text Entry Based on External Camera

	3 FineType Overview
	3.1 Training Gesture Set
	3.2 Hardware Prototype
	3.3 System Overview

	4 FineType Model
	4.1 Tap Image Capture
	4.2 Data Collection
	4.3 Model Development
	4.4 Model Training

	5 Evaluation
	5.1 Predefined Gestures Detection
	5.2 Newly Defined Gestures Detection

	6 Text Entry User Study
	6.1 Study Design
	6.2 Procedure
	6.3 Results
	6.4 Discussion

	7 Application Scenarios
	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References
	A User-adaptive New Gesture Recognition
	A.1 Model Architecture
	A.2 Model Training
	A.3 Model Performance
	A.4 Method Comparison

