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Abstract
Force plays a significant role in our daily interactions with the
surrounding environment. However, most touchscreen interactions
utilize only touch location, neglecting the potential for incorporat-
ing touch force as an additional input modality due to the difficulty
in accurately estimating touch force without extra sensors. In this
study, we propose a method for estimating three-dimensional rel-
ative touch forces, including pressure perpendicular to the touch-
screen surface and shear force parallel to the surface, using two raw
capacitive images. We collected two datasets comprising raw capac-
itive data from a touchscreen and corresponding forces measured
by a triaxial force sensor. In the first dataset, participants performed
press actions to apply pressure, while in the second dataset, they
performed push actions to apply shear force to the touchscreen.
Empirical experiments demonstrated that our proposed method
outperformed existing force estimation methods, achieving mean
absolute errors of 0.41 N, 0.44 N, and 0.40 N in the lateral, lon-
gitudinal, and vertical directions, respectively. Additionally, we
conducted a user study with four tasks to assess the performance of
our method in real-world scenarios, encompassing force gestures,
pressure control, shear force control, and object manipulation using
a combination of conventional touch input and force input. Com-
parisons with other methods demonstrated the superiority of our
approach.
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1 Introduction
In recent years, touch input has emerged as a ubiquitous input
method for mobile devices owing to its simplicity and intuitiveness.
With the advent of increased computing power, mobile devices now
support demanding applications such as computer-aided design
(CAD) and 3D video games. However, conventional touch input
is limited to capturing 2D touch points, which are insufficient for
complex task completion. To address this, research efforts have
sought to expand the input space by leveraging information from
interacting hands and fingers, including gesture [15, 16, 36, 37],
finger angle [20, 39, 48, 52, 54], hand pose [1, 8], touch force [5, 25,
43], contacting hand region [18, 27, 31, 33, 45], etc.

Among these modalities, touch force has attracted considerable
attention from both academia and industry. This stems from the in-
herent human tendency to exert force when fingers contact surfaces,
which reflects the user’s interactive intent. Previous work primar-
ily employed external sensors or attachments to measure touch
force, such as cameras [11, 13, 49], speaker and microphone [41],
electromyographic (EMG) sensors [3], pressure sensors [22, 24, 35],
joysticks [17, 51], fingerprint sensors [32, 53], etc. However, the in-
troduction of additional sensors typically increases complexity and
cost. To enhance usability, other research efforts have focused on
estimating force using common built-in sensors, such as barometers
[42], accelerometers [23, 30] and capacitive sensors [5, 6, 43].

Although most touchscreens only utilize the 2D positions of
touch points as input, the underlying capacitive sensors capture
low-resolution images that contain information about the contact-
ing object. However, capacitive images do not directly encode touch
force information because force variations do not typically affect
the capacitive properties of the object [43]. Despite the limitation,
fingertip tissue is soft and easily deformed when pressed against a
rigid surface. This deformation alters the signal detected by the ca-
pacitive sensor, resulting in different contact area sizes and shapes
under different forces (see Figure 1). Recognizing this relationship,
researchers have explored various methods to estimate touch force
from capacitive images. Boring et al. [6] proposed a Fat Thumb tech-
nique that simulates pressure based on the contact size of the thumb.
Heo and Lee [25] estimated shear force based on the movement of
the contact area. Arif and Stuerzlinger [2] combined contact time
and touch point movement to distinguish between two pressure
levels. Quinn et al. [43] used a sequence of capacitive images to
distinguish between force touch and other touch gestures. Boceck
et al. [5] trained a deep neural network (DNN) to estimate touch
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pressure. A common challenge faced by these existing force esti-
mation algorithms is the limited precision caused by variations in
finger sizes and shapes. As a result, most of these algorithms are
unable to deliver accurate continuous input. Furthermore, pressure
alone provides only one additional degree of freedom (DOF), which
is insufficient for complex 3D manipulation tasks.
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Figure 1: Two capacitive images of a finger touching a touch-
screen with different forces: (a) under normal force; (b) under
shear force.

Therefore, this paper proposes to estimate 3D relative forces
from two capacitive images to support continuous 3D force inter-
actions. The joint estimation of pressure and shear forces enhances
accuracy by leveraging the inherent relationship between these two
force components. To collect the necessary data, two tasks were
designed in which participants applied normal and shear forces on
a touchscreen while capacitive images and corresponding forces
were recorded. A convolutional neural network (CNN) was em-
ployed to process two input capacitive images and estimate the
3D force differences. Experimental results demonstrated the su-
periority of the proposed force estimation method compared to
existing absolute force estimation and indirect force estimation
methods. The network model was deployed on a commodity smart-
phone, and a user study with four tasks was conducted to evaluate
its performance in real-world scenarios, including force gestures,
pressure control, shear force control, and object manipulation us-
ing a combination of traditional touch input and force input. The
results confirmed the effectiveness of our approach. To promote
reproducibility and enable further advancements in touch force es-
timation, we have open-sourced the code and data associated with
this study: https://github.com/radiance90/3DTouchForce. Main con-
tributions of this work:

• We propose to estimate 3D relative forces from two capaci-
tive images, enhancing accuracy and robustness while pro-
viding additional DOFs for interactions.

• We train a lightweight CNN model to estimate both pres-
sure and shear forces, achieving improved state-of-the-art
accuracy in pressure estimation using capacitive images.

• We deploy the network model on a commodity smartphone
and conduct a user study with four tasks to assess its perfor-
mance in real-world scenarios.

2 Related Work
2.1 Touch Input
Touch input primarily relies on 2D touch point positions derived
from low-resolution images captured by capacitive sensors [26].
Considerable effort has been dedicated to expanding the range of
touch input modalities. Multi-touch gestures have undergone ex-
tensive research and have found practical applications in various
input modalities due to their intuitive, flexible, and highly inter-
active user experience. Hancock et al. [15] introduced the Sticky
Tools technique for 6DOF object manipulation using three-finger
gestures. Martinet et al. [37] proposed DS3, a three-finger gesture
based on the separation of translation and rotation. Liu et al. [36]
extended the Sticky Tools technique to support 6DOF manipulation
with two-finger gestures. One common drawback of gesture-based
input is the gesture recognition failures, which can hamper the
performance of gesture input. For instance, it is challenging to
maintain a consistent distance between two fingers when perform-
ing a panning gesture, which can lead to the erroneous recognition
of a pinching gesture [16]. Additionally, multi-touch gestures often
occupy a significant portion of screen space, which can obstruct the
display, especially on smaller screens. In contrast, utilizing force
as an additional input modality involves only a single finger touch
and eliminates the need for finger movements.

In recent years, finger angle has received significant attention
as an additional input modality. Xiao et al. [52] utilized the shape
of capacitive images to estimate yaw and pitch angles. Mayer et
al. [39] employed a CNN to further reduce the errors associated
with yaw and pitch angle estimation. Zaliva [54] leveraged multiple
shape features, such as area, average intensity and centroids, to
calculate three finger angles. He et al. [20] proposed TrackPose, a
deep learning model with a self-attention module, to estimate yaw
and pitch angles from a sequence of capacitive images. While finger
angle estimation has shown promise, its accuracy is limited by the
resolution of capacitive images.

With the advent of under-screen fingerprint sensors, fingerprints
have been utilized to enhance the accuracy of finger angle estima-
tion. Duan et al. [9] proposed a 2D-3D fingerprint matching algo-
rithm for this purpose. He et al. [19] proposed a deep neural network
with multi-task learning to estimate three finger angles directly
from fingerprints. Duan et al. [10] further developed an algorithm
to estimate 3D relative finger angles based on two fingerprint im-
ages, achieving state-of-the-art (SOTA) accuracy. Nonetheless, a
major limitation of angle estimation using fingerprints is the lim-
ited availability of under-screen fingerprint sensors in commodity
smartphones, which restricts the generalizability of this approach.
The under-screen fingerprint sensors in commodity smartphones
have limited sensing area, low capture rate and poor quality, affect-
ing the performance and feasibility of finger angle input.

Another common limitation of using finger angle to augment
touch input is the infeasibility of certain orientations [38], partic-
ularly in one-handed interaction scenarios. To address this issue,
Roudaut et al. [44] utilized the kinematic traces on the touchscreen
to distinguish 16 thumb gestures. Ullerich et al. [48] adopted a CNN
model to detect the thumb’s pitch angle. However, the range of
usable finger angles for input remains limited. In contrast, changes



3D Touch Force Estimation from Capacitive Images IUI ’25, March 24–27, 2025, Cagliari, Italy

in the forces applied to a touchscreen can be achieved without re-
quiring finger movement or rotation. Thus, force input represents
a potentially more natural and practical input modality that can
complement conventional touch input.

Building upon finger angle, researchers have explored the use of
capacitive images to predict hand pose. Ahuja et al. [1] proposed
TouchPose, a multitask learning framework that predicts the depth
image, 3D hand pose and touch classification. Choi et al. [8] in-
troduced an algorithm that predicts hand pose by matching the
capacitive images with reference hand poses. However, like multi-
touch gestures, utilizing hand pose as an input method requires
significant screen space, which can obstruct the view, particularly
on smaller screens.

Furthermore, other modalities such as contacting hand positions
[18, 27, 31, 33, 45] and finger identifications [12, 29, 34] have also
been investigated to enrich the input vocabulary. However, these
modalities are not specifically designed to provide continuous input
for 3D manipulation tasks. By contrast, force offers a continuously
changing vector, making it well-suited for continuous input.

2.2 Force Input
Using force as input provides more diverse and intuitive ways for
human-computer interaction, enabling users to communicate and
operate with computers and other intelligence devices in a more
natural manner. Early studies on force input primarily focused on
employing external sensors and attachments. Watanabe et al. [49]
estimated touch force on a surface by detecting transmitted light
on the fingernail. Becker et al. [3] measured finger touch forces
using an electromyography armband. Grieve et al. [13] estimated
3D finger touch forces based on fingernail images. Fallahinia et al.
[11] further estimated grasp forces of all fingers and the thumb
based on fingernail images using a deep neural network. Ono et
al. [41] proposed an active acoustic sensing technique to estimate
touch force on the surface of an object. Heo and Lee [22] designed
a mobile phone case-shaped frame with force sensing resistors at-
tached to the bottom and side walls to measure normal and shear
forces applied to the mobile device. Lee et al. [35] employed a simi-
lar device to investigate user controllability to reach and maintain
shear force, considering the effects of hand pose and force direction.
Harrison and Hudson [17] placed two analog joysticks underneath
a touchscreen to enable 2D shear force input. Xiao et al. [51] imple-
mented a similar structure on a smartwatch, expanding the range
of available actions to include twist, tilt, and click. Huang et al. [28]
proposed ShearSheet, a rubber-mounted transparent sheet on top
of a touchscreen. The displacement of the sheet is recognized and
utilized as shear input. Nakai et al. [40] applied a transparent gel
layer on top of a touchscreen and measured shear force by ana-
lyzing the resulting deformation of the gel layer. These researches
demonstrated the effectiveness of using force as an additional input
modality. However, the use of external sensors often necessitates
users to wear or modify their devices, resulting in additional costs
and usability concerns.

To address this issue, researchers have focused on measuring
touch forces using built-in sensors in commodity mobile devices.
When airtight waterproof devices are touched, the distorted surface
alters the air pressure inside, subsequently affecting the built-in

barometer value. Takada et al. [47] investigated the relationship
between the sensor value and touch positions or forces, propos-
ing BaroTouch, a technique that utilizes a waterproof mobile de-
vice’s built-in barometer to measure touch force. Quinn [42] further
refined this technique by developing a physical model for pres-
sure equalization in devices, enabling high-resolution continuous
tracking of user-independent touch forces. Although this approach
demonstrates satisfactory performance under small forces, the sens-
ing range is limited due to internal pressure saturation at the sur-
face’s distortion limit. In addition, accelerometers are also employed
to detect touch force. Heo and Lee [23] proposed a technique to dis-
tinguish between gentle taps and forceful taps using acceleration in
the z-axis (perpendicular to the device’s surface). Hwang et al. [30]
argued that the amount of vibration absorbed by the user’s hand
depends on the pressure applied to the device. Therefore, the au-
thors utilized an accelerometer to measure the spatial displacement
generated when the internal vibration motor vibrates and used
this information to estimate the amount of pressure on the mobile
device. However, due to accuracy limitations, accelerometer-based
approaches can only distinguish discrete force levels. With the rapid
advancement of under-screen fingerprint sensing technology, it has
become possible to capture fingerprint images when a finger presses
on the screen. Consequently, fingerprint images can be utilized as
a novel input modality beyond user authentication. Fingerprint im-
ages contain abundant information about a finger, including clear
ridges, minutiae, and touch area, among others. Analyzing the de-
formation of fingerprints under normal and shear forces enables
estimation of the applied forces. Kurita et al. [32] proposed dividing
a fingerprint into four quadrants and utilizing the ratios of their
areas to estimate shear force. Yu et al. [53] introduced the PrintS-
hear technique, which estimates shear forces by extracting lateral,
longitudinal, and rotational deformations from fingerprint images.
Research on shear force estimation based on fingerprint deforma-
tion has been particularly influential in guiding our investigation
into the relationship between touch force and finger deformation.
However, the limited sensing area, low capture rate, and poor image
quality of under-screen fingerprint technology significantly impact
the feasibility and performance of fingerprint-based force input.
Moreover, the restricted availability of under-screen fingerprint
sensors in commonly used smartphones limits the generalizability
of fingerprint-based interaction techniques.

A touchscreen functions as a capacitive sensor capable of captur-
ing low-resolution images of finger touch, which can be utilized for
touch force estimation. Boring et al. [6] introduced the Fat Thumb
interaction technique, which utilizes the contact size of the thumb
as a form of simulated pressure. The mode of action is determined
by the contact size, while the thumb’s movement performs the ma-
nipulation. In amap navigation task under a one-handed interaction
condition, this technique demonstrated superior performance com-
pared to three existing techniques. While contact size can simulate
force levels, it does not provide sufficient information for accurate
force estimation due to variations in finger sizes. In contrast, capaci-
tive images offer richer data, including size, shape, and deformation,
which hold greater potential for precise force estimation. Heo and
Lee [25] proposed an indirect method for estimating shear force by
analyzing the movement of contact areas. To generate shear force, a
normal force must be applied to the surface. The size of the contact
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area reflects the applied normal force and is utilized to detect shear
force events. When shear force is applied, the center of the contact
area undergoes slight changes, and the displacement is roughly pro-
portional to the magnitude of the shear force. An experiment was
conducted to assess the feasibility of this method, and the results
indicated that most errors were attributed to failures in detecting
shear force events. Therefore, relying on the size of the contact area
to detect shear force events is relatively unreliable, as the contact
area is also influenced by finger pose and finger location. Quinn et
al. [43] employed a sequence of capacitive images to differentiate be-
tween force touch and other touch gestures. Each capacitive image
underwent feature extraction using a CNN. The extracted features
were then processed by a recurrent layer to generate probabilities
for different gesture classes. The network demonstrated the ability
to distinguish six gestures, such as tap, long press, deep press, flick,
and drag. Considering that tap, press, and scroll are the most com-
mon gestures on mobile devices, the authors decided to combine
long press and deep press. The neural network was integrated into
a heuristic classification pipeline to expedite the recognition of
press gestures. Rather than introducing a new interaction modality,
this work focuses on enhancing the user experience of long press
interactions by accelerating them with force-induced deep press
in a unified gesture. This approach maintains the effectiveness of
long press gestures while providing a more natural and direct in-
teraction. However, the study utilized capacitive image sequences
solely for gesture classification. In contrast, our work focuses on the
continuous estimation of touch forces to provide additional input
dimensions. Boceck et al. [5] trained a deep neural network (DNN)
to estimate touch pressure. To establish a baseline performance,
well-established machine learning models such as k-nearest neigh-
bors (KNN), decision tree (DT), support vector machine (SVM), and
random forest (RF) were employed to estimate pressure. Although
the proposed DNN outperformed all baseline methods, the accu-
racy of pressure estimation was insufficient for continuous force
interaction. Researchers have made efforts to estimate force from
capacitive images; however, the current lack of continuous force
input support is attributed to the limitations in accuracy. Moreover,
existing methods for estimating force based on capacitive images
predominantly emphasize pressure, neglecting research on shear
force estimation. This limitation restricts the extent of freedom that
force input can offer.

3 Data Collection
The objective of this study is to estimate relative pressure and shear
force based on capacitive images from a touchscreen. Due to the
complex relationship between capacitive images and these forces,
we employed a deep learning approach, which necessitates col-
lecting paired capacitive images and corresponding ground-truth
3D force data. Since no existing dataset meets these requirements,
we developed a specialized data collection apparatus and two data
collection tasks to capture sequential capacitive images and syn-
chronized 3D force values.

3.1 Apparatus
Capacitive images were acquired using a Realme C11(2021) smart-
phone1, featuring a 6.5-inch main screen with a resolution of 1600 ×
720 pixels. The capacitive sensor is 160 mm in length and 75 mm in
width controlled by an ICNT8962 chip from Chipone Technology2.
It is capable of capturing 32 × 18 pixels capacitive images at 50Hz.
The smartphone operates on Android 11, and the kernel has been
modified to enable real-time access to capacitive images.

3D forces were measured using an Arizon AR-3N20S triaxial
force sensor3. The sensor has a measurement range of 20 N for
all three axes, with an error of less than 0.001%. The force sensor
has a capture rate of 1500Hz. The smartphone was mounted in
a 3D printed rigid plastic case that was securely attached to the
force sensor (see Figure 2). The design of the case was based on
the dimensions of the phone to prevent any displacement caused
by shear force. Additionally, the force sensor was re-calibrated to
account for the mass of the phone and the case. We validated the
consistency of sensor measurements by placing weights at different
positions on the screen. Both the phone and the force sensor were
connected to the same laptop to ensure data synchronization.

Figure 3 shows the program we developed to collect and display
real-time synchronized data. The user interface consists of three
columns. The first column displays the normalized capacitive image
and the maximum capacitive value within the image. The red dot
indicates the centroid of the contract area. The second column
provides a visualization of the 3D forces, including the raw force
values. Lateral and longitudinal shear forces are represented by
blue and green arrows, respectively, while the magnitude of the
pressure is depicted by a red arrow. The third column consists of
control buttons and text boxes for information recording.

Figure 2: (a)-(b) Side and top views of the data collection
apparatus. (c) The setup for the data collection tasks.

1https://www.realme.com/eu/realme-c11-2021/specs
2http://www.chiponeic.com/en/TT/229
3http://www.arizon-tech.com
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Figure 3: The data collection program consisting of the nor-
malized capacitive image (A) with the maximum capacitive
value (B), visualization of the 3D forces (C) with raw force
values (D), and the control buttons (E).

3.2 Participants
For the data collection phase, we recruited 18 participants (15 males,
3 females) between the ages of 20 and 59 (M=28.6, SD=11.6). All
participants were right-handed and had prior experience using
touchscreen devices. Prior to their involvement, informed consent
was obtained from each participant, and their personal information
was treated confidentially. None of the participants had any medical
conditions or upper limb injuries that would hinder their ability to
complete the data collection tasks.

3.3 Task
Considering that pressure and shear force require distinct finger
actions, we designed two tasks for each participant. In each task,
participants were required to touch randomly generated blue circles
on the touchscreen and perform either press or push actions. In the
first task, participants were instructed to apply multiple presses on
the touchscreen using varying forces. They were specifically asked
to apply only normal force, which is perpendicular to the touch-
screen, while attempting to minimize shear force. In the second
task, participants were tasked with performing pushing actions in
various forces and directions. To ensure accurate data collection,
participants were instructed to avoid sliding their fingers on the
touchscreen during both tasks.

3.4 Procedure
Upon welcoming the participants, we introduced the study’s ob-
jectives and demonstrated the apparatus and tasks. Participants
completed a consent form and provided basic information, including
age, gender, and dominant hand. The force sensor was positioned
near the edge of a flat table, and the phone was aligned parallel to
the table surface. The whole device was fixed firmly on the table to

avoid movement under pressure or shear forces. Participants were
comfortably seated in front of the desk, ensuring ease of data collec-
tion. They were instructed to interact with the touchscreen using
their typical finger angle, maintaining consistency throughout the
tasks (see Figure 2c). Furthermore, participants were advised to
refrain from touching anything other than the touchscreen.

Prior to each task, participants were given sufficient time to
familiarize themselves with the task and its requirements. As the
thumb and index finger are commonly used for touchscreen inter-
actions, participants were asked to complete the tasks using these
two fingers. To enhance dataset diversity, participants were asked
to repeat the tasks using a lower finger pitch angle, specifically uti-
lizing the finger pad region. After the data collection process, only
frames that had a positive pressure value were retained. This step
was taken to remove frames where there was no finger touching the
touchscreen. In total, we collected 144 sequences (18 participants ×
2 fingers × 2 finger angles × 2 tasks), comprising 85,055 samples.
Table 1 provides basic statistics for the two datasets. Although shear
forces were still observed in the first dataset, they can be considered
negligible in comparison to the normal force.

After the initial data collection, the dataset was subsequently
organized into pairs. Each pair consisted of two capacitive images
and their corresponding 3D relative forces. It’s important to note
that only data pairs from the same sequence were considered, as
the relative force measurements between different sequences lack
significance for the purpose of interaction. Furthermore, pairs with
a time difference greater than one second (50 frames) were discarded
to ensure that the data came from continuous actions. A substantial
total of 3,555,367 pairs, comprising capacitive images and their
corresponding 3D relative forces, were successfully gathered. The
distribution of the relative forces are illustrated in Figure 4. The
two datasets were merged and subsequently divided randomly into
a training set and a testing set, employing a 14:4 participant-wise
split. This ensured a balanced distribution of data for training and
evaluation purposes.

4 Method
This paper presents a novel approach for estimating 3D relative
forces by employing a siamese framework, which utilizes two neu-
ral networks with identical architecture and shared weights to
extract features from pairs of capacitive images. These extracted
features are subsequently concatenated to estimate the 3D relative
forces. Firstly, we provide a comprehensive explanation of the data
preprocessing steps applied to the input capacitive images. Next,
we delve into the structure of the siamese framework employed
in this study. Finally, we elucidate the training strategy that was
adopted for this framework.

4.1 Data Preprocessing
To begin with, data normalization was performed on the two input
images by dividing the maximum value of the first image. This
approach, as opposed to separate normalization where both images
are normalized to the range of 0 to 1, preserves the relative value
changes of the data.

In order to enhance the position robustness of the networkmodel,
a center alignment strategywas adopted. The centroid of the contact
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Table 1: 3D force statistics for the two datasets: the first dataset features press actions and the second dataset features push
actions.

Press Action Push Action

Lateral Longitudinal Vertical Lateral Longitudinal Vertical
Min (N) -1.32 -2.48 0.01 -5.50 -5.19 0.01
Max (N) 1.04 1.20 11.10 3.76 4.63 11.46
Mean (N) -0.08 -0.13 4.06 0.02 0.01 4.04
SD (N) 0.27 0.37 2.64 0.97 1.03 2.00
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Figure 4: Relative force distribution in the dataset: (a) lateral; (b) longitudinal; (c) vertical.

area was obtained as the weighted mean of the pixel coordinates
within the contact area. Subsequently, the image was shifted to
align the centroid with the center coordinates of the image. Finally,
the image was padded to a size of 32 × 32 pixels in order to better
suit the network model.

4.2 Model Design
We propose to use a siamese network to estimate 3D relative forces
(see Figure 5). Kurita et al. [32] and Yu et al. [53] demonstrated that
fingers deform when pressed and pushed along a surface, and this
deformation can be leveraged to estimate shear forces. When a net-
work model is provided with a pair of capacitive images to estimate
relative forces, it can extract deformation features in addition to
shape and size features. In contrast, only shape and size features,
among others, are available when estimating absolute forces. Fur-
thermore, our pilot study on pressure estimation using contact size
revealed that higher accuracy can be achieved by utilizing changes
in contact size across two images rather than relying on the con-
tact size from a single image. Although a time-series model with
more input images could potentially improve accuracy, it intro-
duces delays in the initial frames when a finger first contacts the
touchscreen [20]. Additionally, processing more images increases
computational demands and energy consumption. The primary
advantage of utilizing a siamese network lies in its ability to learn
discriminative features from input pairs. By sharing weights and
architecture between two identical subnetworks, the network can
acquire a robust representation of each input [7]. The network con-
sists of a feature extraction module and a force estimation module.

The feature extraction module adopts a modified ResNet-18 struc-
ture [21], taking into account the input size and the computing
power of mobile devices. It comprises a convolution block with 32
kernels of size 3 and a stride of 1, followed by two residual blocks
with 32 and 64 channels, respectively. The resulting feature maps
are flattened and passed through a fully connected (FC) layer to gen-
erate a 128-dimensional feature. The two 128-dimensional features
are concatenated and then fed into the force estimation module,
which consists of two FC layers that output the 3D relative forces.

4.3 Model Training
For the training data, data augmentation was performed by hori-
zontally flipping the image while reversing the sign of the lateral
shear force. This approach helps diversify the finger yaw angles
and simulate capacitive images of fingers from the left hand. The
proposed network was implemented in PyTorch and trained on
a single NVIDIA GeForce 3090. The network was optimized by
minimizing the mean squared error (MSE) loss for all three force
dimensions. We employed the Adam optimizer with an initial learn-
ing rate of 0.001 to update the network parameters. We adopted a
ReduceLROnPlateau strategy that reduces the learning rate by a
factor of 0.1 when the performance stops improving for 10 epochs,
and the training procedure concludes after the learning rate has
decayed three times.

5 Experiments
This section presents the performance of the proposed method and
compares it with two baseline methods. As previously mentioned,
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Figure 5: The proposed Siamese network consisting of a feature extraction module and a force estimation module.

the dataset was randomly divided into a training set and a testing
set using a participant-wise split of 14:4. The evaluation is con-
ducted on the testing dataset, which comprises 542,704 samples.
The evaluation metrics used are mean absolute error (MAE), root
mean squared error (RMSE), and standard deviation (SD).

5.1 Baseline Methods
In line with the studies by Heo et al. [25] and Boceck et al. [5], we
implemented two baseline methods for evaluation. The first method
involves an indirect estimation of forces through the assessment of
size change and movement of the contact area, while the second
method utilizes capacitive images for absolute force estimation.

5.1.1 Indirect Force Estimation. Heo et al. [25] proposed a method
for indirectly estimating shear forces in multi-point shear force
operations. The method is based on the hypothesis that the center
of the contact area undergoes slight changes when shear force is
applied, and the displacement is roughly proportional to the magni-
tude of the shear force. The authors also estimated pressure based
on the size of the contact area. We re-implemented the methods
and optimized the parameters using our training dataset. Initially,
we employed the baseline approach described in [46] to extract the
contact area from the input images. We enlarged the input images
using cubic spline interpolation to obtain smoother boundaries, and
then applied a 50% threshold value to determine the contact region.
The contact size was calculated as the number of points within the
contact region, while the centroid was obtained as the weighted
mean of the pixel coordinates within that region. We fitted a linear
regression model to estimate pressure changes using the difference
in contact area size between two images. Additionally, two linear
regression models were fitted using the movement of the centroid
in lateral and longitudinal directions for shear force estimation.

5.1.2 Absolute Force Estimation. Boceck et al. [5] proposed a DNN
for estimating the pressure applied to the touchscreen. The network
consists of three convolutional layers and two fully connected
layers. However, as the original model was designed solely for
pressure estimation, the final fully connected layer produced only
a single output. To adapt the model for 3D force estimation, we
modified the last layer to output three values, corresponding to the
three force dimensions. The model was then retrained using the
data collected in Section 3, following the same training strategy as
outlined in the original study.

5.2 Results and Discussion
The experimental results for both the proposedmethod and the base-
line methods are presented in Table 2. The proposed approach for
estimating relative force demonstrated the lowest values for RMSE,
MAE, and SD across all three dimensions, indicating the highest
accuracy and reliability compared to other methods. Specifically,
the proposed method achieved MAEs of 0.41 N, 0.44 N, and 0.40 N
for the three dimensions, representing reductions of 31.67%, 22.81%,
and 39.39%, respectively, compared to the SOTA force estimation
method by Boceck et al. [5]. Additionally, in terms of pressure es-
timation, the indirect method showed significantly higher errors
and variations compared to the other two methods, suggesting that
using contact size for pressure estimation is not sufficiently robust
to account for differences in finger size. The force estimation error
distributions are presented in Figure 6, showing that errors are
predominantly concentrated in the low-error region when using
the proposed method.

5.2.1 Analysis of 3D Force Joint Estimation. Additional experiments
were conducted to examine the impact of joint 3D force estimation.
In addition to estimating both pressure and shear forces with a
single model, we implemented two separate models to estimate
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Table 2: Quantitative comparison of 3D force estimation errors for different methods. Errors are reported in Newtons (N).

Lateral Longitudinal Vertical

Method RMSE MAE SD RMSE MAE SD RMSE MAE SD

Indirect Estimation by Heo et al. [25] 0.82 0.63 0.53 0.90 0.65 0.62 2.19 1.64 1.45
Absolute Estimation by Boceck et al. [5] 0.80 0.60 0.53 0.80 0.57 0.56 0.85 0.66 0.54
Ours 0.57 0.41 0.40 0.63 0.44 0.45 0.53 0.40 0.33
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Figure 6: 3D force estimation error distributions: (a) lateral; (b) longitudinal; (c) vertical.

pressure and shear forces individually, modifying the number of
outputs in the final fully connected layer accordingly. As shown
in Table 3, the model with joint 3D force estimation outperformed
the separate models across all three force dimensions. We attribute
this improvement to the intrinsic relationship between pressure
and shear forces. When a finger pushes on a touchscreen without
sliding, the static friction opposes the shear force. The maximum
static friction is proportional to the pressure applied on the surface.
This relationship can serve as a constraint during estimation. For
example, it is impossible to exert a large shear force while applying
minimal pressure.

5.2.2 Performance on Pressure Dataset. Unlike shear force, pres-
sure can be applied and utilized independently. Most algorithms
and applications focus on leveraging pressure as an additional input
modality. Therefore, in this experiment, we trained and evaluated
the proposed method and baseline methods using the pressure
dataset. It is important to note that the original pressure estimation
model by Boceck et al. [5] was retrained without any modifications
to its network structure. As shown in Table 4, the proposed ap-
proach achieved the lowest values for RMSE, MAE, and SD, record-
ing 0.64 N, 0.49 N, and 0.41 N, respectively. Notably, the proposed
method demonstrated a 40.24% reduction in MAE compared to Bo-
ceck et al.’s force estimation method. This indicates that, in addition
to incorporating shear modalities, the proposed method enhances
accuracy in pressure estimation tasks.

6 User Study
To assess the feasibility and performance of various 3D force estima-
tion methods in a real-world setting, we implemented all methods

on a commodity smartphone and carried out a user study compris-
ing the following four tasks:

• Force gestures performing task.
• Pressure control task.
• Shear force control task.
• 4 DOF object manipulation task using a combination of con-
ventional touch input and force input.

These tasks also showcased several potential use cases where con-
tinuous 3D force can be employed as input.

6.1 Apparatus and Model Deployment
The Realme C11 (2021) smartphone, which was employed for data
collection, was also utilized in the user study. The applications for
all tasks were developed using Android Studio4. We implemented
the aforementioned three force estimation methods on the smart-
phone. To enable the execution of network models on the device, we
initially generated dedicated OpenVINO5 library files tailored for
the Realme smartphone’s armeabi-v7a architecture. Subsequently,
we integrated these files into the Android applications required
for each task. Furthermore, we utilized the OpenVINO Toolkit to
convert the network models and imported the converted models
for inference.

Unlike the data collection task where measured pressures are
employed to detect finger touch, the user study requires a finger
detection algorithm for all applications involved. To filter the raw
capacitive image, a threshold value of 200 was utilized. Any point
in the capacitive image with a value below the threshold is assigned
a value of zero. Finger touch is detected if there exist non-zero

4https://developer.android.com/studio
5https://docs.openvino.ai/2024/home.html
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Table 3: Quantitative comparison of 3D force estimation errors using separate pressure and shear force estimation methods
versus the joint 3D force estimation method. Errors are reported in Newtons (N).

Lateral Longitudinal Vertical

Method RMSE MAE SD RMSE MAE SD RMSE MAE SD
Separate Estimation 0.62 0.43 0.41 0.70 0.49 0.48 0.59 0.46 0.37
Joint Estimation 0.57 0.41 0.40 0.63 0.44 0.45 0.53 0.40 0.33

Table 4: Quantitative comparison of pressure estimation er-
rors for different methods. Errors are reported in Newtons
(N).

Method RMSE MAE SD
Indirect Method by Heo et al. [25] 2.37 1.79 1.55
Absolute Method by Boceck et al. [5] 1.09 0.82 0.72
Ours 0.64 0.49 0.41

values in the filtered image. This approach effectively differentiates
between touch and non-touch, particularly in scenarios where a
finger is in close proximity but not directly touching the screen.
Once the initial frame is identified, the relative forces between the
initial frame and subsequent frames are estimated.

6.2 Participants
We recruited 12 participants (10 males, 2 female) aged between
20 and 33 (M=22.92, SD=3.45) who were not involved in the data
collection process. One participant was left-handed, while the re-
maining participants were right-handed. All participants had previ-
ous experience with touchscreen devices, while two participants
had experience with force input (Apple 3D Touch). Prior to their
participation, we obtained informed consent from each participant.
None of the participants had any medical conditions or upper limb
injuries that could impede their ability to complete the user study.

6.3 Tasks
6.3.1 Task 1: Force gestures. Previous studies have explored the use
of touch force as a gesture or operation mode switcher [6, 23, 24],
though most focused exclusively on pressure gestures. In this study,
we introduce six distinct force gestures: gentle press, hard press,
push left, push right, push up, and push down. These gestures are
categorized based on force changes, as shown in Figure 7. Each
gesture starts when a finger makes contact with the screen and
ends when the finger is lifted. We estimate and track the 3D relative
forces between the first touch frame and each subsequent frame. To
distinguish between traditional swipe gestures and force gestures,
we employed a pressure threshold of 2 N. If the maximum pressure
during the gesture is below 2N, the gesture is categorized as a gentle
press; otherwise, it is classified as a force gesture. Additionally, if
the magnitude of the lateral and longitudinal shear forces remains
consistently below 1 N throughout the gesture, it is classified as
a hard press. If the maximum shear force exceeds this threshold,
the gesture is then classified as a push gesture. The shear force
threshold was determined by analyzing data from the press action

dataset, where less than 4% of samples exhibited a shear force
above 1 N, with this percentage dropping to below 1% for lighter
presses (pressure below 6 N). The direction of the push gesture is
determined by the dominant shear force component—either lateral
or longitudinal.

The aim of this task is to evaluate the recognition accuracy of
force gestures based on the force estimated by various methods.
Figure 8a displays a screenshot of the application used for this task.
At the beginning of the task, a target gesture is displayed on the
screen. After completing a gesture, the screen will flash either green
or yellow, indicating whether the detected gesture was correct or
incorrect. Subsequently, the next target gesture is presented on
the screen. Both the target gestures and the performed gestures
are recorded. Overall, a total of 2160 trials were conducted in this
task, which involved 12 participants, 3 methods, 6 gestures, and 10
repetitions.

6.3.2 Task 2: Pressure control. The objective of this task is to assess
the controllability and stability of continuous pressure control us-
ing different force estimation methods. The application employed
for this purpose is depicted in Figure 8b. The top half of the screen
features a progress bar that can be controlled by applying pressure.
At 0 N pressure, the progress bar is empty, and it becomes full at
10 N. Two red markers are randomly positioned on the progress
bar, maintaining a fixed distance of 10% of the bar’s length between
them. To ensure a fair comparison among the methods, the marker
positions are selected from the same pool of randomly generated
positions. Participants are instructed to adjust the progress by mod-
ulating their pressing force. A trial is considered complete if the
progress remains between the two markers for a continuous du-
ration of 0.5 seconds. Once a trial is completed, the time taken is
recorded, and the markers are relocated to new random positions.
In total, this task consisted of 720 trials, involving 12 participants,
3 methods, and 20 repetitions.

6.3.3 Task 3: Shear force control. Similar to Task 2, the objective of
this task is to assess the controllability and stability of continuous
shear force control using different force estimation methods. The
application utilized for this task is depicted in Figure 8b. The lower
half of the screen is dedicated to this particular task, displaying
a target circle with a radius of 50 pixels and a dot with a radius
of 10 pixels. To ensure a fair comparison among the methods, the
positions of the target circle are selected from the same pool of
randomly generated positions. The maximum shear force required
to move the dot to the boundary is 3 N in all directions. Participants
are instructed to manipulate the small dot by adjusting their shear
forces. A trial is considered successful if the small dot remains
completely within the large circle continuously for a duration of
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Figure 8: Applications developed for the user study: (a) a
gesture performing task; (b) a pressure control task (upper
half), and a shear force control task (lower half); (c) a 4DOF
object manipulation task. (d) The setup for the user study.

0.5 seconds. A trial is deemed unsuccessful if it is not completed
within a time frame of 15 seconds. Once a trial is completed, the
time taken is recorded, the big circle moves to the next random
position, and the small dot returns to its original position. In total,
this task involved 720 trials, with 12 participants, 3 methods, and
20 repetitions.

6.3.4 Task 4: 4 DOF object manipulation. To make a new modality
practical for commodity smartphones, it should be compatible with
conventional touch input. Hence, the objective of this task is to
assess the performance of various force estimation methods under
this condition. Manipulating objects with 4DOF is a common task
in daily mobile phone operations. For instance, users may need
to pan, zoom, or rotate a map or a photo. The current approach
to accomplish this task involves multi-finger gestures, which is
not feasible for single-handed phone operation [6]. In this task,
a new interaction technique for 4DOF is devised, as illustrated
in Table 5. Conventional touch input is employed for panning,
lateral shear force for rotation, longitudinal shear force for zooming,
and pressure for switching operation modes. A pressure threshold
of 2 N is used for switching between conventional touch input
and force input. The application used for this task is presented in
Figure 8c. A randomly sized target circle is positioned on the screen,

accompanied by a blue arrow indicating the target angle. To ensure
a fair comparison among methods, the positions, size of the target
circle, and angle of the arrow are selected from the same pool of
randomly generated values. Participants are instructed to move
a green pie to the target location, aligning its size and direction
accordingly. A trial is considered successful if the location difference
is less than 10 pixels, the radius difference is less than 10 pixels,
and the angle difference is less than 5 degrees. A trial is considered
unsuccessful if it exceeds a duration of 60 seconds. Once a trial is
completed, the time taken is recorded, and the position, size and
direction of the target circle is refreshed. Based on our pilot test, we
found that the absolute approach was inadequate for this task due to
its inaccurate and unstable shear force estimation. Consequently, we
excluded the absolute force estimation method from consideration
for this specific task. Overall, this task encompassed 240 trials,
involving 12 participants, 2 methods, and 10 repetitions.

6.3.5 Procedure. The user study followed a procedure similar to
the data collection process outlined in Section 3.4. Upon arrival,
participants were briefed on the study’s objectives and given a
demonstration of the apparatus and tasks. After providing informed
consent, participants submitted basic demographic information,
including age, gender, and dominant hand. They were seated com-
fortably in chairs, allowed to adopt their preferred posture, and
instructed to interact with the phone using their dominant hand
and preferred finger (see Figure 8d). As in the data collection phase,
they were asked to maintain a consistent finger angle while inter-
acting with the touchscreen. Before each task, participants were
allotted sufficient time to familiarize themselves with the task re-
quirements. To minimize potential bias from the learning effect, the
order of input methods for each task was counterbalanced across
participants using a Latin square design. After completing each task,
participants provided subjective ratings through questionnaires.
Additionally, they completed a NASA-TLX (raw TLX) questionnaire
to assess perceived workload after finishing all tasks. Interviews
were conducted at the end of the study to collect feedback on any
issues encountered and participants’ opinions regarding each force
estimation method. The study adhered strictly to ethical guidelines
for research involving human subjects.
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Table 5: Control mappings using a combined strategy of conventional input and force input.

Up Down Left Right
Conventional Pan Up Pan Down Pan Left Pan Right
Force Zoom In Zoom Out Rotate Anticlockwise Rotate Clockwise

6.4 Performance Analysis
To assess the normality of the data across all tasks and subjective
ratings, we conducted the Shapiro-Wilk test, which revealed that all
time-related tasks (Tasks 2-4) violated the assumption of normality.
Consequently, we used violin plots to visualize the actual distri-
bution of the original data and applied non-parametric Wilcoxon
signed-rank tests[50] with Benjamini-Hochberg corrections[4] to
evaluate the significance of completion time differences between
methods. For subjective ratings, we plotted the means and 95% con-
fidence intervals (CIs) and performed paired t-tests with Benjamini-
Hochberg corrections to determine statistical significance.

6.4.1 Task 1: Force gestures. The force gesture recognition rates
are presented in Table 6. Among the different methods evaluated,
the proposed 3D relative force estimation method demonstrated the
highest accuracy, achieving an 95.97% overall recognition rate. This
marks an improvement of 77.16% compared to the absolute force
estimation method and a 43.37% improvement over the indirect
force estimation method. The low recognition rate of the indirect
approach for pressure gestures is consistent with the experimental
results in Table 2, which we attribute to the method’s inability
to robustly accommodate variations in finger size. The absolute
approach exhibited the poorest recognition rate for shear gestures,
supporting our hypothesis that estimating relative force from two
images provides more accurate results. The confusion matrices
for the three methods, shown in Figure 9, highlight that shear
gestures were frequently misclassified as hard presses when using
the absolute approach, reflecting its limited range in estimating
shear force. Meanwhile, the indirect approach, which lacks the
ability to detect force gestures, often misclassified shear gestures
as gentle presses.

6.4.2 Task 2: Pressure control. The completion times for the pres-
sure control task are illustrated in Figure 10a. The average com-
pletion times for the relative, absolute, and indirect approaches
are 1.84 s, 2.43 s, and 2.60 s, respectively. The proposed approach
demonstrated the highest performance, and the difference was sta-
tistically significant when compared to the absolute approach (p
< 0.001) and the indirect approach (p < 0.001). These findings are
consistent with the experimental results presented in Table 2 and
the pressure gesture recognition results outlined in Table 6.

6.4.3 Task 3: Shear force control. The completion times for the
shear force control task are presented in Figure 10b. Notably, only
23.75% of the trials using the absolute method were successful
(completed within 15 seconds), consistent with its lower shear force
gesture recognition rates shown in Table 6. As a result, the average
completion time for the absolute method is not depicted in the
figure. Although the indirect method exhibited similar shear force
estimation errors to the absolute method (see Table 2), all partici-
pants successfully completed the task using the indirect approach.

This method estimates shear force based on movement alone; while
the estimated values may deviate from the actual force, the linear
model ensures consistent force changes between adjacent frames.
The average completion times for the proposed method and the
indirect approach were 2.07 s and 2.46 s, respectively, with the
performance difference being statistically significant (p < 0.001).

6.4.4 Task 4: 4 DOF object manipulation. The completion times for
the 4DOF object manipulation task are illustrated in Figure 11. The
average completion times for the relative and indirect approaches
are 18.62 s and 24.68 s, respectively. The proposed method achieved
a 24.55% reduction in completion time compared to the indirect
approach, with the difference being statistically significant (p <
0.001). In addition to the shear force control ability, consistency
and accuracy in pressure estimation played a crucial role in task
performance. Although pressure was primarily used as a mode
switcher, incorrect mode classification led to discrepancies between
the intended action and the participant’s actual action, potentially
causing previously aligned dimensions to misalign.

6.4.5 Subjective Ratings. We obtained usability and preference rat-
ings from the participants upon completing each task. The results
are presented in Figure 12. Across all tasks, the proposed force
estimation method received the highest ratings for both usability
and user preference. In contrast, the absolute approach received
the lowest ratings in both the force gesture and shear force control
tasks, largely due to its poor performance in estimating shear force.
Workload data, measured using the NASA-TLX, is presented in
Figure 13. The proposed method consistently exhibited the lowest
workload across all criteria, with a significantly lower total work-
load compared to the absolute approach (p < 0.001) and the indirect
approach (p < 0.01). Participants reported higher frustration, in-
creased effort, and lower performance with the absolute approach,
particularly due to its failures in shear force operations.

6.5 Discussion
The user study revealed that the proposed 3D relative force esti-
mation method achieved the highest overall performance, offering
a balanced ability to estimate both pressure and shear forces. In
contrast, the absolute approach performed poorly in both the force
gesture and shear force control tasks, primarily due to its inability
to estimate shear forces. This limitation arises because the abso-
lute approach relies on the shape and capacitive intensities from
a single capacitive image, without accounting for variations over
time. The overall gesture recognition rate based on relative force
estimation is 77.16% higher than that achieved with the absolute
force estimation method, a difference more pronounced than the
error reduction observed in the force estimation experiment. This
suggests that low pressure and shear force estimation accuracies
interfere with one another, further diminishing performance in
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Table 6: Force gesture recognition rates for different force estimation methods.

Method Gentle Press Hard Press Push Up Push Down Push Left Push Right Overall
Indirect Estimation by Heo et al. [25] 63.33% 71.67% 60.83% 77.50% 54.17% 74.17% 66.94%
Absolute Estimation by Boceck et al. [5] 75.83% 81.67% 22.50% 33.33% 56.67% 55.00% 54.17%
Ours 98.33% 91.67% 96.67% 89.17% 100.00% 100.00% 95.97%

98.33% 1.67% 0.00% 0.00% 0.00% 0.00%

3.33% 91.67% 2.50% 0.00% 2.50% 0.00%

1.67% 0.00% 96.67% 0.00% 0.00% 1.67%

7.50% 0.00% 0.00% 89.17% 3.33% 0.00%
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Figure 9: Confusion matrix for force gesture recognition based on (a) proposed relative force estimation; (b) absolute force
estimation; (c) indirect force estimation.

real-world applications. Additionally, the improved shear force esti-
mation facilitates continuous shear force control, as demonstrated
in Task 3. Beyond task performance, the enhanced estimation accu-
racy also contributes to a better user experience by reducing effort
and frustration levels.

Meanwhile, the indirect approach exhibited the weakest per-
formance in the pressure control task, likely due to its inability
to accommodate variations in finger size. However, the indirect

approach outperformed the absolute approach in the shear force
control task, despite having slightly higher shear force estimation
error rates (see Table 2). This can be attributed to the fact that
the indirect approach relies solely on movement to estimate shear
forces. While the estimated values may deviate from the actual
force, the linear model ensures consistent force changes between
adjacent frames, allowing participants to adjust their actions based
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Figure 10: Completion times (in seconds) for (a) the pressure control task and (b) the shear force control task using different
force estimation methods.
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Figure 11: Completion times (in seconds) for the 4DOF object
manipulation task using different force estimation methods.

on visual feedback. In the absence of visual feedback, such as in
force gesture tasks, performance declined significantly.

Additionally, some participants reported that the pressure range
achievable with the indirect method was limited, requiring them
to change the finger angle to achieve a broader range of pressure
values. This limitation is due to the restricted deformation range
of the fingertip, which limits the change in contact area size. By
altering the finger angle, participants were able to increase the
range of contact area sizes, thereby expanding the range of indirect
pressure estimation.

7 Applications
We have identified three categories of force interactions enabled
by the proposed method and implemented a series of applications
to demonstrate the potential of 3D force interactions.
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Figure 12: Subjective usability ratings and preference scores
for each task of the user study: (a) force gesture task; (b)
pressure control task; (c) shear force control task; (d) 4DOF
object manipulation task. Error bars: 95% CI.

7.1 Force Gestures
Most force gestures introduced in previous studies [17, 28] can
be replicated using our proposed method. Pressure gestures are
the most intuitive and commonly used gestures. For instance, a
firm press can be distinguished from a light tap, which can be
employed to open pop-up menus (Figure 14a). The force-based
firm press can serve as a replacement or complement to the widely
used long press gesture, offering the advantage of requiring less
time to execute[43]. With accurate pressure estimation, the number
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Figure 14: Applications of the proposed 3D relative force esti-
mation method: (a) opening a pop-up menu with a firm press
gesture; (b) copying text using an upward push gesture; (c)
fast scrolling via rate-based shear force input; (d) map naviga-
tion through combined touch and force input; (e) controlling
a kart in a game with two-finger force input.

of available menus can be expanded by incorporating different
pressure levels. Additionally, 2D shear gestures offer the potential
for a broader range of actions. Simple directional push actions, as
discussed in Section 6.3.1, can be used for system-level commands,
such as adjusting volume or brightness, or as application-specific
shortcuts like copy, paste, and cut (Figure 14b).

7.2 Continuous Force Interactions
The proposed method enables fast and accurate force estimation,
allowing for continuous force interactions. Force input can comple-
ment traditional touch input in two ways: by providing input with
adjustable control-display (CD) gain and by offering extra degrees

of freedom (DOF). Conventional touch input typically operates at a
1:1 CD gain, which may be inefficient for tasks such as fine-grained
manipulations or rapid scrolling. For example, when browsing con-
tent larger than the screen, users must repeatedly flick to scroll.
With shear force-based high CD gain control, fast scrolling can be
achieved with fewer flicks (Figure 14c). Conversely, shear force can
be used with a low CD gain to enable precise object alignments.

Some applications require operations with more than two de-
grees of freedom. For instance, navigating a map typically involves
panning, zooming, and rotating. Most map applications use two-
finger gestures for zooming and rotating, which can be inconvenient
when interacting with one hand. In this case, longitudinal and lat-
eral shear forces can control zooming and rotation, respectively
(Figure 14d).

Additionally, continuous force interactions can be combinedwith
force gestures. For example, shear forces can navigate a pop-up
menu triggered by a pressure gesture.

7.3 Multi-finger Interactions
Unlike under-screen force sensors that measure the total pressure
applied to a touchscreen, the proposed method can estimate the
forces applied by each individual finger. After detecting the fingers,
the system processes the image patches containing each finger
separately, allowing for the estimation of the touch force of each
finger independently. These force estimates can then be used to
control different DOFs or recognized as multi-finger force gestures.
Figure 14e shows a kart racing game we implemented that can be
controlled using two-finger shear force input. The shear force of
the left thumb controls the camera angle, while the shear force of
the right thumb controls the movement of the kart.

8 Limitations and Future Work
The proposed 3D relative force estimation method was evaluated
through empirical experiments and a user study, demonstrating its
feasibility and performance. However, this study has the following
limitations:

The dataset collected in this study only included data from the
thumb and index finger, with a limited range of finger angles and
touch positions. In real-world scenarios, users interact with touch-
screens using various fingers and finger angles at different positions,
so a more diverse dataset would improve the generalizability of the
proposed method. Additionally, the study had a limited number of
participants for data collection and the user study. To fully explore
the potential of force estimation, it is recommended to conduct
more comprehensive data collections and user studies, involving a
broader range of age groups, finger skin conditions, occupations,
and medical conditions. By addressing these limitations, future re-
search can further enhance the applicability and effectiveness of
the proposed 3D relative force estimation method.

To synchronize image and force collection, a charging cable
was connected to the phone. However, this setup may introduce
variations in the capacitive images due to grounding effects and
could slightly influence shear force measurements [14]. Addition-
ally, participants completed the user study while holding the phone,
a setup different from that used during the data collection phase.
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While user performance in the study was satisfactory, the actual
estimation accuracy was not evaluated under these conditions.

This study aims to propose a 3D relative force estimation method
and compare it with other methods based on capacitive images.
Consequently, estimation methods utilizing other sensors, such as
barometers and accelerometers, are not evaluated in this paper. A
key focus of future researchwill be to explore force estimation using
multiple sensing techniques to enhance accuracy and robustness.

Changes in capacitive images can be influenced by both force and
finger angle. Participants were instructed to maintain a constant
finger angle during each task, but this may bring inconvenience
to users in real-world settings. A potential solution to address this
issue is to consider finger angle and force simultaneously.

The user study only employed the relative force between the first
frame and subsequent frames in a captured sequence. However, as
the sequence length increases, there is a higher likelihood of finger
sliding. While a center alignment strategy was proposed to mitigate
this problem, a more effective approach could involve updating the
reference frame using a sliding window.

The study presented a simple force gesture recognition method
based on thresholds. To further enhance recognition accuracy, more
sophisticated algorithms like convolutional networks could be de-
veloped. Additionally, future research could explore real-world
applications of force gestures.

We conducted the experiments exclusively using the Realme C11
(2021) smartphone due to the challenge of obtaining raw capacitive
data without the cooperation of mobile phone manufacturers. How-
ever, one of the key objectives of our future research is to validate
the effectiveness of our proposed method on a variety of mobile
phones and tablets. By testing our method on different devices,
we aim to ensure its applicability and robustness across a broader
range of platforms.

9 Conclusion
In conclusion, this study presents a novel approach for estimating
relative 3D forces applied by fingers on a touchscreen from two
capacitive images, enabling continuous 3D force interactions. Em-
pirical experiments demonstrate the superiority of the proposed
relative force estimation method over SOTA absolute force estima-
tion and indirect force estimation methods. The joint estimation
of pressure and shear forces enhances accuracy by leveraging the
inherent relationship between these two force components. The
deployed network model, running on a commodity smartphone,
showcases the practicality of the approach. Furthermore, a user
study with four tasks confirms the effectiveness of the method in
real-world scenarios, encompassing force gestures, pressure control,
shear force control, and object manipulation using a combination
of traditional touch input and force input. The study introduces
a new set of force gestures and demonstrates that the proposed
force estimation method achieves the highest recognition accuracy.
The force control tasks illustrate the controllability and stability
provided by the 3D relative force estimation method. Additionally,
a 4DOF object manipulation task showcases the performance of the
proposed method in a complex scenario, validating the capability
of force input to be used in conjunction with conventional touch
input.
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