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Fingerprint matching using ridges
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Abstract

Traditionally, fingerprint matching is minutia-based, which establishes the minutiae correspondences between two fingerprints. In this
paper, a novel fingerprint matching algorithm is presented, which establishes both the ridge correspondences and the minutia correspondences
between two fingerprints. First N initial substructure (including a minutia and adjacent ridges) pairs are found by a novel alignment
method. Based on each of these substructure pairs, ridge matching is performed by incrementally matching ridges and minutiae, and then
a matching score is computed. The maximum one of the N scores is used as the final matching score of two fingerprints. Preliminary
results on FVC2002 databases show that ridge matching approach performs comparably with the minutia-based one.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fingerprints have been used in identification of individ-
uals for many years because of the famous fact that each
finger has a unique pattern. Many fingerprint identification
and verification methods have been proposed, such as im-
age correlation [1], graph matching [2], structural matching
[3,4], and matching with transform features [5], and so on.
Among them the most widely used one is methods based on
point pattern matching [6,7].

However, fingerprint recognition is still a challenging
problem due to the following difficulties:

(1) Low quality fingerprint images are often captured due
to dry or wet skin, dirty or injured fingers, and non-
uniform pressures. Feature detector operated on such
images will miss genuine minutiae and introduce spu-
rious minutiae.
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(2) The solid-state sensors are increasingly used, which
capture only a portion of a finger. This causes the de-
ficiency of minutiae information. In such a case, it is
difficult to make a reliable decision whether two finger-
prints are from the same finger.

(3) The imaging process introduces elastic deformation in
ridge pattern and minutiae locations of the fingerprint
image. While large bounding box can be used during
matching to tolerate it, the side-effect is that the false
accept rate will increase.

In recent years, new representations of fingerprint image
and new matching algorithms have been proposed to re-
solve the problems above. FingerCode representation and
matching scheme introduced by Jain et al. [5], which cap-
tures the global and local features of fingerprints, is robust
to low quality images and has an advantage of fixed-length
feature vectors. Ross et al. [8] present a hybrid matcher that
combines minutiae and texture features. Tico and Kuosma-
nen [9] introduce an orientation-based minutia descriptor to
identify corresponding minutiae and compute the matching
score. Kovács-Vajna [10] uses a triangular matching method
to deal with the nonlinear deformation, which is based on
the fact that local distortion is less than global distortion.
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Fig. 1. (a) Intensity image, (b) ridge image, (c) synthesized image.

Bazen [11] estimates nonlinear distortion between two minu-
tiae sets using thin-plate splines, and removes the distortion
prior to the matching stage. All these methods perform rea-
sonably well in certain circumstances; some methods do well
for low quality fingerprints, some do well when nonlinear
deformation exists, and others do well when the overlapped
region of two fingerprint images is small.

In this paper, however, a novel approach based on ridges
is proposed with the aim to try to solve all these problems.
Ridge image, also called thinned image or skeleton image, is
an intermediate image in many feature extraction algorithms.
Since minutiae are generally thought of as enough to identify
a person, ridge image is just used to extract minutiae from it.
After that, the ridge image is discarded. However, we think
ridge images have much more usages. In our opinion, ridge
image has the following features:

(1) Ridge image is an effective representation of the fin-
gerprint image. From a ridge image, we can synthesize
an image similar to the enhanced version of the orig-
inal fingerprint image. On the contrary, it is definitely
impossible to do so from a minutia set. An example
of a ridge image and its synthesized image is given in
(Fig. 1). The synthesized image is generated using the
following steps. To compute the distance transform of
a ridge image (b), to replace the intensity value greater
than a threshold T (e.g. 5) with T, and to scale the inten-
sity range [0 T ] to [0 255], then we can obtain a syn-
thesized image (c) that looks like the enhanced version
of the original fingerprint image (a).

(2) Ridge image is also a compact representation of the
fingerprint image. Ridge images can be efficiently ap-
proximated by polygonal lines, so the size of a template
file is small. We have conducted an experiment and
found that for fingerprints in FVC2002 DB1 (388*374,
500 dpi), the average size of template files is 1.3 KBytes,
which meets the storage requirement of “light” system
in FVC2004 competition [12].

(3) Similar minutiae patterns do not mean similar ridge pat-
terns. Actually from experiments, we observed that the
ridge patterns of most different fingerprints which have
similar minutiae patterns are significantly different.

(4) Unlike minutiae whose distribution on a fingerprint
seems to be random, ridges cover the whole region

of a fingerprint. As a result, with the reduction of the
effective region of two fingerprints, the performance of
the ridge-based system will not degrade dramatically.

(5) The topology information in ridge patterns is reliable
(especially in the direction normal to ridges) and invari-
ant to nonlinear distortion.

Ridges have been used for different purposes by some
researchers. Ridges associated with corresponding minutiae
are used to align two minutiae patterns by Jain [7]. Fin-
gerprint classification algorithm in [13] is based on fea-
tures extracted from ridge images. Ridges associated with
corresponding minutiae are used to estimate the nonlinear
distortion between two fingerprints [14]. Although ridges
have been used in a number of aspects related to fingerprint
recognition technology, to our knowledge, there have been
no work published that reports matching two ridge images
directly.

The algorithm proposed in this paper is novel on that it
establishes both the ridge correspondences and the minutia
correspondences between two fingerprints. The algorithm
consists of three stages: preprocessing, alignment, and
matching. In the preprocessing stage, ridges are extracted
from the thinned image and sampled equidistantly, and re-
lations between ridges and minutiae are established. In the
alignment stage, a set of N initial substructure pairs is found
using a novel approach. In the matching stage, for each of
the N initial substructure pairs, ridge matching is performed
to produce a matching score. Finally, the maximum of the
N scores is used as the final matching score of the two
fingerprints.

The idea underlying our alignment algorithm focuses on
how to choose a reliable local feature pair as the base of
matching. This is accomplished first by defining a substruc-
ture that contains as much local information (one minutia
and several ridges) as possible, and secondly by finding the
substructure pair which have the most consistent substruc-
ture pairs around.

In our matching algorithm, during the process of ridge
matching, minutiae are also paired, and the matching score
is computed according to both the matched minutiae and the
matched ridges.

Many existing algorithms use a single global transfor-
mation to align two fingerprints [7,9]. Different from these
algorithms, we apply different local transformations in
different regions. The transformation is estimated using
matched substructures, and applied to nearby ridges.

Experiments have been conducted on FVC2002 databases
[15] and the preliminary results have demonstrated the
validity of the proposed approach.

The rest of the paper is organized as follows. The next
three sections are, respectively, devoted to the three stages of
the algorithm, namely, preprocessing, alignment and match-
ing. In Section 5, the experimental results and evaluation
are presented. Finally in Section 6, summary and plans for
future work are given.
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2. Preprocessing

2.1. Feature extraction

Our matching algorithm is based on two types of features:
minutiae and ridges. For a given grayscale fingerprint image,
we obtain the ridge image (thinned image) and the minutiae
set using an algorithm developed in our laboratory, which
follows the common preprocessing steps in traditional minu-
tiae matching algorithms. First the directional field is com-
puted and the fingerprint is segmented into the foreground
region and the background region. Then directional filtering
is performed to improve the image quality, and the enhanced
image is binarilized and thinned to produce the ridge image.
At last minutiae are detected on the ridge image.

2.2. Ridge representation

Due to noise in fingerprint images and imperfectness of
the feature extraction methods, there are complex structures,
such as loops and bridges, in the obtained ridge image. In
order to make the ridge structures simple and consequently
the matching algorithm easier, an operation, called clear-
up, is performed: (i) closed ridges are disconnected at an
arbitrary point; (ii) ridges associated with bifurcations are
split into three ridges; (iii) short ridges are removed. An
example is given in Fig. 2 to illustrate the effect of this
operation.

Each ridge in the cleared ridge image is sampled at a
constant interval to obtain a short list of sampled points.
The ridges in one fingerprint are then represented as SP =
{{(xi,j , yi,j , si,j )}nri

j=1}Nr

i=1, where xi,j and yi,j denotes the
coordinates of the j th point of the ith ridge, Nr the num-
ber of ridges in the ridge image, nri the number of points
of the ith ridge, si,j the matching status of the point, si,j
being 0 represents the point has been matched; otherwise
si,j is set to the segment number of the sub-ridge that the
point belongs to. The segment number uniquely identifies
the sub-ridge in the ridge considered. For example, dur-
ing the matching, the statuses of the points of a ridge are
[2 2 2 2 0 0 0 0 0 0 0 1 1 1 1 1]. This means that, at that
time, the middle portion of the ridge is matched and the
sub-ridges 1 and 2 are unmatched.

Fig. 2. (a) Intensity image (500 dpi), (b) ridge image before clear-up, (c)
ridge image after clear-up and sampling (the sampling interval is 6 pixels,
and the sampled points are connected).
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b

Fig. 3. b and c are the left and the right neighboring points of ai ,
respectively.

2.3. Relations between ridges

Adjacent relations between ridges are important con-
straints for ridge matching. We use the relations between
points of adjacent ridges to represent the relations between
ridges since each ridge has been represented by a set of
sampled points.

For a point, ai , on a ridge, draw a line segment centered
at ai , normal to the local ridge direction, with a length of w1
pixels. On each side of the ridge, the nearest point to ai on
the first ridge intersected by the line segment is regarded as
a neighboring point of ai . A neighboring point of ai (if have)
is classified as a left or right neighboring point by checking
its position when moving along (ai−1 → ai → ai+1). An
example is given in Fig. 3.

To record the neighborhood information of a point, the
point representation [x, y, s] is expanded to [x, y, s, lr, lp,

rr, rp], where lr and lp denote the ridge number and the
point number of the left neighboring point respectively, rr
and rp denote those of the right neighboring point. If a point
has no neighboring point on either side, the corresponding
element is set to −1.

3. Alignment

Since the pose of different impressions of the same fin-
ger can be different, the correspondences between features
(minutiae, or sampled points of ridges) of two fingerprints
are ambiguous. In such cases, the search for the best corre-
spondence in the space of all possible correspondences will
be time-consuming. The objective of the alignment process
is to recover the transformation between two fingerprints by
some means and to align them as well as possible. After that,
the ambiguity of correspondence is reduced greatly and the
search for the best correspondence will be less complex.

Alignment is generally done by finding the most similar
substructure pairs [7,9] or by finding the substructure pairs
most supported by other substructure pairs [17,18]. Such
substructures can be minutiae subsets [17,18] or ridges as-
sociated with minutiae [7].

In this paper, we propose a novel approach to aligning
two fingerprints. The substructure we used consists of one
minutia and several associated ridges. The similarity of sub-
structures and the support from other substructure pairs are
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Fig. 4. (a) Substructure of a termination (solid circle represents the minutia,
hollow circle represents the projection point, and the labels of ridges are
given), (b) substructure of a bifurcation, (c) two possible correspondences
between ridges when a termination is matched to a bifurcation.

combined to measure the goodness of substructure pairs.
Since using only the best one for alignment may be too risky,
top N substructure pairs can be used, respectively.

3.1. Substructure

In our approach, a substructure is constructed with the
following way. First, each minutia is classified into termi-
nation or bifurcation by counting the number of ridges in
a 3 × 3 window centered at this minutia. If the number is
1, the minutia is a termination; if the number is 3, it is a
bifurcation. For a termination, in addition to the ridge that
the termination belongs to, two more adjacent ridges are in-
cluded (see Fig. 4(a)). For a bifurcation, in addition to the
three ridges that the bifurcation belongs to, two more adja-
cent ridges are also included (see Fig. 4(b)). Each adjacent
ridge is split into two sub-ridges by a neighboring point of
the minutia, which is called the projection point of the minu-
tia, and each sub-ridge is assigned a label.

The ridges of a substructure are labeled according to the
order: first, the ridge that the minutia belongs to, and then
the adjacent sub-ridges of the minutia. The three ridges that
the bifurcation belongs to are labeled by checking the rela-
tive directions between the ridges. The adjacent sub-ridges
of the minutia are labeled by checking the relative positions
and the relative directions of the sub-ridges with respect to
the minutia. Figs. 4(a) and (b) show examples for labeling
of substructures of termination and bifurcation respectively.

The necessary condition for a match of two substructures
is that their minutiae are of the same type and their corre-
sponding ridges have the same labels, or their minutiae are
of different types, but their ridge labels have one of the two
possible correspondences shown in Fig. 4(c).

There are several advantages for choosing such substruc-
tures: (i) it contains all the topological information (minu-
tia and ridges) in a local area; (ii) it allows different types
of minutiae to be matched. This is desirable since the type
of minutiae (termination and bifurcation) cannot be reliably
detected during preprocessing; (iii) this helps to estimate de-
formation more accurately compared with based only on one
ridge, when the ridge density of the two fingerprints differs.

The substructures contained in a fingerprint image
are denoted as AR = {{(ri,j , spi,j , epi,j )}7

j=1}Nm

i=1, where
(ri,j , spi,j , epi,j ) represent the ridge number, the point
number of the starting point, and the point number of the

endpoint of the j th labeled ridges in the ith substructure,
and Nm the number of substructures (same as the num-
ber of minutiae) in the fingerprint image. The element
with no corresponding ridge is set to −1. For easy check
of topological relations among substructures, associated
minutiae of ridges in a fingerprint image are recorded.
Here associated minutiae of a ridge mean minutiae on
the ridge or outside the ridge but in the substructures that
contain portions of the ridge. The associated minutiae are
denoted as AM = {{(mi,j , pi,j , labeli,j )}ni

j=1}Nr

i=1, where
(mi,j , pi,j , labeli,j ) represent the minutia number, the
point number of the minutia (or the projection point when
the minutia lies outside the ridge), and the label of the sub-
ridge in the substructure for the j th associated minutia of
the ith ridge.

3.2. Similarity between substructures

The objective of this step is not to compute a similarity
degree between two substructures, but to give a binary de-
cision if these two substructures are possibly matched.

For each pair of corresponding ridges, r1 and r2, which
both contain more than four sampled points, the similarity
degree of them is computed as follows. Let p1,1 and p2,1 be
the starting points of r1 and r2, p1,2 and p2,2 be the endpoints
of r1 and r2. Assume the shorter one of two ridges is r1, p1,2
is the ith point counting from p1,1, and q is the ith point
counting from p2,1. Then the similarity degree between the
two ridges is

sr = 1 − |d1 − d2|/ max(d1, d2), (1)

where d1 denotes the Euclid distance between p1,1 and p1,2,
and d2 the Euclid distance between p2,1 and q. Assume that
the similarity degrees of n pairs of ridges are computed for a
pair of substructures. These two substructures are regarded
as possibly matched, if the following two conditions are both
satisfied:{

sri > �1, ∀i ∈ [1, 2, . . . , n],
(1/n)

∑n
i=1sri > �2,

(2)

where �1 and �2 are two thresholds, and �1 < �2.

3.3. Support from other substructure pairs

To compute the support of a substructure pair, which is
possibly matched, from other substructure pairs, we perform
a fast match for minutiae associated with each pair of cor-
responding ridges in these two substructures, and take the
total number of matched minutiae as the support degree.

For each pair of corresponding ridges in the substructure
pair m1,1 and m2,1, we search the two lists of associated
minutiae for matched minutiae (see Fig. 5). Take a pair of
ridges as example (the wider ridges in Fig. 5). Two associ-
ated minutiae, m1,2 and m2,2, are said to be matched if the
lengths (in terms of the number of sampled points) of the
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Fig. 5. Match associated minutiae of a pair of corresponding ridges (wider
ridges).

two sub-ridges between two pairs of reference points (minu-
tiae or projection points) differ less than 3, and the two sub-
ridges are correspondent ridges in the substructure pair m1,2
and m2,2. In Fig. 5, in addition to m1,2 and m2,2 that are
matched, m1,3 and m2,3 are also matched.

The substructure pairs with the top N degrees of support
will be selected as the initial substructure pairs for matching.

3.4. Estimation of transformation between two
substructures

While several researchers [11,14] have used thin plate
spline to model the global deformation between finger-
prints, we found affine transformation can approximate the
local deformation between fingerprints well. In addition,
estimation and application of affine transformation need less
computation. Therefore, we choose affine transformation as
permitted transformation and employ local transformations
of matched substructure pairs to model nonlinear deforma-
tions in fingerprint images. The transformation parameters
are estimated based on corresponding point sets of the
substructure pair using the least square error technique.

4. Matching

Given an initial substructure pair obtained in the align-
ment stage, we will gradually match other ridges and
minutiae. A list, MRList, is used to store matched ridges, and
another one, MMList, is used to store matched minutiae. The
algorithm repeatedly generates candidate ridge pairs (CRP)
and matches them, until no more ridges can be matched.
A CRP consists of the ridge numbers, segment numbers,
and candidate point pairs (CPP) of the two ridges (or sub-
ridges). A priority queue, CRPQueue, is used to store CRPs.
The CRP with more CPPs will have higher priority value.
The matching algorithm is described as follows.

(1) Generate CRPs for the initial substructure pair. Estimate
the affine transformation between the two substructures.
Push CRPs, the estimated transformation and priority
values into CRPQueue.

(2) If CRPQueue is empty, go to step 9; otherwise, pop up
the first CRP, crp, in CRPQueue.

(3) Check the validity of crp. If invalid, then generate new
CRPs and push the new CRPs into CRPQueue, and then
go to step 2.

(4) Match crp using dynamic programming matching algo-
rithm. If there is no matched portion between these two
ridges, go to step 2.

(5) Store the matched portion and set the statuses of points
to 0. The remaining portions are considered as new
sub-ridges and the statuses of points are set to the new
segment number.

(6) Generate CRPs from the newly matched ridges, and
push CRPs, the current transformation and priority val-
ues into CRPQueue.

(7) Search the newly matched ridges for matched minutiae.
If matched minutiae are found, for each minutia (sub-
structure) pair, generate CRPs, compute the transfor-
mation and priority values based on the newly matched
substructures, and push them into CRPQueue.

(8) Go to step 2.
(9) Compute the matching score.

The above procedure is performed for each of N initial
substructure pairs and the one with the highest matching
score is chosen as the final result.

4.1. Generating CRPs

To reduce the ambiguity of correspondence, CRPs are
always selected from ridges adjacent to already matched
ridges or matched minutiae.

4.1.1. CRPs from matched minutiae
There are two cases in which we will generate CRPs

from matched minutiae. The first case is when the match-
ing process starts with an initial minutia pair. The second
case is when new minutiae are matched during the matching
process.

For a given pair of matched minutiae (substructures),
the CRPs generated are the corresponding ridges in the
substructure pair and the transformation is computed
as described in Section 3. The CRPs generated from
matched minutiae always have higher priority values than
those generated from matched ridges, since local trans-
formations are always estimated based on matched minu-
tiae, and are better applied in nearer regions. We set
the priority value of each CRP generated from matched
minutiae to the number of CPPs plus a large positive
number.

4.1.2. CRPs from matched ridges
Given a pair of matched ridges, {(SP1(r1, p1,i ), SP2(r2,

p2,i ))}Ni=1, and the transformation under which these
two ridges are matched, we generate CRPs as follows.
For each pair of matched points on these two ridges,
(SP1(r1, p1,i ), SP2(r2, p2,i )), a pair of neighboring points
at the same side is regarded as a CPP, and the pair of ridges
that this CPP belongs to is regarded as a CRP. Therefore,
from a pair of matched ridges, we may get several CRPs
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and each CRP can contain several CPPs. The number of
the CPPs contained in a CRP is used as the priority value
of this CRP. The transformation of this CRP is the same as
the transformation of the matched ridges from which this
CRP is generated.

4.1.3. Validate a CRP
A ridge may be contained in multiple CRPs in CRPQueue.

For example, a long ridge in one fingerprint may be paired
with two short ridges in another fingerprint. During the
ridge matching process, the status of points may change.
Therefore, before matching a CRP, we check its validity
by checking the status of each CPP of the CRP. If the
status of any CPP is different from the segment number
of this CRP, this CRP is invalid and we divide the orig-
inal CRP into several new CRPs that have different seg-
ment numbers (note that if all CPPs of the original CRP
have been matched, no new CRPs are generated). Then
the new CRPs (if have), the transformation of the origi-
nal CRP and priority values recomputed are pushed into
CRPQueue.

4.2. Matching a CRP

The task of comparing two ridges is to find the longest
common sub-curves. Curve matching has been formulated
as a string matching problem in [16], where in order to make
feature invariant with respect to rotation and translation, cur-
vature at sampled points has been used as the characters.
In this work, however, ridges have been aligned through lo-
cal transformation, so that coordinates of sampled points
are directly compared for matching. Two points whose Eu-
clidean distance is less than a threshold are regarded as pos-
sible matching.

The matching procedure accepts a CRP and the corre-
sponding transformation as inputs and proceeds as follows
(see Fig. 6 for an example of matching two ridges).

(1) Take the two sub-ridges represented by the CRP, de-
noted as {ai}Mi=1 and {bj }Nj=1, and align them using the
given transformation.

(2) A 2D array T (i, j), i = 1, . . . , M; j = 1, . . . , N is
created, and its element T (i, j) is equal to 0 or 1, which,
respectively, means that the Euclidean distance between
two points, ai and bj , is greater than or less than a
threshold.

(3) Dynamic programming technique is used to find the
longest 1 string in T, which satisfies the following con-
ditions: (1) indices monotonously increase; (2) changes
between adjacent indices should be less than 3.

(4) Array T is flipped horizontally, and the operation in step
3 is performed again to obtain another 1 string.

(5) If the longer 1 string is longer than 3, it is selected as
the matching result; otherwise the two ridges have no
matched portion.

a1 a2 a3 a4 
a5 a6 

a7 a8 
a11

a9 a10 a12 a13

b1 b2 

b3 b4 b5 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

b1 0 0

0

0 0 

0 

1 0 0   0   0 0  0  0  

0  0  

0  0  

0  0  

0  0  

0 

b2 0 0 0 1 1  0  0 0 0 

b3 0 0 0 0 0 0  1 0 0 

b4 0 0 0 0 0 0  0 0 0 

b5 0 0 0 

0 

0 

0 0 0 0  0  0 1 0 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

Before 1  1 1  1  1   1  1  1  1 1 1 1

After 1  1 

 1 

 1 1  0 0  0  0 0 0 2 2 2

b1 b2 b3 b4 b5

Before 1  1  1 1 1 

After 0  0  0 0 0 

 0 

1 

(a)

(b)

(c)

(d)

Fig. 6. Matching two ridges, a and b, by using DP matching. (a)
Two aligned ridges with points labeled; (b) table T in which the
continuous and longest 1 string is searched. The matching result is
{(a5, b1), (a6, b2), (a8, b3), (a9, b4), (a10, b5)}; (c) the changes of the
status of a before and after matching; and (d) the changes of the status
of b before and after matching.

4.3. Detecting matched minutiae

When a pair of ridges is matched, we check the two pairs
of endpoints of these two ridges for matched minutiae. First,
select a pair of matched points on the two ridges as reference.
If the two minutiae are possibly matched as described in
Section 3.2, and neither of them is recorded in the matched
minutiae list MMList, and the numbers of sampled points
between the minutiae and the references differ less than
3 pixels, and the sub-ridges between the minutiae and the
references are correspondent ridges in the substructure of
these two minutiae, then these two minutiae are matched
and stored in MMList.

4.4. Matching score

As two fingerprints may share a small overlapped region,
in order to evaluate the similarity degree of them, we should
consider only the overlapped region. Compared with the
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bounding box of minutia points used in [9], the convex hull
of ridges is a more precise representation for border line of
the fingerprints. In our implementation, the convex hull of
ridges is approximated by the convex hull of sampled points
of ridges. The overlapped region is the intersection of two
convex hulls that are aligned using the initial substructure
pair. The matching score can be computed according to the
following formula:

score = � · sm + (1 − �) · sr

= �
m2

m

Mm · Nm

min

(
1,

mm

Tm

)

+ (1 − �)
m2

r

Mr · Nr

min

(
1,

mr

Tr

)
, (3)

where � (0���1) is used to weight the scores of matched
minutiae and matched ridges, Mm and Mr are the numbers
of minutiae and sampled points of the first fingerprint, and
Nm and Nr are the numbers of minutiae and sampled points
of the second fingerprint, mm and mr are the numbers of
matched minutiae and matched points, Tm and Tr are the
thresholds of the numbers of matched minutiae and matched
points below which scores will be punished, respectively.
Note that all the numbers in the formula are counted in the
overlapped region.

5. Experimental results and analysis

Experiments have been conducted on four databases of
FVC2002 [15]. The resolution of DB1, DB3, and DB4 is
500 dpi, and that of DB2 is 569 dpi. Each database con-
sists of 800 fingerprint images from 100 fingers (eight im-
pressions per finger). The performance evaluation protocol
used in FVC2002 has been adopted. For genuine match,
each impression of each finger is compared with other im-
pressions of the same finger. The number of matches is
C2

8 × 100 = 2800. For impostor match, the first impression
of each finger is compared with the first impression of other
fingers. The number of matches is C2

100 = 4950.
Here we give the value of the parameters used during the

matching process: the sampling interval (6 pixels on DB1,
DB3 and DB4, 7 pixels on DB2), the number of initial
substructure pairs (10), the threshold of distance between
matched points (6 pixels on DB1, DB3 and DB4, 6.8 pixels
on DB2), and the thresholds of similarity between substruc-
tures (�1 = 0.7, �2 = 0.8). Among these parameters, the
sampling interval is crucial as it is the unit of several other
parameters. We have tested our matching algorithm with
different sampling intervals on DB1. The ROC (receiver
operating characteristic) curves are plotted in Fig. 7, and
EERs (equal error rates) and the matching times are given
in Table 1. From the ROC curves and Table 1, we can see
6 pixels is a good choice with higher accuracy and moder-
ate matching time. Larger sampling interval will make the

Fig. 7. ROC curves of the ridge-based algorithm with four sampling
intervals on DB1.

Table 1
The EERs and the match times of ridge-based matching algorithm with
four sampling intervals on DB1

4 pixels 6 pixels 9 pixels 12 pixels

EER 0.016 0.017 0.020 0.031
Time (ms) 160 110 98 83

Table 2
Average numbers of minutiae, Nm, and average numbers of sampled
points, Nr , on four training databases

DB1 DB2 DB3 DB4

Nm 41 45 27 32
Nr 1472 1580 956 1361

performance decrease and smaller sampling interval will
make the computation too time-consuming.

The values of the parameters used in the computation of
the matching score are chosen as follows. � is set to 0.5
on all databases to weight minutia information and ridge
information equally. Tm is set to half of the average number
of minutiae, and Tr half of the average number of sampled
points on each database. The above parameter values are
estimated using the training samples of FVC2002 and given
in Table 2.

Two examples are given in Fig. 8 to demonstrate the
effect of updating transformation based on matched minu-
tiae during the matching process. The two fingerprints are
from the same finger and there exists strong nonlinear de-
formation between them. If using only one global transfor-
mation, there are many ridges unmatched. If using matched
minutiae to update the transformation, however, most minu-
tiae and ridges in the overlapped region are matched. An
example is given in Fig. 9 to illustrate the ability of our
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Fig. 8. (a) Matching result without updating transformation (initial minutiae are labeled, paired ridges are shown in the same color); (b) matching result with
updating transformation (all matched minutiae are labeled). There exists strong nonlinear deformation between the two fingerprints from the same finger.

Fig. 9. Matching result of two poor quality fingerprints from the same
finger.

Fig. 10. Matching result of two fingerprints from different fingers.

algorithm to handle poor quality fingerprints from the same
finger. From the figure, we can see that, except for the poor
quality image region, the matching result is good. An exam-
ple for impostor match is given in Fig. 10. From the figure,
we can see that most of the ridges in the overlapped region
are unmatched, and only one pair of minutiae is matched.

The algorithm presented in this paper is compared with a
minutia-based matching algorithm previously developed in
our lab, which is a tree search approach. In this algorithm,
a pair of triplets that is most similar is first found and cor-
responding minutiae are regarded as matched. The nearest
unmatched minutia of already matched minutiae in finger-
print 1 is assigned several candidate minutiae in fingerprint
2 that are still unmatched. Then for each path, the same pro-
cedure is performed until no more minutiae can be matched.

Table 3
EER (equal error rate) and match time of minutia-based and ridges-based
matching algorithms on four database of FVC2002

DB1 DB2 DB3 DB4

EER Minutia 0.018 0.023 0.045 0.033
Ridge 0.017 0.014 0.069 0.051

Time (ms) Minutia 9 10 6 7
Ridge 110 118 74 83

Finally the path that contains the most matched minutiae is
accepted as the best matching result, and a matching score
is computed in terms of the percentage of matched minutiae
over the total number of minutiae, the number of matched
minutiae and distortion.

Equal error rates and the matching times of ridge-based
method and that of minutia-based one on four databases
are given in Table 3. The ROC curves of the two meth-
ods on four databases are plotted in Fig. 11. From the ROC
curves, we can see that the ridge-based method is slightly
better than the minutia-based one on DB1 and DB2, how-
ever, the latter is slightly better than the former on DB3 and
DB4. Through the analysis of some examples of the ridge-
based method on DB3 and DB4, we found genuine matches
with low scores are mainly due to the following problems:
(i) fail to find correct initial minutia pairs; (ii) transformation
estimated based on low-quality minutia pair is inaccurate.
Although the preliminary results are not very satisfactory,
the ridge-based algorithm is promising and lots of works
need to be done.

The above experiments were conducted on a PC with
Pentium IV 2.2 GHz processor, running Windows 2000. The
matching time of the proposed ridge-based matcher is about
90 ms and that of the minutia-based one is about 10 ms.

6. Summary and future work

We have proposed a fingerprint matching algorithm that
matches both minutiae and ridges. A novel approach is
used to find promising initial minutia pairs. For each initial
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Fig. 11. ROC curves of minutia-based algorithm (solid line), ridge-based algorithm (dotted line) on: (a) DB1; (b) DB2; (c) DB3; and (d) DB4.

minutiae pair, a ridge matching process is performed,
which incrementally matches the remaining minutiae and
ridges. Both minutiae and ridges are taken into account
when computing the matching scores. Experiment is done
to demonstrate the ability of our algorithm to handle
the nonlinear deformation and poor quality fingerprints.
ROCs on FVC2002 databases show that the ridge-based
approach performs comparably with the minutia-based
approach.

While many aspects in the current algorithm should be
improved, the following problems may be the most impor-
tant ones:

(1) The alignment algorithm should be improved to handle
fingerprints with fewer minutiae.

(2) The matching algorithm should be improved to handle
low quality fingerprints and fingerprints with strong de-
formation.

(3) After matching, analyze the causes of the unmatched
minutiae and give different punishment to different
cases.

(4) A feature extraction algorithm should be specially de-
signed for the ridge matching algorithm.

(5) Computational complexity should be decreased.
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