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Figure 1: FingerGlass, an interaction technique for smart glasses. A fingerprint sensor, highlighted in the red circle, is seamlessly
integrated onto the temple arm of the smart glasses. This strategic placement allows users to perform various finger gestures,
providing a discreet, efficient, and ergonomic input solution for controlling smart glasses functions.

Abstract
Smart glasses hold immense potential, but existing input methods
often hinder their seamless integration into everyday life. Touch-
pads integrated into the smart glasses suffer from limited input
space and precision; voice commands raise privacy concerns and
are contextually constrained; vision-based or IMU-based gesture
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recognition faces challenges in computational cost or privacy con-
cerns. We present FingerGlass, an interaction technique for smart
glasses that leverages side-mounted fingerprint sensors to capture
fingerprint images. With a combined CNN and LSTM network,
FingerGlass identifies finger identity and recognizes four types
of gestures (nine in total): sliding, rolling, rotating, and tapping.
These gestures, coupled with finger identification, are mapped to
common smart glasses commands, enabling comprehensive and
fluid text entry and application control. A user study reveals that
FingerGlass represents a promising step towards a fresh, discreet,
ergonomic, and efficient input interaction with smart glasses, po-
tentially contributing to their wider adoption and integration into
daily life.
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CCS Concepts
•Human-centered computing→ Interaction techniques;Ges-
tural input; Text input; • Computing methodologies → Super-
vised learning.
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1 Introduction
Smart glasses, unlike immersive Virtual Reality (VR) devices such
as Meta Quest and Apple Vision Pro or Augmented Reality (AR)
devices like Microsoft HoloLens, prioritize lightweight design and
everyday usability.While VR andAR devices typically involve bulky
headsets that limit mobility and social acceptability, smart glasses
aim to seamlessly integrate digital information into the user’s natu-
ral field of view with minimal form factor impact, offering a truly
wearable experience comparable to traditional eyeglasses. This de-
sign philosophy, exemplified by products like the Ray-Ban Meta
Smart Glasses, highlights the potential of smart glasses for con-
tinuous, unobtrusive use in daily life. It is anticipated that smart
glasses will incorporate an increasingly diverse array of sensors
to enhance functionalities and gather detailed information from
the external environment. As the capabilities of smart glasses ex-
pand, the complexity of input control requirements will naturally
escalate, calling for more sophisticated and versatile interaction
techniques. However, realizing this potential hinges on develop-
ing intuitive, efficient, and socially acceptable input methods, a
significant challenge that current solutions struggle to address.

Existing integrated solutions primarily rely on touchpads and
voice commands, both with significant drawbacks. Touchpads inte-
grated onto the temple arms of smart glasses, constrained by their
limited size, often lead to user frustration and errors due to poor
accuracy and limited gesture complexity [27]. Voice input, while
seemingly natural, raises significant privacy concerns and proves
impractical in noisy environments or during sensitive conversa-
tions [34]. Relying solely on voice commands means sacrificing
privacy in quiet environments or being rendered unable to interact
with your device in crowded spaces.

Other avenues that may be integrated into smart glasses, such as
hand gesture recognition [10, 13, 15], head gesture recognition [47],
and eye tracking [2, 11, 37, 40], while promising more natural inter-
action, present significant challenges. These methods can be either
vision-based or IMU-based, each with its own set of complexities
and limitations. Vision-based systems generally require significant
computational resources, which can lead to increased demand for
processing power and may ultimately reduce battery life—an essen-
tial consideration for all-day wearable devices. On the other hand,
IMU-based systems used for head gesture recognition often lead to
discomfort and offer a limited range of gestures.

This work introduces FingerGlass, an interaction technique for
smart glasses that leverages a commonly overlooked yet readily
available sensor: the side-mounted fingerprint sensor. The miniatur-
ization of fingerprint sensor technology, driven by the widespread
adoption of smartphones, has advanced to the point where integra-
tion into the temple arms of smart glasses is feasible. Through a
combined CNN and LSTM network, FingerGlass accurately iden-
tifies the user’s finger and recognizes four main gestures: sliding,
rolling, rotating, and tapping. Sliding includes four directionalmove-
ments—up, down, left, and right. Rolling consists of twomovements:
left and right. Rotating encompasses two actions: clockwise and
counterclockwise. Finally, tapping is a single gesture accomplished
by tapping the screen. In total, FingerGlass can recognize nine dis-
tinct actions across these four types of gestures, offering a versatile
and user-friendly interaction experience.

FingerGlass offers several key advantages over existing methods:

• Ergonomics and Discreetness: The side-mounted finger-
print sensor is strategically positioned on a smart glasses’
arm, aligning perfectly with where the user’s finger naturally
falls during interaction. This design allows for comfortable
and subtle input, eliminating the need for exaggerated hand
movements. Compared to voice commands, which raise pri-
vacy concerns and are publicly audible, and vision-based
gesture recognition, which can involve more overt hand
movements, FingerGlass provides a more private and sub-
tle interaction method. Users can enjoy the familiar ease of
touch-based interaction with enhanced discretion, a crucial
factor for increasing the social acceptability of smart glasses
and driving their wider adoption. While our NASA-TLX re-
sults showed slightly higher physical demand compared to
1D Handwriting in our study, participants reported subjec-
tive comfort and natural hand positioning with FingerGlass.

• Rich Input Space: Unlike limited touchpad areas, the fin-
gerprint sensor captures rich fingerprint information and is
sensitive to subtle pressure and movement variations. This
allows for a wider range of recognizable gestures, unlocking
possibilities for complex command input and text editing. As
smart glasses evolve to include more sensors and capabilities,
the extensive input space offered by FingerGlass will become
increasingly valuable.

• Design Simplicity and Enhanced Comfort: By integrat-
ing readily available and mature fingerprint sensors into
smart glasses, FingerGlass avoids the need for additional in-
dependent hardware, minimizing cost and design complexity.
Compared to eye-tracking sensors that require placement in
front of the eyes, the fingerprint sensor integrated into the
temple arm offers superior comfort for extended wear.

Through a user study comparing FingerGlass to traditional touch-
pad interaction, we demonstrate significant improvements in task
completion time and user satisfaction. Our FingerGlass implemen-
tation achieves a gesture recognition accuracy exceeding 96% with
a real-time response time of average 73 ms, enabling a text entry
speed of 12.72 WPM. Our findings suggest that FingerGlass pro-
vides a compelling alternative for intuitive, efficient, and socially
acceptable smart glasses control, paving the way for more seamless
integration of these devices into our daily lives.
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2 Related Work
Smart glasses are an emerging wearable device that offers users
convenient access to information and interaction but also presents
challenges in input method design. The ideal input method for
smart glasses should be efficient, easy to use, private, and socially
acceptable. However, existing input methods, such as touchpads and
voice recognition, have significant limitations in these areas [27, 34].
To address these challenges, researchers have explored various
novel input techniques, which can be broadly categorized into two
types: using external devices for input and input methods that do
not require external devices.

2.1 Using External Devices for Input
To expand the input capabilities of smart glasses, some studies have
explored using external devices as input auxiliaries. For example,
the touchscreens and physical buttons on smartphones and smart-
watches [1] can provide a relatively comfortable text input experi-
ence. Ahn et al. [1] explored the feasibility of using a smartwatch
as an input device for smart glasses and designed two input meth-
ods based on the touchscreen and physical buttons: SwipeBoard
and HoldBoard. Additionally, smart glasses like Sony SmartEye-
glass and Epson Moverio can be controlled using connected remote
touchpads. Studies have explored more efficient text input layouts
for these remote controllers [31, 43].

Besides smartphones and smartwatches, some research has ex-
plored other types of external devices. For example, Hsieh et al. [23]
designed a system combining a haptic glove and smart glasses, al-
lowing users to perform various interactive operations such as text
input, icon selection, and scrolling by touching specific areas on the
glove. Researchers have designed rings equipped with sensors to
track finger movements and positions for auxiliary input to smart
glasses [4, 5, 25, 32, 46]. Devices such as smart wristbands and
sleeves, like the smart wristband by Ham et al. [16], use capacitive
sensors and inertial measurement units to detect muscle tension
and wrist movements, or Gesturewrist and Gesturepad [35] provid-
ing a more natural input method. TapType [38] uses wrist-worn
sensors to enable full-size QWERTY typing on any surface by in-
terpreting finger taps, while TypeAnywhere [51] achieves a similar
feat through a wearable device that decodes finger-tap sequences
for ubiquitous text entry.

In addition to these devices, some studies have also explored
using the body itself as an input [14, 17, 18, 29, 41, 42]. For example,
Liu et al. [29] proposed PrinType, a system that uses a thumb-worn
fingerprint sensor to recognize different fingerprint areas for text
input. Gustafson et al. [14] studied a palm-based virtual interface,
where users can obtain information by rubbing the palm and receive
instructions through an auditory system. This method utilizes the
proprioception of the human body to provide additional feedback.
Wang et al. [41] proposed using the palm as a keyboard (PalmType),
where users can input characters by touching different areas of
their palms. Xu et al. [45] proposed TipText, a system that enables
text entry by tapping on a miniature QWERTY keyboard overlaid
on the user’s fingertip. This approach leverages the user’s spatial
memory of the QWERTY layout and uses a statistical decoder to
ensure accurate text input.

2.2 Input Methods Without External Devices
To eliminate dependency on external devices, some studies have
explored directly implementing input methods on smart glasses.

2.2.1 Touch-Based Input. Touch-based input methods on smart
glasses are typically implemented through touch panels on the
frame or temple.

Google Glass’s touch-sensitive frame supports sliding operations,
allowing users to select characters by sliding. For instance, Yu et
al. [48] proposed a single-stroke gesture system that utilizes the
sliding area of the frame for character input. Islam et al. [24] pro-
posed GlassPass, a smart glasses authentication system where users
tap specific locations on the glasses’ temple to input passwords.

2.2.2 Touchless Input. Touchless input methods aim to control
smart glasses through natural behaviors (e.g., head movements, eye
tracking) without physical contact.

Voice Recognition: Voice recognition has been widely adopted by
Google Glass and Microsoft HoloLens, although it has limitations
in noisy environments [34].

Head Movements: Head movement is a relatively natural inter-
action method that can be used for simple navigation and control
operations. Yi et al. [47] explored using head movements as an input
method for smart glasses. They designed the GlassGesture system,
which utilizes the accelerometer and gyroscope built into Google
Glass, to recognize six distinct head gestures: nodding, shaking,
turning left, turning right, looking up, and looking down.

Eye Tracking: Eye-tracking technology can be used to achieve
more precise and efficient interactions, such as text input and target
selection. Guo et al. [11] proposed EyeClick, which combines eye-
tracking and a handheld controller to enable efficient text input
within the limited field of view and accuracy of smart glasses. Ahn
and Lee [2] introduced Gaze-Assisted Typing, which combines
eye-tracking and touchpad input to enhance text input efficiency.
The multimodal system designed by Slambekova et al. [37] uses
eye tracking for object selection, combined with hand gestures for
manipulation.

Hand Tracking: Beyond head movements and eye-tracking, vir-
tual keyboards using hand tracking have been explored as an input
method for both virtual and augmented reality headsets. These
systems typically utilize hand tracking to detect finger presses on a
virtual keyboard projected within the user’s field of view. Studies
have investigated the feasibility and performance of different hand-
based input methods, such as touch typing and gesture typing, on
mid-air virtual keyboards in VR [6].

However, these input methods also have some limitations. For ex-
ample, the recognition accuracy and speed of head movements are
limited, and in certain cases, it may not feel natural. Eye-tracking
technology typically requires additional hardware to be mounted
on the front of the glasses, adding extra weight to the forefront.
This not only increases the overall cost but also makes the system
susceptible to inaccuracies due to variations in environmental light-
ing conditions. Similarly, implementing robust hand tracking for
virtual keyboards on smart glasses presents challenges due to size
and power constraints, potentially impacting accuracy and user
experience.
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2.3 Fingerprint-Based Interaction Techniques
In addition to the PrinType [29], other fingerprint-based interac-
tion techniques have been explored in various contexts to enhance
input methods and user authentication, though these works are
not designed for smart glasses and cannot be directly applied to
this context. Sugiura and Koseki [39] introduced the Fingerprint
User Interface (FUI), utilizing fingerprint recognition to distinguish
between different fingers of the same user, allowing each finger
to hold specific commands or data objects. This method enables
intuitive interactions, such as executing commands by touching
with a designated finger. However, their work focused solely on
differentiating fingers without incorporating gestures, limiting the
range of possible interactions.

Holz and Baudisch [21] developed Fiberio, a rear-projected multi-
touch table system capable of displaying images and simultaneously
capturing fingerprints during touch interactions. By integrating
fingerprint recognition with touch input, Fiberio provides secure
and seamless user authentication in collaborative environments.
However, their system is huge, and does not combine identity recog-
nition with interaction, thus it still relies on basic swipe gestures
for input, similar to conventional touchscreens.

Ostberg et al. [33] explored user perceptions of repurposing
smartphone fingerprint sensors for gestural input, such as taps
and swipes. While users generally favored this concept, their work
lacked support for rotational and scrolling gestures and did not
address the unique interaction challenges posed by smart glasses.

Ferrari and Tartagni [8] and Gust [12] both proposed systems
utilizing the skin texture of fingertips for cursor control, though
with some differences in implementation. Ferrari and Tartagni com-
bined fingerprint recognition with cursor control, where identity
recognition is achieved through skin texture analysis, and the on-
screen pointer is controlled by the rolling and pitching of the finger.
Gust’s patent describes a compact optical pointing device that em-
ploys optical sensors to detect motion by tracking the finger’s skin
texture on a touch surface, offering an efficient and space-saving
input method suited to portable devices. Both approaches demon-
strate innovative use of fingertip texture for input; however, they
remain limited to cursor control and do not develop algorithms nec-
essary to recognize complex discrete gestures to execute complex
commands.

To address the limitations of the aforementioned studies, we
presents FingerGlass, an input technique specifically designed for
smart glasses. FingerGlass leverages a side-mounted fingerprint
sensor to recognize finger identity and a set of distinct discrete
gestures. By combining finger identity with gesture recognition
into a comprehensive command set, FingerGlass enables efficient,
convenient, and private input interactions on smart glasses, includ-
ing complex tasks like text input.

3 FingerGlass: Design and Implementation
This section details the design and implementation of FingerGlass,
encompassing the gesture set, finger identity utilization, data acqui-
sition, and the machine learning pipeline for robust finger gesture
recognition.

3.1 Gesture Design and Finger Identity
FingerGlass leverages both distinct finger gestures and finger

identity to create a versatile interaction space.
3.1.1 Gesture Set. The design of FingerGlass’s gesture set prior-
itizes both ergonomics and intuitiveness. Our aim was to create
gestures that feel natural, comfortable, and easy to perform on
the side-mounted fingerprint sensor, maximizing its interaction
potential for smart glasses. The system recognizes the following
gestures:

• Sliding: Horizontal and vertical sliding motions on the sen-
sor. Sliding leverages users’ familiarity with touch interfaces,
providing an intuitive method for navigation and control.
Vertical sliding can adjust volume, while horizontal sliding
can switch tracks or navigate menu items.

• Rolling: Forward and backward rolling motions on the sen-
sor. The natural tilting motion of the finger makes this ges-
ture comfortable and easy to learn, suitable for fine-tuned
adjustments, such as scrubbing through media playback.

• Rotating: Clockwise and counter-clockwise rotation on the
sensor. Rotating is distinct and less prone to accidental ac-
tivation, making it suitable for commands like switching
modes or applications. Although requiring a slightly larger
movement, it remains comfortable on smart glasses.

• Tapping:A single quick tap on the sensor. Tapping serves as
a basic selection or activation gesture, akin to a button press,
offering a simple and universally understood interaction.

Figure 2 visually depicts these gestures. Compared to alterna-
tive gesture sets, such as those involving large arm movements
or complex multi-finger configurations, FingerGlass’s gestures are
specifically designed for the constrained interaction space of smart
glasses. They prioritize subtle, ergonomic, and socially acceptable
interactions. Compared to typical side-mounted touchpads (e.g.,
Meta’s Ray-Ban glasses), which often support only horizontal slid-
ing and tapping, FingerGlass offers a richer set: vertical and horizon-
tal sliding, forward and backward rolling, clockwise and counter-
clockwise rotating, and tapping. This expanded gesture vocabulary
enables more intuitive and efficient device navigation and control
by mapping gestures to user-defined commands or predefined sys-
tem actions. For instance, during music playback, horizontal sliding
can switch tracks, vertical sliding can control volume, and rolling
can adjust playback progress. Results from the first task in our user
study 4.2.1 indicate that grounded in principles of ergonomics and
intuitiveness, our gesture set provides a natural and efficient inter-
action method for smart glasses. Several key gesture characteristics
informed the design of the input mapping strategies discussed in
the following section.

Figure 2: Illustration of recognized finger gestures: (a) sliding,
(b) rolling, (c) rotating, and (d) tapping.
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3.1.2 Finger Identity for Input Mapping. In addition to gesture
and motion input, FingerGlass enables a broader spectrum of input
mapping through the integration of finger identity. Figure 3 presents
a text mapping rule used in our user study, which combines finger
identification and gestures to facilitate eye-free single-handed text
input on FingerGlass.

The design of this text mapping follows two fundamental princi-
ples. The first principle is to leverage users’ familiarity with the
QWERTY keyboard layout. For instance, in the case of sliding
gestures, an upward sliding maps to keys in the upper row of the
QWERTY keyboard layout, a downward sliding corresponds to the
lower row, and tapping maps to the middle row. The numeral map-
ping adheres to a similar logic, where the top, middle, and bottom
rows correspond to the positions of the numbers 1, 2, 3, 4, 5, 6, and
7, 8, 9, respectively. This mapping strategy simplifies the learning
curve and facilitates user memory and adaptation. The second prin-
ciple is to consider the frequency of use of different fingers
and gestures. In the design of the key mappings, priority is given
to the index and middle fingers, thereby minimizing reliance on the
ring and little fingers, which enhances comfort and operational ef-
ficiency. The thumb finger is intentionally not used extensively for
these interactions because its natural positioning and movement on
the frame of the glasses is less consistent and ergonomic. Addition-
ally, rotational gestures—requiring larger movement—are allocated
to less frequently used special keys to mitigate wrist strain. This
ensures a more comfortable and efficient interaction design.

By adhering to these mapping principles and finger usage strate-
gies, we enable text typing conveniently across different modes. In
particular, the "Switch" key design allows users to toggle between
different modes (uppercase, lowercase, and numeric/symbol modes),
thereby enhancing the overall usability. It is important to note that
prior research has explored finger-based interaction in virtual real-
ity and smart glasses, leveraging detailed fingerprint recognition for
input [29]. Unlike its approach that defines numerous fingerprint
regions, our method combines coarse finger identification with
gestures. This combination offers a more intuitive and memorable
mapping strategy compared to solely relying on touch location on
the palm or finger. Furthermore, our approach simplifies the user
enrollment process as it only requires identifying the finger, not spe-
cific regions within each fingerprint, making it more user-friendly
compared to similar techniques utilizing fingerprint sensors.

Figure 3: Mapping scheme for text entry using finger identity
and gestures.

3.2 Device for Data Acquisition and
Preprocessing

3.2.1 Device for Data Acquisition. A commercial side-mounted fin-
gerprint sensor module (Goodix GF3626) has been integrated into

the temple section of a prototype smart glasses frame fabricated
through 3D printing (Figure 4). For ease of development, a smart-
phone development board was used in this prototype. However, it is
important to note that the fingerprint sensor module can be made
very small in actual production. The sensor captures capacitive
image sequences at 40 frames per second during finger interaction.
Each 160 × 36 pixel image represents capacitive changes due to
finger contact and movement (Figure 5).

Figure 4: Integration of the fingerprint sensor into the proto-
type smart glasses.

Figure 5: Captured sequential fingerprint images. The blue
lines with arrows denote the displacement of the fingerprint
in the image sequence, while the green boxes highlight the
changes in fingerprint orientation during rotational gestures.

3.2.2 Data Preprocessing. Raw capacitive image sequences un-
dergo the following preprocessing steps:

Image Enhancement and Noise Removal: Histogram equal-
ization enhances contrast to accentuate fingerprint features, fol-
lowed by Gaussian filtering to reduce noise and improve the signal-
to-noise ratio.

Gesture Segmentation: Consecutive frame differences exceed-
ing a threshold (Δ𝐶𝑡 > 𝛿) detect gesture start and end points,
isolating relevant image segments.

Δ𝐶𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

|𝐶𝑡,𝑖 −𝐶𝑡−1,𝑖 | (1)
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where𝐶𝑡,𝑖 denotes the capacitance of the 𝑖-th pixel in the 𝑡-th frame,
𝑁 is the number of all pixels.

Tap Detection and Frame Sampling: Tap gestures, charac-
terized by short duration and significant contact area changes, are
identified. For gestures not identified as taps, frame sampling is
employed to normalize the length of the image sequence. Nor-
malization is achieved by either upsampling short sequences or
downsampling long sequences to the same length. Linear interpola-
tion is utilized to extend the number of frames, and downsampling
is achieved by randomly selecting a certain number of frames in
the sequence. This step is crucial to ensure consistent feature ex-
traction and gesture recognition across varying gesture speeds and
durations.

3.3 Machine Learning Pipeline
FingerGlass implements and compares a dual recognition approach:
a lightweight CNN-LSTM model and a rule-based engine for robust
gesture recognition. Additionally, a dedicated CNN is used to iden-
tify fingerprints for distinguishing between fingers, enabling richer
input interactions.

3.3.1 Fingerprint Identification. For identification, we select the
frame with the largest contact area within each gesture sequence
and build a lightweight CNN-based fingerprint recognition model.
This model is based on the design principles of DeepPrint [7]. We
adopt a more streamlined architecture by using MobileNetV2 [36],
which is an improved backbone based on MobileNetV1 [22]. This
change replaces the original ResNet18 [20], balancing recognition
accuracy with reduced model complexity. Instead of using a soft-
max function for classification, we employ a fixed-length vector
similarity-based identification approach.

Specifically, the trained CNN model extracts a 192-dimensional
feature vector from each fingerprint image, which is then normal-
ized to unit length. For an input fingerprint image, we first compute
the cosine similarity between its feature vector and the feature
vectors of the four registered fingers in the database. The cosine
similarity is calculated as follows:

𝑠 (𝑅𝑝 , 𝑅𝑔) = 𝑅𝑇𝑝 · 𝑅𝑔 (2)

where 𝑅𝑝 is the feature vector of the input fingerprint image, 𝑅𝑔 is
the feature vector of a registered fingerprint in the database, and
𝑠 (𝑅𝑝 , 𝑅𝑔) is the cosine similarity between 𝑅𝑝 and 𝑅𝑔 .

The system ranks the similarity scores and selects the fingerprint
identity with the highest score as the recognition result. If the
highest score exceeds a predefined threshold, the recognition is
considered successful; otherwise, it is classified as an unknown
finger.

3.3.2 Finger Gesture Recognition. For non-tap gestures, we im-
plemented and compared two distinct methods for recognition:
a rule-based engine and a lightweight CNN-LSTM deep learning
model. A detailed comparison of their performance is provided.

Rule-Based Gesture Recognition: The rule-based gesture
recognition method serves as a computationally lightweight and
easily interpretable baseline for comparison against the more com-
plex CNN-LSTM model. By leveraging readily observable features

of fingerprint motion, the rule-based approach aims to achieve reli-
able gesture classification with minimal computational overhead.

The inherent diversity in captured fingerprint image sequences
is highlighted in Figure 5, where each gesture type is visually dis-
tinct. These visual cues serve as the foundation for our gesture
recognition approach. Sliding motions exhibit a smooth and consis-
tent translation of the entire fingerprint pattern across successive
frames. This movement is clearly depicted by the blue arrows in
Figure 5, effectively illustrating the fingerprint’s trajectory along
the sensor’s surface. The consistent shift of all fingerprint features
is key to identifying this gesture. Unlike sliding, rolling gestures
present a more nuanced pattern. While a slight overall translation
of the fingerprint might be observed, the defining characteristic lies
in the noticeable shift of the contact area’s centroid within each
frame. This subtle change in contact point, rather than a global
shift, distinguishes rolling from sliding. Rotating gestures are visu-
ally apparent through the evolving orientation of the fingerprint
throughout the sequence. Figure 5 uses green boxes to highlight
the dynamic shift in fingerprint orientation within the contact area
during the gesture. As shown, the fingerprint ridges gradually tran-
sition from a horizontal alignment to a near-vertical alignment as
the finger rotates. This consistent change in orientation, even with
minimal translation, is the hallmark of a rotating gesture.

Based on these distinct motion characteristics, we have formu-
lated a set of rules for accurately classifying each predefined gesture.
These rules are meticulously detailed in Table 1, providing a clear
and concise guide to the specific conditions that trigger each ges-
ture classification. For a deeper understanding of the complete rule-
based gesture recognition process, including the algorithmic work-
flow and implementation details, please refer to Appendix A.2.1.

CNN-LSTM Based Gesture Recognition: Recent advance-
ments in deep learning have led to significant progress in finger
gesture estimation based on fingerprint [19] or touchscreen im-
ages [28, 30]. Compared to previous work, FingerGlass recognizes
a broader range of fingerprint gestures, including rotation, sliding,
rolling, and tapping by a network combining Convolutional Neural
Network (CNN) feature extraction and Long Short-Term Memory
(LSTM) temporal modeling.

The CNN component consists of three convolutional layers, max-
pooling layers, and ReLU activation functions to extract spatial fea-
tures from each fingerprint image. The LSTM component takes the
sequence of feature vectors extracted by the CNN as input, learn-
ing the temporal dependencies to capture the dynamic changes in
finger movements, ultimately outputting the gesture classification
results. For the detailed architecture of the CNN and LSTM, please
refer to the Appendix A.2.2.

3.4 Implementation and Performance
Evaluation

We recruited 25 volunteers for training and validating our method.
Each volunteer performed nine predefined gestures (slide up, slide
down, slide left, slide right, roll left, roll right, rotate clockwise,
rotate counter-clockwise, and tap) using eight fingers (excluding
thumbs) on both hands. Each gesture was repeated 10 times. During
the data collection for each gesture, a fingerprint sensor recorded
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Table 1: Rule-Based Gesture Recognition Rules

Gesture Feature Rule

Sliding Significant overall image translation

Calculate horizontal and vertical translation between consec-
utive frames 𝐷𝑥 , 𝐷𝑦 . If max{|𝐷𝑥 |, |𝐷𝑦 |} > 𝐷𝑡ℎ , it is classified
as sliding, with the direction corresponding to the dominant
translation direction.

Rolling Minor overall translation but significant
centroid shift

Calculate horizontal and vertical translations 𝐷𝑥 , 𝐷𝑦 , and
image centroid shifts 𝑉𝑥 , 𝑉𝑦 . If max{|𝐷𝑥 |, |𝐷𝑦 |} < 𝐷𝑡ℎ and
max{|𝑉𝑥 |, |𝑉𝑦 |} > 𝑉𝑡ℎ , it is classified as rolling, with the direc-
tion corresponding to the centroid shift direction.

Rotating Change in image rotation angle
Calculate rotation angle change 𝛼 between consecutive frames.
If |𝛼 | > 𝛼𝑡ℎ , it is classified as rotating, with the direction corre-
sponding to the angle change direction.

Tapping Significant change in contact area with
short duration Contact area peak 𝐴𝑝𝑒𝑎𝑘 > 𝐴𝑡ℎ , duration 𝑡 < 𝑡𝑡ℎ .

Note: 𝐷𝑡ℎ , 𝑉𝑡ℎ , 𝛼𝑡ℎ , 𝐴𝑡ℎ , and 𝑡𝑡ℎ are predefined thresholds.

Table 2: Accuracy Comparison Between Two Gesture Recog-
nition Methods

Gesture CNN-LSTM Rule-Based

Sliding 98.5% 96.2%
Rolling 99.2% 95.5%
Rotating 98.2% 94.7%
Tapping 99.6% 99.6%

Average 98.8% 96.5%

capacitive image sequences at a rate of 40 frames per second. This
process yielded a total of 25 (volunteers) × 8 (fingers) × 10 (repeti-
tions) × 9 (gestures) = 18,000 image sequences.

The dataset was randomly divided into five subsets for model
training and evaluation using five-fold cross-validation. To rigor-
ously evaluate the generalization capability, all images from the
same individual were exclusively assigned to a single subset. Dur-
ing model training, a random resampling strategy was employed in
each iteration to generate training samples. For model validation,
we fixed 20 resampling seeds for each user to ensure that different
algorithms were evaluated on the same validation sets. Each ges-
ture had 5 (volunteers) × 10 (repetitions) × 20 (resamples) = 1,000
samples for performance evaluation in the validation stage. Here is
the performance of our methods.

3.4.1 Comparison of Recognition Accuracy. The comparison of
recognition accuracy between the CNN-LSTM-based method and
the rule-based method for the four predefined gestures—sliding,
rolling, rotating, and tapping—is shown in Table 2. The CNN-
LSTM-based method slightly outperforms the rule-based method
in recognition accuracy, though both approaches effectively rec-
ognize the four predefined gestures. While the CNN-LSTM-based
method demonstrated a marginal advantage in accuracy and was

Table 3: Accuracy of Fingerprint Identification and Gesture
Recognition for Different Fingers

Finger Identification Gesture Recognition

Index Finger 99.6% 99.3%
Middle Finger 99.5% 99.0%
Ring Finger 99.0% 98.4%
Pinky Finger 98.8% 98.5%

Average 99.2% 98.8%

ultimately employed in our user study for practical use, the rule-
based method’s simplicity and interpretability proved invaluable
for rapid prototyping, feature importance analysis, and establishing
a strong baseline for performance evaluation.

3.4.2 Finger-Specific Recognition Performance. The performance of
both the fingerprint identification and gesture recognition models
was evaluated for each finger separately to assess any potential
variations in accuracy. Table 3 presents the results of this analysis.

As shown in Table 3, both fingerprint identification and gesture
recognition achieve very high accuracy across all four fingers, with
index and middle fingers performing the best. This indicates the ro-
bustness of our system in effectively distinguishing and recognizing
gestures regardless of the finger used.

3.4.3 Gesture Classification Confusion Matrix. To further investi-
gate the performance of the CNN-LSTM gesture recognition model,
we generated confusion matrices for each finger, as illustrated in
Figure 6. These matrices provide insights into the types of misclas-
sifications that occur and identify potential areas for improvement.

Overall, the gestures are generally well-distinguished, with most
misclassifications occurring between sliding and rotating gestures,
reflecting their similar motion dynamics. Sliding and rotating move-
ments are often confused, particularly for the ring and pinky fingers,
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Figure 6: Confusion matrices for gesture recognition using CNN-LSTM for each finger. The small magnitudes of the observed
error rates necessitate a logarithmic color mapping to resolve and emphasize the variations crucial for analysis.

due to the smaller contact area and subtle movement distinctions.
Rolling gestures exhibit the highest accuracy, with minimal confu-
sion with other gestures, suggesting these movements generate dis-
tinct patterns easily recognized by the CNN-LSTM model. Tapping
gestures, characterized by unique temporal profiles, are accurately
classified with very few errors.

3.4.4 Finger-Gesture Combination Performance. Finally, we ana-
lyzed the combined performance of fingerprint identification and
gesture recognition for each finger-gesture pair. This provides a
comprehensive overview of the system’s accuracy in recognizing
specific input commands. Table 4 presents the recognition accuracy
for each combination.

As evident from Table 4, FingerGlass exhibits high and consis-
tent recognition accuracy across all finger-gesture combinations,
enabling robust and versatile interaction with smart glasses. It
demonstrates that FingerGlass effectively utilizes fingerprint in-
formation for both identification and gesture recognition. Notably,
the combination of tapping and rolling consistently achieves the
highest accuracy, exceeding 99%. Conversely, sliding and rotating
gestures, particularly when performed with the ring and pinky
fingers, show slightly lower accuracy compared to other combi-
nations. This highlights the potential for further improvement in
distinguishing subtle movements associated with these gestures,
particularly for fingers with smaller contact areas.

4 User Study
To comprehensively evaluate the performance and usability of Fin-
gerGlass on smart glasses, we conducted a user study that compared
FingerGlass with a strong baseline, the One-Dimensional Hand-
writing method [48]. This method has demonstrated both high
performance and significant influence to the field, providing a ro-
bust benchmark against which to assess FingerGlass’s efficiency,
accuracy, and user comfort. The comparative framework ensures a
robust assessment of FingerGlass’s potential in real-world applica-
tions while identifying unique strengths.

4.1 Participants and Apparatus
Twelve participants (six male, six female, aged 22-35) took part in
the study. All participants had normal vision and finger dexterity.

The experiment was conducted using a custom-designed smart
glasses prototype equipped with side-mounted fingerprint sensors.
Data from the prototype was transmitted in real-time to an external
PC (Intel Core i5 processor) where all data processing and algo-
rithm execution occurred. Despite the data transfer overhead, both
finger identity recognition and gesture classification, including data
transmission time, were achieved in under 100 ms, average 73 ms,
demonstrating the system’s efficiency. While the current prototype
utilizes an external PC, the computational demands of FingerGlass
suggest that designing a highly integrated, dedicated processing
chip is entirely feasible for future iterations, like the patent [8].

4.2 Procedure
Before using FingerGlass, participants were required to register
their fingerprints. During the registration process, each user placed
their finger perpendicularly to the temple arm, sliding it from the
upper part of the first phalanx to the lower part. The sequence of
fingerprint images captured served as the registration template for
each finger. During the user study, participants were instructed
that all initial placements should make the finger approximately
perpendicular to the temple arm. This would allow for the capture
of images similar to the registration template, thereby facilitating
accurate fingerprint verification. Then, participants were asked to
complete two basic tasks designed to assess the performance of
FingerGlass in command input and text entry:

4.2.1 Command Input. Participants listened to a series of in-
structions, each corresponding to a specific FingerGlass gesture
(9 gestures in total). The order of the gestures was randomized to
prevent any biases or learning effects. Participants executed the
corresponding gesture upon hearing the instruction. Each gesture
was performed three times using four different fingers, resulting
in a total of 12 attempts per gesture per participant. The system
automatically recognized and recorded the recognition results. The
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Table 4: Recognition Accuracy for Different Finger-Gesture Combinations

Gesture Index Finger Middle Finger Ring Finger Pinky Finger Average

Sliding Up 99.3% 99.2% 98.3% 98.0% 98.7%
Tapping 99.7% 99.8% 99.4% 99.4% 99.6%

Sliding Down 99.1% 98.6% 98.2% 98.3% 98.6%
Sliding Left 99.2% 99.0% 98.3% 98.6% 98.8%
Sliding Right 99.4% 99.5% 98.6% 98.4% 99.0%
Rolling Left 99.6% 99.3% 98.7% 98.9% 99.1%
Rolling Right 99.8% 99.4% 98.6% 99.0% 99.2%

Rotating Clockwise 98.7% 98.4% 97.8% 97.8% 98.2%
Rotating Counter-clockwise 98.9% 98.2% 97.9% 98.1% 98.3%

Average 99.3% 99.0% 98.4% 98.5% 98.8%

accuracy of command recognition was recorded. Participants pro-
vided feedback on the gesture design through a questionnaire, in-
cluding subjective ratings (1-5 Likert scale) for intuitiveness and
ergonomics.

4.2.2 Text Entry. To assess the effectiveness of FingerGlass, we
replicated the text input functionality of the 1D Handwriting sys-
tem [48] using FingerGlass hardware. In 1D Handwriting, users
input characters by performing a series of directional strokes that
roughly resemble simplified letter shapes. For example, the letter
’L’ is represented by a downward stroke followed by a rightward
stroke. Different letters are formed by unique sequences of these
directional strokes (up, down, left, right, and sometimes short/long
variations). The system then recognizes these stroke sequences
and translates them into characters. Leveraging the side-mounted
fingerprint sensor, our system enabled users to perform directional
gestures along the sensor’s long edge, effectively mirroring the
one-dimensional input paradigm of the 1D Handwriting technique.
This allowed for a fair comparison under identical hardware con-
straints. In replicating the text mapping, we adhered to the original
paper’s recommendations, utilizing the "flip-up" gesture for tog-
gling between uppercase and lowercase characters. However, as
the original paper lacked specific gesture definitions for punctua-
tion marks and numbers, we implemented a simplified approach
for the 1D Handwriting method: users represented all punctuation
and numeric input with a double-tap gesture. In contrast, Finger-
Glass users were required to input the correct punctuation marks
and numbers directly, providing a more realistic and demanding
test scenario for our system. This difference in handling special
characters reflects a key distinction in the two input methods and
highlights FingerGlass’s capacity for more complex and accurate
text entry. Participants engaged in three distinct phases using both
input methods:

Phase I: Initial Learning. Participants underwent a 30-minute
training session on FingerGlass usage, focusing on text entry. Fol-
lowing the training, participants used FingerGlass to input a stan-
dardized text passage containing English in upper and lowercase,
punctuation marks, and numbers. The text passage consisted of

three sentences selected from the Standardized Project Gutenberg
Corpus [9] and was approximately 50 words in length. Through-
out the input process, participants were allowed to correct errors
and the system provided real-time audio feedback of the entered
characters.

Phase II: One-Week Follow-up. One week later, participants per-
formed the text entry task again following the same training pattern.
Participants again inputted a standardized text passage containing
English in upper and lowercase, punctuation marks, and numbers.
The system continued to provide real-time audio feedback of the
entered characters during this phase.

Phase III: Extensive Training. The goal of this phase was to
simulate the speed and accuracy users could achieve with the input
method after mastering it. The participants were randomly assigned
a unique phrase and instructed to enter it twelve times. Performance
metrics were recorded only for the final (twelfth) repetition.

4.3 Metrics and Results
We used distinct metrics for Command Input and Text Entry tasks.
The primary metric for assessing command input was Command
Recognition Accuracy, while several other metrics were used to
evaluate Text Entry.

4.3.1 Command Recognition Accuracy. This metric measured
the percentage of correctly recognized gestures out of the total
gestures performed. As depicted in Figure 7, FingerGlass achieved
high accuracy across all nine commands, ranging from 95.42% to
97.60%. This indicates the robustness and reliability of the gesture
recognition system.

4.3.2 Gesture Subjective Rating. As shown in Table 5, all ges-
tures scored highly on intuitiveness and ergonomics, though ro-
tating had slightly lower ergonomics due to the larger movement.
Participants reported that they find all gestures comfortable and
easy to perform, noting that the glasses frame acted as a stable
reference point. This frame of reference created proprioceptive-
like awareness of the sensor location, making it incredibly easy to
find and activate without any training, much like touching one’s
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Figure 7: Command accuracy with standard deviation.

own nose or ear. This inherent ease of use contributed to the high
intuitiveness and ergonomics scores.

Table 5: Gesture Subjective Rating

Gesture Intuitiveness (1-5) Ergonomics (1-5)
Sliding 4.8 ± 0.3 4.9 ± 0.2
Rolling 4.6 ± 0.4 4.7 ± 0.3
Rotating 4.5 ± 0.5 4.6 ± 0.4
Tapping 4.9 ± 0.3 4.9 ± 0.3

4.3.3 Words Per Minute (WPM). This metric quantified the text
entry speed using FingerGlass, calculated as the number of words
correctly entered per minute. Figure 8 illustrates WPM with two
input methods in three phases. a notable improvement in WPM
from Phase I (9.61 WPM) to Phase II (12.72 WPM), suggesting a
positive learning curve associatedwith FingerGlass. The 12.72WPM
achieved in Phase II is comparable to other text entry techniques for
wearable devices, such as TipText (11.9 WPM on average and 13.3
WPM in the last block), which requires an external peripheral for
one-handed typing [45], andDigiTouch (13WPMon average) which
utilizes both hands [44]. The speed of 23.5WPM achieved in Stage 3,
a more restricted and simplified text entry evaluation, demonstrates
the efficiency that can be achieved when the user is proficient
enough to meet the most common use cases in smart glasses, such
as instant messaging, short notes, and keyword searches.

The 1D handwriting method had significantly lower WPM val-
ues: stage 1 (8.1 WPM), stage 2 (9.5 WPM) and stage 3 (16.1 WPM).
Although it has improved over time, the increase has been lim-
ited and consistently lower than FingerGlass. The WPM values of

the two methods in the first stage were similar, because the let-
ter imitation gestures of the 1D handwriting method were easy
to learn. However, as the training progressed, the advantages of
FingerGlass gradually became apparent. This is mainly because Fin-
gerGlass, combined with fingerprint recognition, can be input with
simple gestures, while 1D handwriting requires multiple consecu-
tive gestures, which prolongs the input time and reduces the input
efficiency. It should be noted that FingerGlass not only achieves
faster typing speed, but also supports a more complete character
set, including punctuation and numbers.

Although the WPM values during the typing task in phase I and
II may not appear particularly high, several factors contributed to
these.

Input Complexity: The input text space is quite extensive, includ-
ing uppercase letters, lowercase letters, numbers, and punctuation.
Users needed to switch between various modes, closely simulating
the demands of real-world typing scenarios. Using a more restricted
range, such as only letters and spaces, or employing variant T9
mapping methods like [3] could also simplify the input process
significantly, thereby increasing typing speed.

New Typing Mapping: Both FingerGlass and 1D handwriting
employ new text typing mapping. Despite the optimized mapping
based on the QWERTY layout, FingerGlass posed some challenges
for users to memorize within the limited learning time of just 30
min. This likely resulted in users not being completely familiar or
proficient during the test phase.

Lack of Visual Feedback: The current prototype was designed
for smart glasses without display and thus users had to rely solely
on auditory feedback, which is less intuitive and could delay input
speeds.
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Despite these challenges, it is noteworthy that all users were able
to achieve more than 20 WPM during phase III using FingerGlass,
demonstrating the system’s potential with increased familiarity
and practice.

4.3.4 Error Rate (ER). This metric represented the percentage
of incorrectly entered characters relative to the total characters
inputted. As shown in Figure 8, the error rate in FingerGlass de-
creased significantly from stage 1 (8.55%) to stage 2 (5.47%) and
further to stage 3 (3.12%), indicating an increase in proficiency in
text entry with continued use. For 1D handwriting methods, error
rates were higher in all stages: stage 1 (10.34%), stage 2 (9.87%), and
stage 3 (7.65%). This is due to the fact that the method requires
performing continuous gestures along a single axis with direction
changes and precisely controlling the distance of the slide to distin-
guish between short and long slides, thus increasing the difficulty
of the input. The probability of errors in a single direction accu-
mulates many times, further increasing the likelihood of errors. It
is worth noting that the comparative method may require longer
sliding gestures, and the limited length of the fingerprint sensor
used in our implementation could have contributed to confusion
between short and long slides, potentially affecting its observed
performance.

The low error rate of FingerGlass’s implementation, especially
in the third phase, suggests that users can attain a high degree of
accuracy in text entry on smart glasses after mastering the finger
identification-based gesture input method.

4.3.5 NASA-TLX. This subjective workload assessment tool was
employed to evaluate participants’ perceived workload after com-
pleting the text entry task using FingerGlass. The NASA-TLX en-
compasses six dimensions: mental demand (MD), physical demand
(PD), temporal demand (TD), performance (P), effort (E), and frus-
tration (F). Each dimension was rated on a scale of 1 to 100, with
higher scores indicating higher workload. Figure 9 presents the
NASA-TLX scores after phase III.

FingerGlass and 1D handwriting exhibited low physical demands,
with FingerGlass reporting a slightly higher score (PD: 48.59) com-
pared to 1D handwriting (PD: 39.24). This difference may be at-
tributed to the finger-switching required for various gestures in
FingerGlass. Both methods necessitate learning new input map-
pings, resulting in relatively similar mental demands (MD: 66.62 for
FingerGlass vs. 67.09 for 1D handwriting). The gesture design of 1D
handwriting, mimicking the trajectory of letter writing, may con-
tribute to its slightly low perceived mental workload. Despite this,
1D handwriting consistently yielded higher scores across all other
NASA-TLX dimensions. 1D handwriting presented significantly
higher levels of temporal demand (TD: 75.27), performance pres-
sure (P: 78.25), effort (E: 81.21), and frustration (F: 40.22) compared
to FingerGlass (TD: 60.55, P: 67.44, E: 74.09, and F: 32.98, respec-
tively). Prolonged use of 1D handwriting for text entry appears
to induce greater fatigue and frustration, likely due to its more
complex gestures, reduced accuracy, and the consequent increase
in time and effort required. Conversely, FingerGlass, with its more
concise gestures and higher accuracy, effectively mitigates user
burden across these dimensions, affording a more comfortable and
efficient input experience.

4.4 Discussion
The results of the user study indicate that FingerGlass, as an inter-
action technique leveraging fingerprint sensors for smart glasses,
holds great promise for enhancing user experience. Participants
widely reported positive feedback regarding FingerGlass’s ergonomics
and social acceptability. The side-mounted sensor aligns perfectly
with where the user’s finger naturally falls during interaction, in-
curring no extra movement and unnecessary social awkwardness,
making it more suitable for use in social settings compared to
interaction modalities requiring overt hand gestures or voice inter-
actions.

FingerGlass offers a richer interaction space and a more diverse
command set, demonstrating superior performance in NASA-TLX
metrics compared to the 1D handwriting method. It is important
to note that, while subjective feedback on ergonomics was posi-
tive, our NASA-TLX assessment showed a slightly higher physical
demand score for FingerGlass compared to 1D Handwriting. This
difference may be attributed to the finger-switching required for dif-
ferent gestures in FingerGlass. A key advantage of FingerGlass is its
stability. Users frequently reported significant device wobble with
1D handwriting due to the continuous directional changes required,
particularly problematic on lightweight smart glasses, a burgeoning
technological trend. This wobble can lead to visual discomfort and
impaired interaction. Conversely, FingerGlass exhibited minimal
movement; only three users noted a slight, transient wobble dur-
ing tapping input. These findings suggest that FingerGlass offers a
more stable and comfortable user experience. Further research will
investigate its long-term usability and user acceptance in real-world
scenarios.

The prototype of FingerGlass that we implemented for our user
study lacks visual display entirely. This absence of visual feedback,
while the system relies solely on discrete gestures and character
input, have caused inconvenience for some users and contributed
to the slightly higher learning costs and cognitive load.

5 Applications
To demonstrate the interaction potential and usefulness of Finger-
Glass in practice, we have designed a hypothetical use case. Based
on this design, users can utilize FingerGlass to perform functions
like music playback, calls, photography/videography, and naviga-
tion, and switch between these functions seamlessly.

As demonstrated in Figure 10, all applications are seamlessly
integrated into one operating system. The FingerGlass fingerprint
module serves as an input device, reporting a variety of input events.
The specific mapping and response to these events are determined
by each individual application. Management and scheduling of
applications based on user input fall under the responsibility of
the operating system. Application invocation by the system can
be performed through a linear menu (navigating with directional
gestures) or through shortcut commands (app names or specific
gestures). Within any application, the user can navigate either
using a linear menu (directional gestures) or shortcuts (app names
or specific gestures), and also use text input where necessary.

For example, the system is in a ready state at start, providing
the current time and battery level via voice broadcast upon any
finger tap. A clockwise index finger rotation transitions to the
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Figure 8: Performance metrics across the three phases in the text typing task.

Figure 9: NASA-TLX workload assessment of the 1D hand-
writing and the FingerGlass.

Figure 10: Diagram of the FingerGlass application structure.

first application. Within any application, a clockwise index finger
rotation switches to the next application, while a counterclockwise
rotation returns to the ready state. The specific gesture mappings
for each application are presented in Table 6, Table 7, Table 8, and
Table 9. The overall design emphasizes the use of the index finger
for operations, as it is more natural and accurate. Additionally, all

operations provide voice feedback, making it suitable for smart
glasses without display feedback. The text input interface acts as
a system-level application that can be activated or deactivated by
a clockwise rotation of the ring finger. This design choice utilizes
a free mapping key from the typing mapping in Table 3, ensuring
there is no overlap with other operations, thus maintaining user-
friendliness and operational efficiency. It can be invoked anytime
when text input is required, supporting various text entry needs
across different applications.

Table 6: Gesture Mapping for Music Playback

Action Gesture

Volume Increase Index finger slide up
Volume Decrease Index finger slide down

Next Track Index finger slide right
Previous Track Index finger slide left
Fast Forward Index finger roll left

Rewind Index finger roll right
Play/Pause Index finger tap

Text Input for Searching Songs Ring finger rotate

Table 7: Gesture Mapping for Call Function

Action Gesture

Answer/Make Call Index finger slide left
Reject/End Call Index finger slide right
Record Audio Index finger tap

Enter Text Input Interface Ring finger rotate
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Table 8: Gesture Mapping for Photography/Videography

Action Gesture

Take Photo Index finger tap
Start/Stop Recording Middle finger tap

Table 9: Gesture Mapping for Navigation

Action Gesture

Start/End Navigation Index finger tap
Status Broadcast Middle finger tap

Text Input for Destination Search Ring finger rotate

6 Limitations and Future Work
This study represents an initial exploration of FingerGlass and
acknowledges certain limitations that provide avenues for future
research.

Size of the Prototype The current FingerGlass prototype, con-
strained by hardware limitations, has not yet achieved full integra-
tion with smart glasses and is not convenient for users to wear for
extended periods in daily life. Future work will focus on developing
low-power, miniaturized dedicated chips to fully integrate Finger-
Glass into smart glasses, creating a more practical and user-friendly
product.

Visual Feedback The prototype of FingerGlass is designed
specifically for smart glasses without a display like the Ray-Ban
Meta Smart Glasses, hence we have not explored the impact of
display feedback on text input performance. Visual feedback can
decrease the cognitive load for users and enhance text input effi-
ciency. Future work will also explore leveraging language models
to further improve text input efficiency with or without visual
feedback.

Input Technique The current mapping between finger gestures
and commands may not be optimal for all users and applications.
Further research is needed to explore alternative mapping methods,
potentially employing machine learning techniques to personalize
gesture recognition and command assignment. Additionally, this
study did not utilize language models to predict and correct text
input. Future work could leverage language models, similar to those
used in smartphone keyboards [50], to further enhance text input
speed and accuracy with FingerGlass. Furthermore, considering the
capability of fingerprint sensors to track finger movements with
high fidelity, incorporating word gesture input methods presents
a compelling direction for future research. The seminal work by
Kristensson and Zhai on command strokes [26], which explored
using pen gestures on a keyboard for efficient command selection,
could provide valuable insights for adapting such techniques to
the FingerGlass paradigm. This could allow for fluid and rapid text
entry, leveraging the natural dexterity of finger movements on a
small surface.

Other Finger Attributes This paper primarily considered the
movement, rotation, and identity of fingers. However, additional
attributes can be extracted from the fingerprint images, such as
finger shear force [49] and finger angle [19], which would further

increase the input dimensions of the fingerprint sensor. Measuring
these attributes from a small area sensor poses a challenge, but fu-
ture work could explore these possibilities to enrich the FingerGlass
input capabilities.

By addressing these limitations, future research can enhance the
design and functionality of FingerGlass, making it a more robust
and practical tool for interacting with smart devices.

7 Conclusion
FingerGlass presents a promising interaction technique for smart
glasses, leveraging fingerprint sensing. By accurately identifying
fingers and recognizing diverse gestures, it offers a more ergonomic,
discreet, and feature-rich interaction space. While further develop-
ment is needed tominiaturize the technology and explore additional
finger attributes, our user study demonstrates promising results
in command input and text entry tasks, highlighting the potential
of FingerGlass to enhance smart glasses usability and drive wider
adoption.
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A Methodology
A.1 Detailed Fingerprint Identification Model
A.1.1 Model Architecture. To effectively extract features from fin-
gerprint images, we employed a modifiedMobileNetV2 architecture.
Originally designed for efficient image classification on mobile de-
vices, MobileNetV2 uses depthwise separable convolutions and
inverted residual blocks to achieve a balance between accuracy
and computational cost. Given that the input fingerprint images
are of size160 × 36, several adjustments were made to the stan-
dard MobileNetV2 architecture to better accommodate the specific
characteristics of these images:
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Adjustment of the initial convolutional layer: The stride of
the first convolutional layer was reduced from 2 to 1. This modifica-
tion helps preserve the spatial resolution of the feature maps in the
early layers, which is crucial for capturing fine-grained fingerprint
features.

Reduction of network depth: To match the smaller input
size and control the model’s complexity, we reduced the number of
repetitions in certain stages of the network. Specifically, the number
of repetitions in Block 2 was reduced from 2 to 1, and in Block 3, it
was reduced from 3 to 2. The final two stages (stage 6 and stage 7)
of the standard MobileNetV2 architecture were removed to further
reduce the network’s depth and computational cost.

Adjustment of output feature dimensions: The number of
output channels in the penultimate convolutional layer was reduced
from 1280 to 512, which decreases the model’s parameter count
and computational burden while maintaining its expressive power.
The resulting network architecture is detailed in Table 10. The final
output of this modified structure is a 192-dimensional feature vector,
which is subsequently used for fingerprint matching.

A.1.2 Training Procedure. We train the model using a combined
loss function comprising two components: a classification loss and
a triplet loss.

Classification Loss: The classification loss employs the stan-
dard cross-entropy loss function used in multi-class classification.
For each input fingerprint image, the network predicts a probability
distribution over all registered identities. The cross-entropy loss
encourages the network to assign a high probability to the correct
identity and low probabilities to the remaining identities.

Triplet Loss: For robust finger identification, we aim to learn
feature representations where fingerprints from the same finger are
highly similar and fingerprints from different fingers are dissimilar.
Triplet loss is particularly well-suited for this objective. It utilizes
triplets of fingerprint images: an anchor image, a positive image
(belonging to the same identity as the anchor), and a negative image
(belonging to a different identity). The goal is to minimize the dis-
tance between the feature vectors of the anchor and positive images
while maximizing the distance between the anchor and negative
images. This directly encourages the network to learn embeddings
where similarity in feature space reflects fingerprint identity. While
cosine similarity is a common metric for comparing fingerprint
features, triplet loss with Euclidean distance implicitly optimizes
for a feature space where Euclidean distance also effectively reflects
similarity for identification.

The triplet loss function can be defined as follows:

𝐿triplet = max
(
0, ∥ 𝑓 (𝑎) − 𝑓 (𝑝)∥22 − ∥ 𝑓 (𝑎) − 𝑓 (𝑛)∥22 + 𝛼

)
(3)

where 𝑓 (𝑎) represents the feature vector of the anchor image. 𝑓 (𝑝)
represents the feature vector of the positive image. 𝑓 (𝑛) repre-
sents the feature vector of the negative image. ∥ .∥22 represents the
squared Euclidean distance. 𝛼 is a margin parameter that enforces
a minimum distance between positive and negative pairs.

By minimizing the triplet loss, the network learns to generate
compact feature representations for fingerprints belonging to the
same identity while pushing apart those belonging to different
identities.

A.1.3 Combined Loss. The overall loss function is a weighted sum
of the classification loss and the triplet loss:

𝐿total = 𝜆1 ∗ 𝐿classification + 𝜆2 ∗ 𝐿triplet (4)

where 𝜆1 and 𝜆2 are weighting factors that control the relative
importance of each loss component.

During training, we optimize the model parameters to minimize
this combined loss function using stochastic gradient descent with
momentum. This process encourages the network to learn both
discriminative features for classification and robust representations
suitable for fingerprint matching based on feature vector similarity.

A.2 Finger Gesture Recognition
A.2.1 Rule-Based Gesture Recognition. This method employs
image processing techniques and a direction determination algo-
rithm to analyze a sequence of images, identifying gestures based on
motion patterns. The process involves calculating frame-by-frame
displacement, centroid shifts, and angle changes to determine the
direction of image motion. The following steps outline the process:

Image Preprocessing. Convert the input image to grayscale and
Apply Gaussian blur to reduce noise and smooth the image:

blurred = GaussianBlur(image, (5, 5), 0) (1)

Gradient Calculation. Compute the horizontal (Gx) and vertical
(Gy) gradients of the blurred image using the Sobel operator:

𝐺𝑥 = Sobel(blurred,𝐶𝑉 _64𝐹, 1, 0, ksize = 3) (2)

𝐺𝑦 = Sobel(blurred,𝐶𝑉 _64𝐹, 0, 1, ksize = 3) (3)

Displacement Calculation. Translation: Calculate the translation
by shifting the image and comparing the difference with the origi-
nal:
shifted_img = warpAffine(img, 𝑀, (width, height),

borderMode = BORDER_WRAP) (4)

Compute the sum of absolute differences for the difference image
in the left, middle, and right regions:

diff_sum =
∑︁

absdiff(shifted_img, img_2) (5)

Centroid Shift: Determine the difference in centroid coordinates
between consecutive frames:

Δ𝑦center = 𝑦centroid2 − 𝑦centroid1 (6)

Δ𝑥center = 𝑥centroid2 − 𝑥centroid1 (7)

Angle Calculation. Calculate the average angle for each region
(left, middle, right) using the arctangent function on the gradients:

𝜃left = 0.5 atan2
(
2
∑︁

𝐺𝑥 ·𝐺𝑦,
∑︁

𝐺2
𝑥 −

∑︁
𝐺2
𝑦

)
(8)

𝜃middle = 0.5 atan2
(
2
∑︁

𝐺𝑥 ·𝐺𝑦,
∑︁

𝐺2
𝑥 −

∑︁
𝐺2
𝑦

)
(9)

𝜃right = 0.5 atan2
(
2
∑︁

𝐺𝑥 ·𝐺𝑦,
∑︁

𝐺2
𝑥 −

∑︁
𝐺2
𝑦

)
(10)
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Table 10: Modified MobileNetV2 Architecture for Fingerprint Feature Extraction

Layer Input Size Operator Stride Expansion Ratio Output Channels
Input 160×36×3 Conv2D 1 - 16

Inverted Residual Block 1 (Repeat × 1)
- Expansion (1×1 Conv2D) - 1 -
- Depthwise Convolution (3×3) 1 - -
- Projection (1×1 Conv2D) - - 16

Inverted Residual Block 2 (Repeat × 1)
- Expansion (1×1 Conv2D) - 6 -
- Depthwise Convolution (3×3) 2 - -
- Projection (1×1 Conv2D) - - 24

Inverted Residual Block 3 (Repeat × 2)
- Expansion (1×1 Conv2D) - 6 -
- Depthwise Convolution (3×3) 2 - -
- Projection (1×1 Conv2D) - - 32

Inverted Residual Block 4 (Repeat × 4)
- Expansion (1×1 Conv2D) - 6 -
- Depthwise Convolution (3×3) 1 - -
- Projection (1×1 Conv2D) - - 64

Inverted Residual Block 5 (Repeat × 3)
- Expansion (1×1 Conv2D) - 6 -
- Depthwise Convolution (3×3) 2 - -
- Projection (1×1 Conv2D) - - 96
- Expansion (1×1 Conv2D) - 6 -
- Depthwise Convolution (3×3) 1 - -
- Projection (1×1 Conv2D) - - 512
- Global Average Pooling - - -
- Fully Connected - - 192

where

atan2(𝑦, 𝑥) =



arctan
(
𝑦
𝑥

)
, if 𝑥 > 0

arctan
(
𝑦
𝑥

)
+ 𝜋, if 𝑥 < 0 and 𝑦 ≥ 0

arctan
(
𝑦
𝑥

)
− 𝜋, if 𝑥 < 0 and 𝑦 < 0

𝜋
2 , if 𝑥 = 0 and 𝑦 > 0
−𝜋

2 , if 𝑥 = 0 and 𝑦 < 0
undefined, if 𝑥 = 0 and 𝑦 = 0

Motion Type Determination

• Up, Down, Left, Right Sliding: Determine sliding direction
based on the magnitude and direction of the total translation:

if |𝑡𝑜𝑡𝑎𝑙_𝑦_𝑠ℎ𝑖 𝑓 𝑡 | > |𝑡𝑜𝑡𝑎𝑙_𝑥_𝑠ℎ𝑖 𝑓 𝑡 | :{
if 𝑡𝑜𝑡𝑎𝑙_𝑦_𝑠ℎ𝑖 𝑓 𝑡 > 0, direction = "Down"
else, direction = "Up"

(11)

else :{
if 𝑡𝑜𝑡𝑎𝑙_𝑥_𝑠ℎ𝑖 𝑓 𝑡 > 0, direction = "Left"
else, direction = "Right"

(12)

• Left, Right Rolling: Determine rolling direction through the
direction of centroid shift if translation is minimal:

|𝑡𝑜𝑡𝑎𝑙_𝑦_𝑠ℎ𝑖 𝑓 𝑡 | < 5 and |𝑡𝑜𝑡𝑎𝑙_𝑥_𝑠ℎ𝑖 𝑓 𝑡 | < 5 (13)

{
if 𝑡𝑜𝑡𝑎𝑙_𝑥_𝑐𝑒𝑛𝑡𝑒𝑟_𝑠ℎ𝑖 𝑓 𝑡 < 0, direction = "Left Roll"
else, direction = "Right Roll"

(16)

• Clockwise, Counter-clockwise Rotation: Determine the rota-
tion direction by computing the angular change in multiple
regions and consolidating the results:

Δ𝜃𝑖 = 𝜃𝑖+1 − 𝜃𝑖 (17)

bias =

{
if Δ𝜃𝑖 > 2.5, bias− = 𝜋

if Δ𝜃𝑖 < −2.5, bias+ = 𝜋
(18)

𝜃end = 𝜃end + bias (19)

if 𝜃end − 𝜃start > 0 : direction = "Counter-clockwise Rotate" (20)

else : direction = "Clockwise Rotate" (21)

direct_l = get_direction(𝜃left) (22)

direct_m = get_direction(𝜃middle) (23)
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direct_r = get_direction(𝜃right) (24)

direction = most_common(direct_l, direct_m, direct_r) (25)

A.2.2 Detailed CNN and LSTM Architectures. To achieve ef-
ficient and effective gesture recognition, we enhance the CNN
architecture by incorporating concepts from MobileNet, such as
depthwise separable convolutions, which help reduce the number of
parameters while maintaining performance. The LSTM architecture
is designed to handle the temporal aspects of gesture recognition,
outputting probabilities for each gesture class.

Table 11: LSTM Architecture

Parameter Value
Number of LSTM layers 2
Hidden state dimension 256

Input dimension 128 (from CNN feature vector)
Activation function tanh
Output dimension 8

CNN: The CNN architecture starts with an initial standard con-
volution layer (Conv1) for basic feature extraction. This is followed
by two depthwise separable convolutional blocks (DepthwiseConv
+ PointwiseConv) to efficiently learn spatial hierarchies. Each depth-
wise separable convolution block is followed by amax-pooling layer
to reduce the spatial dimensions of the feature maps. The output
is then flattened and passed through a dense layer, resulting in a
feature vector of size 128 that is suitable as input for the LSTM.

LSTM: The LSTM network is designed with two layers, each
with a hidden state dimension of 256, to capture the temporal de-
pendencies in the gesture sequences. The input to the LSTM at each
time step is the 128-dimensional feature vector generated by the
CNN. The final output layer has 8 units, corresponding to the 8
gesture classes.

Rotation: Left, Right ,
Sliding: Up, Down, Left, Right ,
Rolling: Left, Right.
The LSTM outputs a probability distribution over these 8 classes

for each input sequence, enabling accurate classification of the
finger gestures.
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Table 12: CNN Architecture

Layer Type Filter Size Stride Activation Output Channels
Conv1 Convolutional 3×3 1 ReLU 32

DepthwiseConv1 Depthwise Separable Convolution 3×3 1 ReLU 32
PointwiseConv1 1×1 Convolution - 1 ReLU 64

MaxPool1 Max Pooling 2×2 2 - -
DepthwiseConv2 Depthwise Separable Convolution 3×3 1 ReLU 64
PointwiseConv2 1×1 Convolution - 1 ReLU 128

MaxPool2 Max Pooling 2×2 2 - -
Flatten - - - - -
Dense Fully Connected - - ReLU 128
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