On Latent Finger print Enhancement

Soweon Yoofy Jianjiang Ferfyand Anil K. Jain®®
®Department of Computer Science and Engineeringhigan State University, East Lansing,
MI 48824, USA;
®Department of Brain and Cognitive Engineering, Kotmiversity, Anam-dong, Seongbuk-gu,
Seoul 136-713, Korea

ABSTRACT

Automatic feature extraction in latent fingerpriigsa challenging problem due to poor quality ofstiatents, such as
unclear ridge structures, overlapped lines andrgtiand overlapped fingerprints. We have propeskadent fingerprint

enhancement algorithm which requires manually nthregion of interest (ROI) and singular points. Tduee of the

proposed enhancement algorithm is a novel oriemtdteld estimation algorithm, which fits orientati field model to

coarse orientation field estimated from skeletotpotied by a commercial fingerprint SDK. Experimantesults on

NIST SD27 latent fingerprint database indicate thaincorporating the proposed enhancement algarithe matching

accuracy of the commercial matcher was signifigaimtiproved.
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1. INTRODUCTION

Fingerprints have been routinely used as a metloodpérson identification for more than a centuryneCof the
irreplaceable functionality of fingerprint recogduit is its capability to link partial prints founat crime scenes to
suspects whose fingerprints are previously enralieal large database of rolled fingerprints. Theasial prints, called
latent fingerprints or simply latents, are liftedrh surfaces of objects that are inadvertently hedcor handled by a
person. Lifting of latents involves a complicatedgess that can range from simply photographingptiva to more
complex dusting or chemical processthgCompared to plain or rolled fingerprints (seeuféy1), which are captured
by inking methods or livescan devices in an attdnede, latent fingerprints are smudgy and blurocegture only a
small finger area, and have large nonlinear distordue to pressure variations. Due to their pamlity and small area,
latents have a significantly smaller number of rtism compared to rolled or plain prints (the averagmber of
minutiae in NIST SD27 database images is 21 for latents versus 10&iéocarresponding rolled prints).

Figure 1. Three types of fingerprint images. (a)l&b (b) plain and (c) latent fingerprints of tbeme finger in NIST SD27.
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Before the introduction of Automatic Fingerprineltification systems (AFIS), latents were manusaiigtched against
full prints (rolled or plain) by latent examinersrough a procedure now referred to as ACE-V, namatglysis,
comparison, evaluation andverification®. Unlike full print (rolled or plain) to full prinmatching, which is somewhat
facilitated by fingerprint pattern class or typeamoally matching a latent print against a largdegglis not feasible.
Generally, latents are only matched against fuitprof a small number of suspects who are idertifrom other means
(e.g. gender, ethnicity, age, etc.).

The emergence of Automated Fingerprint IdentifmatSystems (AFIS) significantly improved the speédingerprint
identification and made latent identification agdim large fingerprint database feasible. Afterrawérty years of
development, tremendous advances have been mabethinthe throughput and accuracy of full print tdl forint
matching. The results of Fingerprint Vendor Teclbngl Evaluation (FpVTE) in 206 showed that the most accurate
commercial fingerprint matchers achieved an impvessank-1 identification rate of more than 99.4% adatabase of
10,000 plain fingerprint images. The US-VISIT IDENYstem can search fingerprints of a visitor to tmited States
against a watch list of millions of subjects ineafsecondd. However, this throughput and accuracy of fingeitpr
identification for rolled/plain prints has not yleeéen realized for latent identification. Due to generally poor quality
of latents, latent identification module in AFISpigally works in a semi-automatic mode for the sakédentification
accuracy. A typical scenario is that an expert finanually marks features in a latent, launchesSAgdarch, and finally
reviews the candidate list returned by AFIS to tdgrthe true mate (if present). Extensive manudgivention is
needed in both feature marking and review stagespite of this, latent matching accuracy is stdt satisfactory. It
was reported that the rank-1 identification ratehef FBI's IAFIS is about 54% on a large databasmore than 40
million subject§’. In our recent wor, a rank-1 accuracy of 79.5% was obtained in matcBb8 latents in NIST SD27
against 2,258 rolled prints.

In the long run, “Lights-Out”latent identification capability is desirable. Gater the following two scenarios: (i) a
patrol officer wants to check fingerprints of apest against latent fingerprints from unsolved sa¢i@ a crime scene
specialist hopes to identify latents lifted at ane& scene in the field. In both these cases, itldvbe desirable to get a
quick (real time) response to the query. To undedstand advance the state of the art in automatént feature
extraction and matching, NIST has been conductingudti-phase project on Evaluation of Latent Firpyert
Technologies (ELFTJ. The rank-1 accuracy of the most accurate systeBELFT Phase | was ~80% in matching 100
latents against 10,000 rolled prifftsMuch higher accuracies were reported in ELFT BHa®rganized shortly after
Phase I. The rank-1 accuracy of the most accuyaters in Phase Il is 97.2% in matching 835 latagtsinst a galley of
100,000 rolled print¥’. Unfortunately, Phase | and Phase Il accuracieratebe compared because different databases
were used in the two evaluations. Further, the ®hlaaccuracy does not reflect the performancdehl fapplications,
since the latents used in Phase Il are of very gpdity. Figure 2 shows three latents of differguélity in NIST SD27.

Figure 2. Latent fingerprints of three differentatjty levels in NIST SD27. (a) Good, (b) Bad, acyigly.

1 In a “Lights-Out” fingerprint identification syste, manual feature marking is not required and only mated fingerprint or no
mate is returned by the system.



It is our opinion that research efforts in latemgerprint identification should be focused on reidg the necessary
manual input while at the same time preservingnilaéching accuracy, rather than on completely elating manual

input. This opinion is supported by the followingcfs: (i) latent matching accuracy is still the enagoncern of law

enforcement agencies, (ii) currently manual latesture marking is very labor extensive, and @iiate of the art
“Lights-Out” latent identification systems canneit pffer satisfactory accuracy for most latentsagework quality.

In current practice, latent examiners are requiednark minutiae and optionally singular points ré¢delta) [FBI
EFTS]. Marking these features is generally lesseitonsuming and requires less expertise than nganrkimutiae,
which are required by the current practice. In fraper, we assume that the manually marked featuse®Region of
Interest (ROI) and singular points. Therefore, priscedure will not only improve the throughputatnt identification
system, but reduce the cost as well, since humpeargge and time are expensive. We have proposedemtation field
estimation algorithm, which takes skeleton imagesegated by a commercial fingerprint SDK, Neurotedbgy
VeriFingef™¥, and manually marked singular points as input.dgditters were used to enhance latent images.€§b t
the proposed enhancement algorithm, we combinedthit VeriFinger matcher and conducted experimemnts gublic
domain fingerprint database, NIST SD27.

2. LATENT FINGERPRINT ENHANCEMENT
2.1 Overview

The purpose of an enhancement algorithm is to ingrhe clarity of the ridge structures and therefarake the
subsequent processing, such as minutiae extraatidnmatching algorithm, insensitive to the quabfyfingerprint
images. Fingerprint enhancement is especially itaporto latent images, due to their poor qualitycal ridge pattern
in fingerprints can be approximated well by a 2Busioid wave. Based on this fact, 2D Gabor filtérdiave been
successfully used for fingerprint enhancement. Géliers consist of two important parameters: lagdge orientation
and frequency. With proper choice of these pararset@abor filtering can connect broken ridges agpbsate joined
ridges. However, when the parameters are incorteet ridges may be weakened and spurious ridges lmea
strengthened after filtering. Hence, a reliablénestion of local ridge orientation and frequencyiry important to
fingerprint enhancement. Compared to frequencyeridrientation is even more important, as the rasfgpossible
ridge frequency values is small for adult fingemgsiand ridge frequency is often estimated afigeiorientation is
knowr**.. For this reason, in this paper, we focus on gtienation of orientation field in latent images.

Due to its importance, orientation field estimatisma popular topic in fingerprint recognition lisdéure. Most orientation
field estimation algorithnf$"™¥ consist of two steps: initial estimation using mdient-based method followed by
regularization. The regularization may be done Isynaple weighted averaging filter or more complkéchimodel-based
method8?. To make regularization effective, it is betteruse only reliable initial estimate or to givearder weight.
However, very limited information is available &ig stage to estimate the reliability of initiatiesate. To overcome
this limitation, we estimate a coarse orientati@fdffrom skeleton image generated by a commeRizK. This coarse
orientation field is further regularized by fittirn orientation field model to it. The flowchart thie proposed latent
enhancement algorithm is shown in Figure 3. In fidiwing subsections, we first explain manual ih@und then
describe the coarse estimation and regularizafiamientation field.

Skeleton

Orientation Field Estimation

Singular Parameter
Points . . . L Estimation
Orientation Field Regularization

l

Gabor Filtering

- Latent Image Enhanced Image
-ROI

- Skeleton

- Singular Points

Figure 3. Flowchart of the proposed latent enharcgralgorithm.



2.2 Manual Input

Level-1 fingerprint features include ridge oriematfield and singular points. Ridge orientatioaldi can be marked at
block level (usually the size of block is 16 bydigels). A possible scenario for manual orientafiefd marking is that

the gradients of the local blocks give initial esiie of the orientation field and examiners cam tin@ke a correction in
the blocks with wrong orientation field. Howeveatdnt fingerprints are largely corrupted by comfexkground noise
and the ridge structures are not clearly visiblauman eye. Therefore, manual orientation fieldkimgrrequires a high

level of attention by the examiners.

Compared to orientation field marking, singularrsiare easy for examiners to mark manually siheenumber of
singularities is small (at most four in a fingentyi and their locations are easy to identify. Baseda thorough
investigation of fingerprints, we could find tworgiraints on singularities in the fingerprints: tfie numbers of cores
and deltas in the fingerprint are the same, afdh@ total number of singular points in a fingampis zero, two or four.
Loop and tented arch type of fingerprints have om® and one delta, and double-loop and whorl tfpngerprints
have two cores and two deltas.

We assume that latent examiners can provide tHewfinlg information to automatic fingerprint matchéi) latent
fingerprint region in the image or the region dkeirest (ROI) and (ii) singular points. When lateraminers manually
mark the singular points, we assume that theyotlwo rules:

« If the latent does not contain singular pointssirgular points are marked. In other words, wettaglatent as
plain arch unless contradictory information is pres

« If the number of obvious singular points in the R®bdd, paired singular points outside of the R@iich is
called virtual singular points, are marked with Hest guess in order to satisfy the constraintsimgularity (i.e.
the number of cores and deltas are the same andtgh@umber of singular points is one of 0, 2] dj

See Figure 4 for three examples that contain ngutan points, only real singular points, and batalrand virtual
singular points, respectively.

Figure 4. Singular points and type of fingerpritistt loop, right loop, whorl, double loop, tentacth, and arch
(clockwise). Circles denote cores and trianglesotiedeltas.

2.3 Coarse Estimation of Orientation Field

In general, latent fingerprints are corrupted bynptex background noise or have unclear ridge sirast Instead of
estimating the coarse orientation field directignfr the image, we utilizes skeleton provided by mmme@rcial software,
and then correct wrong ridge orientations in thisyareas.



Reliable blocks which are coherent with surroundolocks are distinguished from the initial oriergat field. The
orientation field in unreliable blocks is obtainley interpolating the orientation field in relialidocks. The orientation
field can be represented in complex plane with teaibngle.

U(x y)=cos(D &y ))j sin(@ Xy ), 1)

where 8(x, y) is the orientation field from the skeleton in adlie blocks andJ (x, y) is a representation of the angle in

complex domain. Then, cosine and sine parts arepedently estimated by angles in reliable blo€kgure 5 shows
the orientation field from the skeleton and therected orientation field in unreliable blocks.

N £ 257

Figure 5. Coarse orientation field estimation. liefages: green lines are reliable (coherent) cateont field and red lines
are unreliable orientation field. Right images:agréines are reliable orientation field and re@drare interpolated
orientation field from reliable blocks.

2.4 Regularization of Orientation Field

A zero-pole modé&f! describes an ideal orientation field of the fiqmert by singular points. A rational polynomial
function in complex plane determines the ridgertg#on at a pointz = x+iy by:

1 20, P(2)

w(2) =—arg{e‘ =1 2
2 Q(2)

where P(2)=(z-2,)(z-%,)(2-%,) . Q@)=(2-2)(z-2)(2=%,) + {Z}1siem aNd {Zg}1qem are the

locations of the cores and deltas, afdis the orientation field at infinity. This zerodeamodel requires a complete set

of singular points of a fingerprint. We need tdrested,, when the fingerprint is rotated in the image.

An inherent limitation of the zero-pole model isthhis model can not represent arch type of fipgets which does

not have any singular points. In addition, since trientation field estimated by this model dependl/ on the
locations of singular points, this model can ndtex local ridge orientation of the real fingemts in detail.



Zhou and GHU? extended zero-pole model to represent local ridgentation by combining it with a polynomial
function. The zero-pole model is used to represieatglobal orientation field due to known singufaints and the

polynomial function represents ridge details. Hoarewhe fingerprint impressions are usually a mdrthe actual

fingerprint unless the fingerprint is scanned bgil4to-nail’ method. Therefore, the zero-pole modsing only known

singular points in the image cannot take into antall the effects of all the singularities to thiéentation field. As a

result, the polynomial function should be of higher to describe large curvature of the orientatielal.

In our model, the global orientation field consisfstwo parts: (i) the orientation field due to #tle singular points,
including visible singular points in the ROI as va$ virtual singular pointgy(x,y), and (ii) polynomial model for
ridge details which reflects fingerprint rotatiomdaskin distortion,d(x,y). ¢/(x,y) depends on types and spatial
distribution of singular points. Figure 6 shows thieentation field by singular points.

The orientation field modelg(x, y) , can be written as:

AXY) = (X, y)+0(X,Y), ©)
wherey/(x,y) is the orientation field from all possible singufmints andd(x, y) is the polynomial modeld(x, y) is

estimated by minimizingZ:(X |(H(x, y) - (X, y))—5(x,y)|2 using least-squares estimation, whé(g, y) is the

Y)OR
coarse orientation field estimated from the imagd R denotes the ROI. In our model, we used a secoddror
polynomial function ford(x,y) which is the minimal order of the polynomial fuioct to represent curves. The
polynomial function with low order only needs tdiemte a few parameters. In addition, it is robestomplex noise
present in the latent images.

Figure 6. Orientation field from singular pointa) (No obvious singular point is present, (b) aniobs delta and its
corresponding virtual core is marked, and (c) Vestivo cores and one delta and the paired delta.

Figure 7 shows the overall procedure of the ort@mtdield estimation of the latents and fingerpemhancement based
on Gabor filtering.



Figure 7. Orientation field estimation. (a) Inpotaige, (b) orientation field from skeleton, (c) atagion field corrected
(green: reliable orientation field, red: estimatexin reliable blocks), (d) orientation field froringular points, and (e)
orientation field estimated by the proposed model.

3. EXPERIMENTAL RESULTS

3.1 Database

The experiments were conducted on NIST SD27 dat8bashich contains 258 latent fingerprints and their
corresponding rolled prints at 500 ppi. This is tmy public domain database available containireged latent and
rolled prints. These 258 latent prints were clasgiby latent examiners into three classes basehednquality, namely:
Good, Bad and Ugly. There are 88 “Good”, 85 “Baddl 85 “Ugly” latent images in the database.

3.2 Matching Performance

We conducted experiments by matching 258 latengsnag 258 rolled prints for four types of manugbuh (in the
increasing order of labor):

« Manually marked ROI. Minutiae are automaticallyreted in the ROI using VeriFinger SDK 4%

¢ Manually marked ROI and singular points. Orientatfeeld is first estimated using the proposed atbar;
fingerprint is then enhanced using Gabor filterangd minutiae are automatically extracted in theaeckd
image using VeriFinger SDK. This is the scenarigchtihe proposed enhancement algorithm is desitpred



* Manually marked ROI and orientation field. The atagion field is directly used in Gabor filteringhéh
minutiae are then automatically extracted in theamiced image using VeriFinger SDK.

» Manually marked minutiae are directly used by Varger matcher.

The Cumulative Match Characteristic (CMC) curveshafse four types of input are shown in Figure .84a)expected,
the matching accuracy is consistent with the laifananual input. The highest accuracy is obtainedmminutiae are
manually marked and the worst accuracy is obtaimbdn only ROI is provided. The effectiveness of flieposed
enhancement algorithm is validated by the fact thatching accuracy is improved due to manually meérkingular
points. But, the higher accuracy of using manuiadbrked orientation field indicates that the propbsgentation field
estimation algorithm needs to be improved.

Figure 8(b-d) show CMC curves of four types of infar good, bad and ugly latents, respectively. &dserved that
» The proposed enhancement algorithm leads to imgroagtching accuracy for all three categories.

» For bad quality latents, image enhancement withumgglotruth orientation field achieved almost the sam
performance as ground truth minutiae.

The examples in Figure 9 clearly show the effecthef proposed enhancement algorithm. Due to thare@ment
algorithm, more ridges can be correctly extractegdor quality area.
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Figure 9. Skeleton images without and with the pegal enhancement. Left: latent fingerprint, midelesleton without
enhancement, and right: skeleton with enhancert@nGood latent (matching score was improved froim @7), (b)
bad latent (4 to 95), and (c) ugly latent (0 to.23)

4. CONCLUSIONSAND FUTURE DIRECTIONS

Increasing deployment of fingerprint recognitiorstgyns in civilian and governmental applications tessilited in more
and more fingerprints being collected from citizevt® were not required to pass fingerprint checthe past, such as
an applications for certain jobs, internationald®srcrossing at a port of entry, and a suspecpstbpy a patrol officer,
etc. Matching these new fingerprints to latentsio$olved cases has the potential of solving moodd“cases”. This
practice makes shortening the response time ohtldatientification an urgent issue. While fully aotatic latent
identification is desirable in the long term, a maractical goal in the interim is to reduce manimglut while
preserving the matching accuracy.

In this paper, we have proposed a latent fingermitancement algorithm which only requires magualhrked ROI
and singular points. The core of the proposed etgraent algorithm is an orientation field estimatagorithm, which



fits an orientation field model to the coarse atégion field estimated from skeleton provided byc@mmercial
fingerprint SDK. Experimental results on NIST SDRidicate that using singular points is beneficial minutiae
extraction, leading to improved matching accuracy.

We plan to extend the current work along two dicets.

» Define more effective manual inputs. For some liatesingular points may not be the most effectiymit. For
example, the singular region may be of good quatitythe latents may not contain singular pointstbese
cases, inputting a curve indicating the ridge fiavgome critical regions (such as regions with tamred lines
or letters) may be more effective for estimating thientation field.

* Reduce manual input even further. Currently, regibinterest (ROI) is specified by a polygon thaguires
inputting all the vertices. A more efficient inpotethod for specifying ROI is that the user inputsiraular
region, which roughly covers the ROI, and then dlgorithm automatically locates the accurate bonadé
the ROL.
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