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Abstract. Automatic segmentation of the left atrium (LA) is a funda-
mental task for atrial fibrillation diagnosis and computer-aided ablation
operation support systems. This paper presents an approach to automat-
ically segmenting left atrium in 3D CT volumes using fully convolutional
neural networks (FCNs). We train FCN for automatic segmentation of
the left atrium, and then refine the segmentation results of the FCN
using the knowledge of the left ventricle segmented using ASM based
method. The proposed FCN models were trained on the STACOM’13
CT dataset. The results show that FCN-based left atrium segmentation
achieves Dice coefficient scores over 93% with computation time below
35s per volume, despite of the high variation of LA.

1 Introduction

Among the most common and hazardous cardiovascular diseases, atrial fib-
rillation (AF) is usually characterized by abnormally rapid and irregular heart
rhythm. In recent years, surgical treatment for AF, typically ablation procedure
(AP), has gradually become the mainstream [9]. AP is minimally invasive, which
is the main consideration for some patients. Computer aided atrial detection and
precise segmentation can help doctors gain valuable preoperative information.
Computed tomography (CT) has been widely used for diagnosis and treatment
for cardiovascular disease. However, automated LA segmentation from CT data
is still a non trivial task. Due to larger shape variations of LA than other organs,
especially four pulmonary veins (PV) and left atrial appendage (LAA). Some ex-
isting methods have achieved good results, but the training cost is high [13]. In
this paper, we propose a fully automatic LA segmentation system on C-arm
CT. Based on state-of-the-art fully convolution network (FCN), and statistical
shape models, the proposed method is efficient, robust, and is able to obtain
good results with small training dataset.

2 Related Work

Image segmentation is a fundamental task in medical image analysis. Pro-
ducing accurate segmentation is difficult due to many influencing factors: noise,



pathology, occlusion, and object shape complexity. Some semi-automated or au-
tomated algorithms have been applied to LA segmentation problem. Daoudi et
al. [3] proposed an algorithm based on active contour, with region growing and
snakes. This type of classical methods are simple and fast, but sensitive to image
quality. Sandoval et al. [6] proposed an algorithm based on multi-atlas. Multi-
atlas has remarkable advantages of robustness and making good use of a priori
anatomical information. The main shortcoming of multi-atlas is computing cost.
Image registration for 3D volume is quite time consuming even though GPU par-
allel acceleration strategy has been applied. Zuluaga et al. [15] proposed another
multi-atlas propagation based segmentation. Nowadays, statistical shape models
are widely used in image segmentation. Zheng et al. [14] proposed an algorithm
based on a multi-part shape model and marginal space learning, which divides
LA into six-parts: LA body, LAA and four PVs. This algorithm is efficient, and
robust to image quality. However, a large manually labelled data set is required.
For medical image application, this limitation cannot be ignored till now. More-
over, compared to LA body, the LAA has larger anatomical variations, thus
method using strong shape priors is not suitable [5].

Fig. 1. Pipeline of the proposed approach: off-line training and on-line testing



Our work draws on recent progress of deep neural nets [12]. Image segmen-
tation can be viewed as a pixel-wise classification task. In recent years, convolu-
tional neural networks (CNN) achieve success on image classification problem.
Therefore, taking advantage of coarse but highly abstract hidden layer output,
pixel-wise classification can also be solved with CNN [10]. For segmentation task,
the target is a dense label map, which is of the same size as the input. Specif-
ically, to achieve this coarse-to-fine processing, we can add upsampling layer
and deconvolution layer upon CNN, and then obtain the so-called fully convo-
lutional network (FCN). Owing to its powerful ability to learn both local and
global information, FCN has made great progress in image segmentation.

In this work, we present an automatic LA segmentation method for 3D CT.
We transferred deep neural network architectures for natural scenes to medical
task, thus good generalization ability can be expected. Furthermore, to achieve
both strong deformable ability and shape constraints, we combined FCN and
statistical shape models, and thus improve the accuracy while preserving the
efficiency.

In the following sections, we will demonstrate our proposed pipeline, includ-
ing preprocessing (Section 3.1), FCN (Section 3.2) and shape model based post-
processing (Section 3.3), report experiments (Section 4), and summarize the
paper (Section 5).

3 Method

We trained a hourglass-shaped architecture with a per-pixel logistic loss, and
validated with the standard pixel intersection over union metric. Our network
includes 12 stacked convolution layers, each followed by max pooling layer and
ReLU activation layer. Two deconvolution layers were added on the top of the
CNN architecture.

Training FCN with small training dataset has been an awkward problem. To
resolve this problem, we adopted two measures. First, we pre-train our network
on a big dataset [4] with supervision. Next, the network was fine-tuned on our
medical dataset. We selected slices from raw volume data along different axes.
Thereby an abundant training dataset with more than 1000 slices can meet
the demand for network training. This treatment may inevitably lose some 3D
structure informatinon. However, with postprocessing from the 3D perspective,
this 3D information lost will be minimized. Fig. 1 shows the steps of our proposed
approach.

3.1 Preprocessing

Our preprocessing consists of two aspects. First, the image contrast is in-
creased with histogram equalization. Next, we convert the gray scale image to
pseudo color image. Taking advantage of three color channels, network training
can be improved.



3.2 Fully Convolutional Network

We denote the 3D raw CT volume as I. For our two class problem, the set
of possible labels is L = {0, 1}. Foreground LA voxels are marked with label 1
while other background voxels are marked with 0. For each voxel v, we define
a variable yv ∈ L that denotes the assigned label. Given the image I, the FCN
calculates the probability of assigning label k to v, described by P (yv = k|I).

The first step in the training process, we trained FCN-32s network. FCN-
32s networks give coarse segmentation results, much local information of the
input is dropped while passing convolution and pooling layers. Hence we added
links form lower layers to the final layer, and the whole network turns into a
directed acyclic graph (DAG). Compared with simple linear networks, DAG-
style networks combine the global structure with local information, thus the
results became more sophisticated. Combining the second-to-last and then the
third-to-last pooling layers, FCN-16s and FCN-8s structure were generated in
succession.

Our dataset included 1200 slices, which were extracted from 10 CT volumes.
These slices were divided into two parts: 1000 slices as training set, and the other
200 as validation set.

Due to the fact that FCN was trained on slices, some 3D structure informa-
tion was lost unavoidably, continuity and smoothness cannot be ensured for the
final 3D model. Some tiny tissues were misclassified as foreground. Therefore, we
extract the maximum connected component from the FCN segmentation result,
and apply hole filling algorithm to the maximum connected component. By do-
ing this, most false positives can be excluded, then segmentation result become
a smooth and solid model.

(a) raw image slice (b) LV segmentation (c) LA/LV boundary

Fig. 2. Segment LV with ASM based method, to get the LA/LV boundary

3.3 Shape Constraints

The knotty problem for LA segmentation task is determination for the fuzzy
boundary of LA and LV. These two chambers are connected in structure, and



Table 1. LA segmentation performance comparison by three
evaluation metrics. Acronyms of methods are from [13].

Method evaluation criterion

DC time(s) train dataset size

BECHAR [3] 0.66 900 10
INRIA [8] 0.82 1500 10

LTSI VRG [6] 0.88 4700 10
SIE PMB [14] 0.94 3 457
UCL 1C [15] 0.93 4200 30

Proposed 0.93 32 30

may have similar gray-scale for some images (see Fig. 2 (a)). Therefore, many
machine learning methods [8] have shortcoming of deciding the boundary of LA
and LV, as well as FCN method. These methods mainly focus on LA segmenta-
tion, while LV is ignored.

Some previous work [1] adopted 3D CRF as postprocessing to improve the
segmentation results. Dense CRF mainly focuses on prior and posterior distri-
bution of pixel classes, rather than global shape constraints. Furthermore, CRF
method is time consuming, for both offline learning and online testing.

For fuzzy boundary problem, shape models with constraints are shown to be
more robust [13]. Compared with LA wall, LV epicardium is much thicker, and
the clearly visible posterior borders of the LV and LA are flat. We establish a
statistic shape model to segment LV epicardium with active shape model (ASM)
method [2]. The top of LV is regarded as the boundary of these two chambers.
These two chambers can therefore be clearly distinguished (see Fig. 2).

4 Experiments

We trained networks on the benchmark CT dataset for Left Atrial Segmen-
tation Challenge (LASC) carried out at the STACOM’13 workshop [13]. Ten CT
volumes were provided with expert manual segmentations, and the other twenty
volumes were used for algorithm evaluation. For statistical shape model method,
we randomly selected other twenty volumes from patients who underwent a CTA
examination using a Philips Brilliance iCT256 scanner. The volumes in the whole
dataset set contain 210 to 455 slices while the size of all slices is of 512 × 512
pixels. The resolution inside each slice is isotropic but varies between 0.314 mm
and 0.508 mm for different volumes, and the slice thickness varies between 0.450
mm and 0.510 mm.

For the training process, the mean validation pixel-wise accuracy of FCN-32s,
16s, and 8s is 86%, 92%, and 95%, respectively. In general, 32s networks give
coarse results, with very low false positive rate. Furthermore, 16s networks give
higher accuracy, but high false positive rate as well. Moreover, 8s networks give
obviously better results than the others.



Fig. 3. Segmentation examples for B002, B007, B013 data. (a)(d)(g): raw image,
(b)(e)(h): segmentation result, and (c)(f)(i): segmented 3D model. Yellow region indi-
cates true positive, red indicates false negative, and magenta indicates false positive.

The test data set includes 20 volumes. We choose Dice coefficient as evalua-
tion criterion, which is defined by:

DC =
2|VGT

⋂
VSEG|

|VGT |+ |VSEG|
, (1)

where we denote the ground truth volume mask by VGT , and the segment result
mask by VSEG.

Table 1 shows the results of some different methods. Segmentation accuracy
is the main consideration for algorithm evaluation, while the other two aspects
affect the applicability.

As a comparison experiment, we choose dense 3D CRF [7] as postprocessing
method, the result shows that ASM based LV segmentation gives simpler yet
robust LA/LV boundary. For the other comparison experiment, we establish LA
statistical shape model, and apply ASM method for both LA and LV, to compare
FCN with ASM method for LA segmentation. Table 2 shows the results of these
comparison experiments.



(a) raw image (b) ground truth (c) result

Fig. 4. LAA segmentation example. Note that LA body ground truth is from the
original STACOM’ 13 dataset, and LAA ground truth was labelled by ourselves.: (a)
raw image, (b) ground truth, LAA is labelled with blue, and (c) segmentation result,
the meaning for each color is the same as Fig. 3

Table 2. Segmentation performance comparison by different LA/LV processing

Method evaluation criterion

DC time(s) train dataset size

FCN + CRF [7] 0.87 120 30
LA ASM + LV ASM 0.85 15 30

FCN + LV ASM (Proposed) 0.93 32 30

As an example, Fig. 3 shows segmentation results for CT volume B002, B007,
and B013. The result and ground truth are compared in Fig. 3(b), (e), (h).

STACOM’ 13 challenge ignored LAA while evaluating each method. How-
ever, atrial fibrillation usually leads to LAAs emptying obstruction, blood stasis
and induces thrombosis [11]. An additional advantage of our method, also not
reflected in Table 1, is that it can also segments LAA accurately (see Fig. 4),
which is hard for ASM based methods.

5 Conclusion

In this paper, we propose a fully convolutional network based automated ap-
proach for left atrium segmentation, and adopt statistical shape models to make
up for the lack of constraints. The experiments showed that our proposed method
is comparable with state-of-the-art methods while using only a small training
set. Furthermore, we preliminarily attempted to combine neural networks with
statistical shape models.

The proposed method can be improved from many perspectives. For relia-
bility and simplicity, we prefer to learn LA/LV fuzzy boundary in FCN model
itself. Neural networks and shape models have respective advantages, next step
we will attempt to better unify the two into the same framework. As the dataset
increases, the FCN models are expected to be trained better in the future.
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